Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008296/ta1368sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008296/ta1368Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008296/ta1368IIsup3.hkl |
CCDC references: 192962; 192963
The title compounds were synthesized according to the literature method of Suzuki (1994) for (I) and Fukushima et al. (1999) for (II). Pale-yellow crystals of (I) and (II) suitable for X-ray analysis were grown from an ethyl acetate and a dichloromethane solution, respectively.
All H atoms of (I) and (II) were placed in geometrically calculated positions, with C—H = 0.93 Å, and refined using a riding model.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (I); CrystalClear (Molecular Structure Corporation & Rigaku Corporation, 2001) for (II). Cell refinement: MSC/AFC Diffractometer Control Software for (I); CrystalClear for (II). For both compounds, data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2000). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); SIR97 (Altomare et al., 1999) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-III (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
C6H2I2N2S | F(000) = 696 |
Mr = 387.96 | Dx = 2.948 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yab | Cell parameters from 25 reflections |
a = 11.0515 (17) Å | θ = 14.7–15.0° |
b = 18.2104 (12) Å | µ = 7.37 mm−1 |
c = 4.3441 (11) Å | T = 296 K |
β = 90.47 (2)° | Plate, pale yellow |
V = 874.2 (3) Å3 | 0.5 × 0.3 × 0.1 mm |
Z = 4 |
Rigaku AFC-7R diffractometer | 1763 reflections with I > 2σ(I) |
Radiation source: Rigaku rotating anode | Rint = 0.018 |
Graphite monochromator | θmax = 27.5°, θmin = 2.2° |
ω/2θ scans | h = 0→14 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→23 |
Tmin = 0.109, Tmax = 0.479 | l = −5→5 |
2110 measured reflections | 3 standard reflections every 150 reflections |
2014 independent reflections | intensity decay: 0.2% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.027P)2 + 2.4993P] where P = (Fo2 + 2Fc2)/3 |
S = 0.96 | (Δ/σ)max = 0.001 |
2014 reflections | Δρmax = 0.51 e Å−3 |
101 parameters | Δρmin = −0.50 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00185 (18) |
C6H2I2N2S | V = 874.2 (3) Å3 |
Mr = 387.96 | Z = 4 |
Monoclinic, P21/a | Mo Kα radiation |
a = 11.0515 (17) Å | µ = 7.37 mm−1 |
b = 18.2104 (12) Å | T = 296 K |
c = 4.3441 (11) Å | 0.5 × 0.3 × 0.1 mm |
β = 90.47 (2)° |
Rigaku AFC-7R diffractometer | 1763 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.018 |
Tmin = 0.109, Tmax = 0.479 | 3 standard reflections every 150 reflections |
2110 measured reflections | intensity decay: 0.2% |
