Buy article online - an online subscription or single-article purchase is required to access this article.
In 2,6-diiodo-4-nitrophenol, C
6H
3I
2NO
3, the molecules are linked, by an O-H
O hydrogen bond and two iodo-nitro interactions, into sheets, which are further linked into a three-dimensional framework by aromatic
-
-stacking interactions. The molecules of 2,6-diiodo-4-nitrophenyl acetate, C
8H
5I
2NO
4, lie across a mirror plane in space group
Pnma, with the acetyl group on the mirror, and they are linked by a single iodo-nitro interaction to form isolated sheets. The molecules of 2,6-diiodo-4-nitroanisole, C
7H
5I
2NO
3, are linked into isolated chains by a single two-centre iodo-nitro interaction.
Supporting information
CCDC references: 193419; 193420; 193421
Compound (I) was obtained by reaction of 4-nitrophenol with K[ICl2] in aqueous
solution (Garden et al., 2001). Compounds (II) and (III) were obtained
from (I) by acetylation using acetic anhydride, and methylation using
dimethylsulfate, respectively. Crystals of (I)-(III) suitable for
single-crystal X-ray diffraction were grown by slow evaporation of solutions
in ethanol [m.p. 439–441 K for (I), 409–411 K for (II) and 418–419 K for
(III)].
Compound (I) is triclinic; space group P1 was selected and confirmed by
the analysis. For compound (II), the systematic absences permitted Pnma
and Pn21a (= Pna21) as possible space groups; Pnma was selected and
confirmed by the structure analysis. For compound (III), the systematic
absences permitted C2/c and Cc as possible space groups;
C2/c was selected and confirmed by the analysis. All H atoms
were located from difference maps and were treated as riding atoms, with O—H
distances of 0.84 Å and C—H distances of 0.93–0.98 Å.
Data collection: KappaCCD Server Software (Nonius, 1997) for (I), (III); SMART (Bruker, 1999) for (II). Cell refinement: DENZO-SMN (Otwinowski & Minor, 1997) for (I), (III); SAINT (Bruker, 1999) for (II). Data reduction: DENZO-SMN for (I), (III); SAINT for (II). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
(I) 2,6-Diiodo-4-nitrophenol
top
Crystal data top
C6H3I2NO3 | Z = 2 |
Mr = 390.89 | F(000) = 352 |
Triclinic, P1 | Dx = 3.001 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9749 (2) Å | Cell parameters from 1850 reflections |
b = 8.0952 (3) Å | θ = 2.9–27.4° |
c = 8.1395 (3) Å | µ = 7.24 mm−1 |
α = 69.3082 (18)° | T = 120 K |
β = 66.657 (2)° | Block, yellow |
γ = 67.3547 (15)° | 0.15 × 0.10 × 0.05 mm |
V = 432.59 (3) Å3 | |
Data collection top
Nonius KappaCCD diffractometer | 1850 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 1735 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.091 |
ϕ scans, and ω scans with κ offsets | θmax = 27.4°, θmin = 2.9° |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | h = −10→10 |
Tmin = 0.297, Tmax = 0.700 | k = −10→10 |
4596 measured reflections | l = −10→10 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.3136P] where P = (Fo2 + 2Fc2)/3 |
1850 reflections | (Δ/σ)max < 0.001 |
110 parameters | Δρmax = 1.35 e Å−3 |