2014 independent reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.51 e Å−3 |
2014 reflections | Δρmin = −0.50 e Å−3 |
101 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.4475 (0.0074) x + 1.4243 (0.0197) y - 3.5325 (0.0026) z = 3.7930 (0.0179) * 0.0053 (0.0019) S1 * 0.0003 (0.0026) N1 * 0.0021 (0.0025) N2 * -0.0079 (0.0028) C1 * -0.0011 (0.0030) C2 * -0.0049 (0.0031) C3 * -0.0086 (0.0029) C4 * 0.0084 (0.0030) C5 * 0.0064 (0.0030) C6 - 0.0394 (0.0044) I1 - 0.0664 (0.0043) I2 Rms deviation of fitted atoms = 0.0058 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.92875 (3) | 0.86097 (1) | 0.97967 (6) | 0.04361 (10) | |
I2 | 0.70115 (2) | 0.52629 (1) | 0.43698 (6) | 0.04253 (10) | |
S1 | 1.05020 (9) | 0.60054 (5) | 1.0837 (3) | 0.0431 (2) | |
N1 | 1.0228 (3) | 0.68765 (16) | 1.0701 (8) | 0.0372 (7) | |
N2 | 0.9411 (3) | 0.56889 (17) | 0.8728 (8) | 0.0363 (7) | |
C1 | 0.8637 (3) | 0.76214 (18) | 0.8123 (8) | 0.0302 (7) | |
C2 | 0.9233 (3) | 0.69599 (19) | 0.8924 (8) | 0.0291 (7) | |
C3 | 0.8763 (3) | 0.62727 (19) | 0.7799 (8) | 0.0294 (7) | |
C4 | 0.7709 (3) | 0.6262 (2) | 0.5881 (8) | 0.0327 (7) | |
C5 | 0.7181 (3) | 0.6910 (2) | 0.5131 (9) | 0.0371 (8) | |
H5 | 0.6502 | 0.6911 | 0.3854 | 0.045* | |
C6 | 0.7642 (3) | 0.7589 (2) | 0.6253 (9) | 0.0360 (8) | |
H6 | 0.7254 | 0.8022 | 0.5695 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.05485 (18) | 0.02726 (14) | 0.04851 (16) | −0.00099 (10) | −0.01303 (12) | −0.00163 (10) |
I2 | 0.04839 (16) | 0.03278 (14) | 0.04626 (16) | −0.00796 (10) | −0.00983 (11) | −0.00278 (10) |
S1 | 0.0381 (5) | 0.0333 (5) | 0.0577 (6) | 0.0041 (4) | −0.0156 (4) | 0.0038 (4) |
N1 | 0.0369 (16) | 0.0250 (14) | 0.0496 (18) | 0.0003 (12) | −0.0107 (13) | 0.0003 (13) |
N2 | 0.0356 (16) | 0.0291 (15) | 0.0442 (17) | −0.0006 (12) | −0.0053 (13) | 0.0028 (13) |
C1 | 0.0338 (17) | 0.0211 (15) | 0.0357 (17) | −0.0016 (12) | −0.0021 (13) | 0.0000 (13) |
C2 | 0.0303 (16) | 0.0245 (15) | 0.0325 (16) | −0.0003 (13) | −0.0018 (13) | 0.0021 (13) |
C3 | 0.0285 (16) | 0.0279 (16) | 0.0318 (16) | 0.0004 (13) | −0.0005 (13) | 0.0027 (13) |
C4 | 0.0354 (18) | 0.0312 (17) | 0.0316 (16) | −0.0066 (14) | −0.0026 (14) | 0.0019 (14) |
C5 | 0.0324 (18) | 0.0381 (19) | 0.0406 (19) | −0.0043 (15) | −0.0127 (15) | 0.0021 (16) |
C6 | 0.0372 (18) | 0.0269 (17) | 0.0437 (19) | 0.0023 (14) | −0.0069 (15) | 0.0046 (15) |
I1—C1 | 2.068 (3) | C1—C2 | 1.415 (5) |
I2—C4 | 2.080 (4) | C2—C3 | 1.439 (5) |
S1—N1 | 1.616 (3) | C3—C4 | 1.427 (5) |
S1—N2 | 1.615 (3) | C4—C5 | 1.355 (5) |
N1—C2 | 1.347 (4) | C5—C6 | 1.421 (5) |
N2—C3 | 1.342 (4) | C5—H5 | 0.9300 |
C1—C6 | 1.363 (5) | C6—H6 | 0.9300 |
S1···N2i | 3.093 (3) | I1···I2iii | 4.138 (1) |
N2···S1i | 3.093 (3) | I1···I2iv | 4.196 (1) |
I1···I2ii | 3.789 (1) | ||
N1—S1—N2 | 101.00 (16) | C4—C3—C2 | 120.1 (3) |
C2—N1—S1 | 106.5 (2) | C5—C4—C3 | 118.4 (3) |
C3—N2—S1 | 106.4 (2) | C5—C4—I2 | 121.9 (3) |
C6—C1—C2 | 118.7 (3) | C3—C4—I2 | 119.7 (3) |
C6—C1—I1 | 121.6 (3) | C4—C5—C6 | 121.5 (3) |
C2—C1—I1 | 119.7 (2) | C4—C5—H5 | 119.3 |
N1—C2—C1 | 127.8 (3) | C6—C5—H5 | 119.3 |
N1—C2—C3 | 112.8 (3) | C1—C6—C5 | 121.9 (3) |
C1—C2—C3 | 119.4 (3) | C1—C6—H6 | 119.1 |
N2—C3—C4 | 126.6 (3) | C5—C6—H6 | 119.1 |
N2—C3—C2 | 113.3 (3) | ||
N2—S1—N1—C2 | −0.1 (3) | N1—C2—C3—C4 | 179.9 (3) |
N1—S1—N2—C3 | −0.1 (3) | C1—C2—C3—C4 | 0.3 (5) |
S1—N1—C2—C1 | 179.9 (3) | N2—C3—C4—C5 | −178.8 (4) |
S1—N1—C2—C3 | 0.3 (4) | C2—C3—C4—C5 | 0.8 (5) |
C6—C1—C2—N1 | 179.3 (4) | N2—C3—C4—I2 | 2.0 (5) |
I1—C1—C2—N1 | −0.7 (5) | C2—C3—C4—I2 | −178.3 (2) |
C6—C1—C2—C3 | −1.2 (5) | C3—C4—C5—C6 | −1.1 (6) |
I1—C1—C2—C3 | 178.8 (2) | I2—C4—C5—C6 | 178.0 (3) |
S1—N2—C3—C4 | 179.9 (3) | C2—C1—C6—C5 | 0.9 (6) |
S1—N2—C3—C2 | 0.3 (4) | I1—C1—C6—C5 | −179.1 (3) |
N1—C2—C3—N2 | −0.4 (4) | C4—C5—C6—C1 | 0.2 (6) |
C1—C2—C3—N2 | −180.0 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+3/2, y+1/2, −z+1; (iii) x+1/2, −y+3/2, z+1; (iv) −x+3/2, y+1/2, −z+2. |
C12H4I2N4S2 | Dx = 2.523 Mg m−3 |
Mr = 522.11 | Melting point: 311 K |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: F 2 -2d | Cell parameters from 3274 reflections |
a = 20.892 (14) Å | θ = 3.1–27.5° |
b = 33.38 (2) Å | µ = 4.87 mm−1 |
c = 3.942 (3) Å | T = 296 K |
V = 2749 (3) Å3 | Needle, pale yellow |
Z = 8 | 0.60 × 0.04 × 0.04 mm |
F(000) = 1936 |
Rigaku Mercury CCD area-detector diffractometer | 1438 independent reflections |
Radiation source: Rigaku rotating anode | 1394 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 14.62 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ϕ and ω scans | h = −26→22 |
Absorption correction: multi-scan (Jacobson, 1998) | k = −36→42 |
Tmin = 0.132, Tmax = 0.829 | l = −5→4 |
6500 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.055 | w = 1/[σ2(Fo2) + (0.0648P)2 + 102.9652P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.152 | (Δ/σ)max < 0.001 |
S = 1.21 | Δρmax = 0.98 e Å−3 |
1438 reflections | Δρmin = −1.07 e Å−3 |
92 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0012 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983); 538 Friedel pairs Query |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.01 (8) |
C12H4I2N4S2 | V = 2749 (3) Å3 |
Mr = 522.11 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 20.892 (14) Å | µ = 4.87 mm−1 |
b = 33.38 (2) Å | T = 296 K |