0 restraints | Δρmin = −1.57 e Å−3 |
Crystal data top
C6H3I2NO3 | γ = 67.3547 (15)° |
Mr = 390.89 | V = 432.59 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9749 (2) Å | Mo Kα radiation |
b = 8.0952 (3) Å | µ = 7.24 mm−1 |
c = 8.1395 (3) Å | T = 120 K |
α = 69.3082 (18)° | 0.15 × 0.10 × 0.05 mm |
β = 66.657 (2)° | |
Data collection top
Nonius KappaCCD diffractometer | 1850 independent reflections |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | 1735 reflections with I > 2σ(I) |
Tmin = 0.297, Tmax = 0.700 | Rint = 0.091 |
4596 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.17 | Δρmax = 1.35 e Å−3 |
1850 reflections | Δρmin = −1.57 e Å−3 |
110 parameters | |
Special details top
Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm
[Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891] which
effectively corrects for absorption effects. High-redundancy data were used in
the scaling program, hence the `multi-scan' code word was used. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.4568 (7) | 0.2563 (7) | 0.5717 (7) | 0.0151 (10) | |
O1 | 0.5878 (5) | 0.1050 (5) | 0.6302 (5) | 0.0168 (7) | |
C2 | 0.4701 (7) | 0.3379 (6) | 0.3843 (7) | 0.0165 (9) | |
I2 | 0.69997 (5) | 0.21823 (4) | 0.18496 (5) | 0.01781 (17) | |
C3 | 0.3342 (7) | 0.5005 (6) | 0.3318 (7) | 0.0153 (9) | |
C4 | 0.1880 (7) | 0.5757 (7) | 0.4659 (7) | 0.0161 (10) | |
N4 | 0.0478 (6) | 0.7482 (6) | 0.4127 (6) | 0.0188 (9) | |
O41 | −0.0820 (6) | 0.8178 (5) | 0.5346 (6) | 0.0265 (9) | |
O42 | 0.0673 (6) | 0.8160 (5) | 0.2483 (6) | 0.0263 (9) | |
C5 | 0.1632 (7) | 0.4974 (6) | 0.6545 (7) | 0.0166 (9) | |
C6 | 0.3004 (8) | 0.3383 (7) | 0.7039 (7) | 0.0170 (10) | |
I6 | 0.27464 (5) | 0.22289 (4) | 0.98238 (5) | 0.01917 (17) | |
H1 | 0.6626 | 0.0572 | 0.5414 | 0.025* | |
H3 | 0.3442 | 0.5567 | 0.2054 | 0.018* | |
H5 | 0.0564 | 0.5516 | 0.7449 | 0.020* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.012 (2) | 0.015 (2) | 0.018 (3) | −0.0026 (17) | −0.005 (2) | −0.0044 (19) |
O1 | 0.0129 (16) | 0.0158 (16) | 0.0146 (18) | 0.0056 (13) | −0.0064 (15) | −0.0039 (14) |
C2 | 0.019 (2) | 0.014 (2) | 0.014 (2) | −0.002 (2) | −0.004 (2) | −0.0050 (19) |
I2 | 0.0144 (3) | 0.0183 (2) | 0.0159 (3) | 0.00020 (18) | −0.00123 (19) | −0.00785 (17) |
C3 | 0.011 (2) | 0.014 (2) | 0.017 (2) | −0.0001 (17) | −0.006 (2) | −0.0018 (18) |
C4 | 0.014 (2) | 0.015 (2) | 0.019 (3) | −0.0001 (18) | −0.009 (2) | −0.003 (2) |
N4 | 0.0121 (18) | 0.0175 (18) | 0.023 (3) | 0.0005 (16) | −0.0037 (18) | −0.0076 (18) |
O41 | 0.023 (2) | 0.0244 (19) | 0.017 (2) | 0.0041 (16) | 0.0031 (17) | −0.0101 (17) |
O42 | 0.024 (2) | 0.0229 (19) | 0.020 (2) | 0.0076 (16) | −0.0129 (18) | −0.0002 (17) |
C5 | 0.0074 (19) | 0.022 (2) | 0.019 (2) | −0.0034 (17) | 0.004 (2) | −0.0134 (19) |
C6 | 0.018 (2) | 0.017 (2) | 0.015 (2) | −0.008 (2) | 0.002 (2) | −0.0073 (19) |
I6 | 0.0178 (3) | 0.0189 (2) | 0.0137 (3) | 0.00060 (17) | −0.00289 (19) | −0.00438 (17) |
Geometric parameters (Å, º) top
C1—O1 | 1.347 (6) | C4—C5 | 1.402 (7) |
C1—C6 | 1.399 (7) | C4—N4 | 1.463 (6) |