c = 3.942 (3) Å | 0.60 × 0.04 × 0.04 mm |
Rigaku Mercury CCD area-detector diffractometer | 1438 independent reflections |
Absorption correction: multi-scan (Jacobson, 1998) | 1394 reflections with I > 2σ(I) |
Tmin = 0.132, Tmax = 0.829 | Rint = 0.054 |
6500 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.152 | w = 1/[σ2(Fo2) + (0.0648P)2 + 102.9652P] where P = (Fo2 + 2Fc2)/3 |
S = 1.21 | Δρmax = 0.98 e Å−3 |
1438 reflections | Δρmin = −1.07 e Å−3 |
92 parameters | Absolute structure: Flack (1983); 538 Friedel pairs Query |
1 restraint | Absolute structure parameter: −0.01 (8) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 8.3358 (0.0495) x - 3.1514 (0.1294) y + 3.5956 (0.0045) z = 3.7555 (0.0296) * -0.0094 (0.0065) S1 * 0.0071 (0.0098) N1 * -0.0043 (0.0087) N2 * -0.0081 (0.0104) C1 * 0.0150 (0.0103) C2 * -0.0022 (0.0103) C3 * 0.0104 (0.0093) C4 * -0.0045 (0.0089) C5 * -0.0040 (0.0102) C6 0.0277 (0.0151) I1 Rms deviation of fitted atoms = 0.0082 - 8.3358 (0.0493) x + 3.1514 (0.1289) y + 3.5956 (0.0045) z = 1.1633 (0.0484) Angle to previous plane (with approximate e.s.d.) = 48.41 (0.14) * -0.0094 (0.0065) S1_$1 * 0.0071 (0.0098) N1_$1 * -0.0043 (0.0087) N2_$1 * -0.0081 (0.0104) C1_$1 * 0.0150 (0.0102) C2_$1 * -0.0022 (0.0103) C3_$1 * 0.0104 (0.0093) C4_$1 * -0.0045 (0.0089) C5_$1 * -0.0040 (0.0102) C6_$1 0.0277 (0.0151) I1_$1 Rms deviation of fitted atoms = 0.0082 Operators for generating equivalent atoms: $1 - x + 1/2, -y + 1/2, z |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.17133 (4) | 0.08701 (2) | 0.7312 (2) | 0.0485 (4) | |
S1 | 0.07266 (13) | 0.21576 (9) | 1.0625 (9) | 0.0386 (9) | |
N1 | 0.0992 (4) | 0.1722 (3) | 0.967 (4) | 0.034 (2) | |
N2 | 0.1327 (4) | 0.2431 (2) | 0.949 (3) | 0.0285 (19) | |
C1 | 0.1995 (5) | 0.1463 (3) | 0.708 (3) | 0.025 (2) | |
C2 | 0.1575 (5) | 0.1771 (3) | 0.839 (3) | 0.025 (2) | |
C3 | 0.1774 (5) | 0.2185 (3) | 0.824 (3) | 0.025 (2) | |
C4 | 0.2387 (4) | 0.2293 (3) | 0.695 (3) | 0.025 (2) | |
C5 | 0.2763 (5) | 0.1985 (3) | 0.577 (3) | 0.026 (2) | |
H5 | 0.3163 | 0.2044 | 0.4862 | 0.031* | |
C6 | 0.2561 (6) | 0.1580 (3) | 0.588 (4) | 0.039 (4) | |
H6 | 0.2840 | 0.1384 | 0.5073 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0454 (5) | 0.0290 (4) | 0.0710 (7) | −0.0053 (3) | 0.0004 (5) | −0.0047 (4) |
S1 | 0.0267 (13) | 0.0337 (14) | 0.055 (3) | −0.0008 (10) | 0.0127 (13) | −0.0007 (13) |
N1 | 0.032 (4) | 0.029 (4) | 0.041 (6) | −0.003 (3) | 0.015 (5) | −0.006 (6) |
N2 | 0.025 (4) | 0.022 (4) | 0.038 (5) | −0.004 (3) | 0.004 (4) | −0.007 (4) |
C1 | 0.030 (5) | 0.020 (4) | 0.027 (6) | 0.002 (3) | 0.001 (4) | −0.003 (4) |
C2 | 0.017 (4) | 0.020 (4) | 0.038 (7) | −0.001 (3) | −0.003 (4) | −0.002 (4) |