C1—C2 | 1.410 (7) | N4—O42 | 1.224 (6) |
O1—H1 | 0.8400 | N4—O41 | 1.227 (5) |
C2—C3 | 1.400 (7) | C5—C6 | 1.384 (7) |
C2—I2 | 2.078 (5) | C5—H5 | 0.9500 |
C3—C4 | 1.355 (7) | C6—I6 | 2.082 (5) |
C3—H3 | 0.9500 | | |
| | | |
O1—C1—C6 | 118.3 (5) | C3—C4—N4 | 118.7 (5) |
O1—C1—C2 | 123.5 (5) | C5—C4—N4 | 117.7 (4) |
C6—C1—C2 | 118.2 (5) | O42—N4—O41 | 123.4 (5) |
C1—O1—H1 | 109.5 | O42—N4—C4 | 118.0 (4) |
C3—C2—C1 | 120.9 (5) | O41—N4—C4 | 118.5 (4) |
C3—C2—I2 | 120.1 (4) | C6—C5—C4 | 117.4 (5) |
C1—C2—I2 | 119.1 (4) | C6—C5—H5 | 121.3 |
C4—C3—C2 | 118.2 (5) | C4—C5—H5 | 121.3 |
C4—C3—H3 | 120.9 | C5—C6—C1 | 121.7 (5) |
C2—C3—H3 | 120.9 | C5—C6—I6 | 118.7 (4) |
C3—C4—C5 | 123.6 (4) | C1—C6—I6 | 119.6 (4) |
| | | |
C3—C4—N4—O41 | −178.5 (6) | C5—C4—N4—O41 | 1.4 (8) |
C3—C4—N4—O42 | 1.1 (8) | C5—C4—N4—O42 | −179.1 (6) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···I2 | 0.84 | 2.67 | 3.239 (4) | 126 |
O1—H1···O41i | 0.84 | 2.20 | 2.808 (6) | 129 |
Symmetry code: (i) x+1, y−1, z. |
(II) 2,6-Diiodo-4-nitrophenyl acetate
top
Crystal data top
C8H5I2NO4 | F(000) = 792 |
Mr = 432.93 | Dx = 2.453 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 2206 reflections |
a = 8.0608 (9) Å | θ = 2.4–32.6° |
b = 12.4501 (14) Å | µ = 5.36 mm−1 |
c = 11.6790 (13) Å | T = 292 K |
V = 1172.1 (2) Å3 | Block, colourless |
Z = 4 | 0.50 × 0.23 × 0.12 mm |
Data collection top
Bruker SMART 1000 CCD area-detector diffractometer | 2206 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 1555 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ϕ and ω scans | θmax = 32.6°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −12→12 |
Tmin = 0.258, Tmax = 0.528 | k = −17→18 |
11456 measured reflections | l = −17→15 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0513P)2 + 0.8851P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2206 reflections | Δρmax = 1.20 e Å−3 |
81 parameters | Δρmin = −0.41 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0321 (13) |
Crystal data top
C8H5I2NO4 | V = 1172.1 (2) Å3 |
Mr = 432.93 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 8.0608 (9) Å | µ = 5.36 mm−1 |
b = 12.4501 (14) Å | T = 292 K |
c = 11.6790 (13) Å | 0.50 × 0.23 × 0.12 mm |
Data collection top
Bruker SMART 1000 CCD area-detector diffractometer | 2206 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 1555 reflections with I > 2σ(I) |
Tmin = 0.258, Tmax = 0.528 | Rint = 0.044 |
11456 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.20 e Å−3 |
2206 reflections | Δρmin = −0.41 e Å−3 |
81 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
C1 | 0.1503 (5) | 0.2500 | 0.1689 (3) | 0.0376 (7) | |
O1 | 0.1962 (3) | 0.2500 | 0.0539 (2) | 0.0406 (6) | |
C11 | 0.0705 (6) | 0.2500 | −0.0268 (3) | 0.0447 (9) | |
O12 | −0.0711 (5) | 0.2500 | 0.0010 (3) | 0.0801 (14) | |
C12 | 0.1402 (6) | 0.2500 | −0.1442 (3) | 0.0548 (12) | |
C2 | 0.1341 (3) | 0.3471 (2) | 0.2269 (2) | 0.0407 (6) | |
I2 | 0.16877 (4) | 0.49229 (2) | 0.14194 (2) | 0.06767 (17) | |
C3 | 0.1006 (4) | 0.3473 (3) | 0.3440 (2) | 0.0444 (6) | |