C3 | 0.025 (5) | 0.015 (4) | 0.035 (7) | 0.002 (3) | 0.009 (4) | 0.001 (4) |
C4 | 0.018 (4) | 0.022 (5) | 0.036 (6) | −0.002 (3) | −0.009 (4) | −0.006 (5) |
C5 | 0.026 (5) | 0.027 (5) | 0.025 (6) | 0.000 (4) | 0.007 (4) | −0.002 (4) |
C6 | 0.026 (5) | 0.019 (5) | 0.073 (11) | 0.000 (4) | −0.004 (5) | −0.011 (5) |
I1—C1 | 2.065 (9) | C2—C3 | 1.445 (13) |
S1—N1 | 1.599 (9) | C3—C4 | 1.423 (13) |
S1—N2 | 1.616 (9) | C4—C5 | 1.376 (14) |
N1—C2 | 1.331 (13) | C4—C4i | 1.462 (18) |
N2—C3 | 1.337 (13) | C5—C6 | 1.417 (15) |
C1—C6 | 1.332 (16) | C5—H5 | 0.9300 |
C1—C2 | 1.446 (14) | C6—H6 | 0.9300 |
N1—S1—N2 | 100.3 (4) | C2—C3—C4 | 121.0 (9) |
C2—N1—S1 | 107.3 (7) | C5—C4—C3 | 116.4 (9) |
C3—N2—S1 | 107.2 (7) | C5—C4—C4i | 121.5 (10) |
C6—C1—C2 | 117.1 (9) | C3—C4—C4i | 122.1 (10) |
C6—C1—I1 | 123.4 (8) | C4—C5—C6 | 122.2 (10) |
C2—C1—I1 | 119.5 (7) | C4—C5—H5 | 118.9 |
N1—C2—C3 | 113.2 (9) | C6—C5—H5 | 118.9 |
N1—C2—C1 | 127.3 (9) | C1—C6—C5 | 123.8 (10) |
C3—C2—C1 | 119.5 (9) | C1—C6—H6 | 118.1 |
N2—C3—C2 | 111.9 (9) | C5—C6—H6 | 118.1 |
N2—C3—C4 | 127.1 (9) | ||
N2—S1—N1—C2 | −0.1 (11) | N1—C2—C3—C4 | 179.7 (12) |
N1—S1—N2—C3 | 0.6 (11) | C1—C2—C3—C4 | −2.4 (17) |
S1—N1—C2—C3 | −0.4 (14) | N2—C3—C4—C5 | −179.3 (11) |
S1—N1—C2—C1 | −178.1 (11) | C2—C3—C4—C5 | 2.0 (17) |
C6—C1—C2—N1 | 179.5 (13) | N2—C3—C4—C4i | 2.1 (17) |
I1—C1—C2—N1 | −2.8 (18) | C2—C3—C4—C4i | −176.5 (8) |
C6—C1—C2—C3 | 2.0 (17) | C3—C4—C5—C6 | −1.3 (17) |
I1—C1—C2—C3 | 179.6 (8) | C4i—C4—C5—C6 | 177.3 (9) |
S1—N2—C3—C2 | −0.9 (13) | C2—C1—C6—C5 | −1 (2) |
S1—N2—C3—C4 | −179.6 (10) | I1—C1—C6—C5 | −178.8 (10) |
N1—C2—C3—N2 | 0.8 (15) | C4—C5—C6—C1 | 1 (2) |
C1—C2—C3—N2 | 178.7 (11) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C6H2I2N2S | C12H4I2N4S2 |
Mr | 387.96 | 522.11 |
Crystal system, space group | Monoclinic, P21/a | Orthorhombic, Fdd2 |
Temperature (K) | 296 | 296 |
a, b, c (Å) | 11.0515 (17), 18.2104 (12), 4.3441 (11) | 20.892 (14), 33.38 (2), 3.942 (3) |
α, β, γ (°) | 90, 90.47 (2), 90 | 90, 90, 90 |
V (Å3) | 874.2 (3) | 2749 (3) |
Z | 4 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 7.37 | 4.87 |
Crystal size (mm) | 0.5 × 0.3 × 0.1 | 0.60 × 0.04 × 0.04 |
Data collection | ||
Diffractometer | Rigaku AFC-7R diffractometer | Rigaku Mercury CCD area-detector diffractometer |
Absorption correction | ψ scan (North et al., 1968) | Multi-scan (Jacobson, 1998) |
Tmin, Tmax | 0.109, 0.479 | 0.132, 0.829 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2110, 2014, 1763 | 6500, 1438, 1394 |
Rint | 0.018 | 0.054 |
(sin θ/λ)max (Å−1) | 0.649 | 0.649 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.055, 0.96 | 0.055, 0.152, 1.21 |
No. of reflections | 2014 | 1438 |
No. of parameters | 101 | 92 |
No. of restraints | 0 | 1 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.027P)2 + 2.4993P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0648P)2 + 102.9652P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.51, −0.50 | 0.98, −1.07 |
Absolute structure | ? | Flack (1983); 538 Friedel pairs Query |
Absolute structure parameter | ? | −0.01 (8) |
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), CrystalClear (Molecular Structure Corporation & Rigaku Corporation, 2001), MSC/AFC Diffractometer Control Software, CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2000), SHELXS97 (Sheldrick, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-III (Burnett & Johnson, 1996), SHELXL97.
I1—C1 | 2.068 (3) | C1—C6 | 1.363 (5) |
I2—C4 | 2.080 (4) | C1—C2 | 1.415 (5) |
S1—N1 | 1.616 (3) | C2—C3 | 1.439 (5) |
S1—N2 | 1.615 (3) | C3—C4 | 1.427 (5) |
N1—C2 | 1.347 (4) | C4—C5 | 1.355 (5) |
N2—C3 | 1.342 (4) | C5—C6 | 1.421 (5) |
S1···N2i | 3.093 (3) | I1···I2iii | 4.138 (1) |
N2···S1i | 3.093 (3) | I1···I2iv | 4.196 (1) |
I1···I2ii | 3.789 (1) | ||
N1—S1—N2 | 101.00 (16) | N2—C3—C4 | 126.6 (3) |
C2—N1—S1 | 106.5 (2) | N2—C3—C2 | 113.3 (3) |
C3—N2—S1 | 106.4 (2) | C4—C3—C2 | 120.1 (3) |
C6—C1—C2 | 118.7 (3) | C5—C4—C3 | 118.4 (3) |
N1—C2—C1 | 127.8 (3) | C4—C5—C6 | 121.5 (3) |
N1—C2—C3 | 112.8 (3) | C1—C6—C5 | 121.9 (3) |
C1—C2—C3 | 119.4 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+3/2, y+1/2, −z+1; (iii) x+1/2, −y+3/2, z+1; (iv) −x+3/2, y+1/2, −z+2. |
I1—C1 | 2.065 (9) | C1—C2 | 1.446 (14) |
S1—N1 | 1.599 (9) | C2—C3 | 1.445 (13) |
S1—N2 | 1.616 (9) | C3—C4 | 1.423 (13) |
N1—C2 | 1.331 (13) | C4—C5 | 1.376 (14) |
N2—C3 | 1.337 (13) | C4—C4i | 1.462 (18) |
C1—C6 | 1.332 (16) | C5—C6 | 1.417 (15) |
N1—S1—N2 | 100.3 (4) | N2—C3—C2 | 111.9 (9) |
C2—N1—S1 | 107.3 (7) | N2—C3—C4 | 127.1 (9) |
C3—N2—S1 | 107.2 (7) | C2—C3—C4 | 121.0 (9) |
C6—C1—C2 | 117.1 (9) | C5—C4—C3 | 116.4 (9) |
N1—C2—C3 | 113.2 (9) | C5—C4—C4i | 121.5 (10) |
N1—C2—C1 | 127.3 (9) | C3—C4—C4i | 122.1 (10) |
C3—C2—C1 | 119.5 (9) | C4—C5—C6 | 122.2 (10) |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Compounds containing a 2,1,3-benzothiadiazole ring have received much interest, due to their potential use as fungicides, herbicides, fluorescent materials (Mataka et al., 1982) and organic conductors (Yamashita et al., 1996). We have recently synthesized 4,7-diiodo-2,1,3-benzothiadiazole, (I), and 7,7'-diiodo-4,4'-bis(2,1,3-benzothiadiazole), (II), as important synthetic intermediates for functional materials with 2,1,3-benzothiadiazole rings. From the viewpoint of crystal engineering, the peripheral S, N and I atoms of (I) and (II) are expected to form short interheteroatom contacts, which can result in unique molecular networks (Yamashita & Tomura, 1998). However, only two examples (Mikhno et al., 1973; Ono et al., 1994) of structures containing a 4-halogeno-2,1,3-benzothiadiazole unit are known in the Cambridge Structural Database (CSD, Version 5.22; Allen & Kennard, 1993). Therefore, we have carried out X-ray analyses of (I) and (II) and report here their molecular and crystal structures. \sch
The noncentrosymmetric space group of (II) is interesting from the standpoint of nonlinear optical properties. The molecular structures of (I) and (II) are shown in Figs. 1 and 2, and selected geometric parameters are given in Tables 1 and 3, respectively.
The planar 2,1,3-benzothiadiazole rings of (I) and (II) have almost similar geometries. The geometric parameters of the 1,2,5-thiadiazole rings in (I) and (II) are almost same as those of 3,4-diphenyl-1,2,5-thiadiazole (Mellini & Merlino, 1976). Considerable shortening of the C1—C6 and C4—C5 bonds in (I) and (II) is observed. Such double-bond fixation suggests the quinonoid character of the 2,1,3-benzothiadiazole ring in (I) and (II). The angle between the planes for the two 2,1,3-benzothiadiazole rings of (II) is 48.4 (1)°.
Fig. 3 shows the packing diagram for (I) viewed along the c axis. The molecules stack along the c axis. Short S···N interheteroatom contacts (Table 2) are found between the two 1,2,5-thiadiazole rings. The S···N distance is 7.7% shorter than the sum of the corresponding van der Waals radii (Pauling, 1960). Short I···I contacts within the sum of the van der Waals radii are also observed, as shown in Table 2. Four I atoms [I1, I2ii, I2iii and I1iv in Fig. 3; symmetry codes: (ii) 3/2 - x, y + 1/2, 1 - z; (iii) x + 1/2, 3/2 - y, z + 1; (iv) 2 - x, 2 - y, 2 - z] form a planar I4 square cluster with short I···I contacts.
Fig. 4 shows the packing diagram for (II) viewed along the c axis. The molecules form uni-stacks along the c axis, and the interstack distance and the intermolecular I···I distance within the stack are 3.596 (5) and 3.942 (3) Å, respectively. In contrast with (I), short N···I contacts are observed [3.333 (8) Å] and are nearly linear [174.2 (4)°], as shown in Fig. 4. Although slightly longer than the typical N···I distance, the N···I contacts may control the crystal packing of (II) (Desiraju & Harlow, 1989; Xu et al., 1994; Walsh et al., 2001).
Studies on the construction of new molecular architectures using compounds (I) and (II) are now in progress.