C4 | 0.0833 (5) | 0.2500 | 0.3985 (3) | 0.0436 (9) | |
N4 | 0.0485 (5) | 0.2500 | 0.5223 (3) | 0.0540 (10) | |
O4 | 0.0328 (4) | 0.3362 (3) | 0.5705 (2) | 0.0765 (9) | |
H12A | 0.0605 | 0.2202 | −0.1963 | 0.082* | 0.50 |
H12B | 0.2395 | 0.2075 | −0.1457 | 0.082* | 0.50 |
H12C | 0.1657 | 0.3223 | −0.1666 | 0.082* | 0.50 |
H3 | 0.0903 | 0.4114 | 0.3842 | 0.053* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0379 (18) | 0.048 (2) | 0.0274 (15) | 0.000 | 0.0006 (13) | 0.000 |
O1 | 0.0390 (14) | 0.0558 (17) | 0.0270 (12) | 0.000 | 0.0029 (10) | 0.000 |
C11 | 0.052 (2) | 0.051 (2) | 0.0312 (17) | 0.000 | 0.0005 (16) | 0.000 |
O12 | 0.0437 (18) | 0.150 (5) | 0.0464 (19) | 0.000 | −0.0016 (15) | 0.000 |
C12 | 0.064 (3) | 0.072 (3) | 0.0288 (18) | 0.000 | −0.0013 (17) | 0.000 |
C2 | 0.0430 (14) | 0.0448 (14) | 0.0344 (12) | 0.0022 (11) | −0.0010 (10) | 0.0007 (10) |
I2 | 0.1028 (3) | 0.04586 (18) | 0.0543 (2) | 0.00141 (11) | 0.00652 (12) | 0.00583 (9) |
C3 | 0.0461 (14) | 0.0547 (17) | 0.0323 (12) | 0.0030 (13) | −0.0015 (11) | −0.0046 (11) |
C4 | 0.0371 (19) | 0.068 (3) | 0.0255 (15) | 0.000 | −0.0045 (14) | 0.000 |
N4 | 0.0471 (19) | 0.089 (3) | 0.0262 (15) | 0.000 | −0.0035 (13) | 0.000 |
O4 | 0.088 (2) | 0.103 (2) | 0.0381 (12) | −0.0214 (16) | 0.0074 (12) | −0.0237 (14) |
Geometric parameters (Å, º) top
C1—C2i | 1.392 (3) | C2—C3 | 1.394 (4) |
C1—C2 | 1.392 (3) | C2—I2 | 2.080 (3) |
C1—O1 | 1.393 (4) | C3—C4 | 1.375 (4) |
O1—C11 | 1.385 (5) | C3—H3 | 0.9300 |
C11—O12 | 1.186 (6) | C4—C3i | 1.375 (4) |
C11—C12 | 1.481 (6) | C4—N4 | 1.474 (5) |
C12—H12A | 0.9600 | N4—O4 | 1.218 (3) |
C12—H12B | 0.9600 | N4—O4i | 1.218 (3) |
C12—H12C | 0.9600 | | |
| | | |
C2i—C1—C2 | 120.6 (3) | C1—C2—C3 | 119.7 (3) |
C2i—C1—O1 | 119.58 (17) | C1—C2—I2 | 120.7 (2) |
C2—C1—O1 | 119.58 (17) | C3—C2—I2 | 119.5 (2) |
C11—O1—C1 | 117.5 (3) | C4—C3—C2 | 118.2 (3) |
O12—C11—O1 | 121.2 (4) | C4—C3—H3 | 120.9 |
O12—C11—C12 | 128.2 (4) | C2—C3—H3 | 120.9 |
O1—C11—C12 | 110.6 (4) | C3i—C4—C3 | 123.4 (4) |
C11—C12—H12A | 109.5 | C3i—C4—N4 | 118.27 (18) |
C11—C12—H12B | 109.5 | C3—C4—N4 | 118.27 (18) |
H12A—C12—H12B | 109.5 | O4—N4—O4i | 123.5 (4) |
C11—C12—H12C | 109.5 | O4—N4—C4 | 118.2 (2) |
H12A—C12—H12C | 109.5 | O4i—N4—C4 | 118.2 (2) |
H12B—C12—H12C | 109.5 | | |
| | | |
C2i—C1—O1—C11 | 92.6 (3) | I2—C2—C3—C4 | −178.0 (3) |
C1—O1—C11—O12 | 0.0 | C2—C3—C4—C3i | 1.4 (6) |
C1—O1—C11—C12 | 180.0 | C2—C3—C4—N4 | 179.8 (3) |
C2i—C1—C2—C3 | −0.3 (5) | C3i—C4—N4—O4 | −179.9 (4) |
O1—C1—C2—C3 | −175.1 (3) | C3—C4—N4—O4 | 1.6 (6) |
C2i—C1—C2—I2 | 177.22 (18) | C3i—C4—N4—O4i | −1.6 (6) |
O1—C1—C2—I2 | 2.4 (4) | C3—C4—N4—O4i | 179.9 (4) |
C1—C2—C3—C4 | −0.5 (5) | C2—C1—O1—C11 | −92.6 (3) |
Symmetry code: (i) x, −y+1/2, z. |
(III) 2,6-Diiodo-4-nitroanisole
top
Crystal data top
C7H5I2NO3 | F(000) = 1472 |
Mr = 404.92 | Dx = 2.640 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2312 reflections |
a = 15.2372 (3) Å | θ = 2.9–27.5° |
b = 16.2672 (4) Å | µ = 6.15 mm−1 |
c = 8.3262 (2) Å | T = 120 K |
β = 99.2039 (15)° | Block, yellow |
V = 2037.22 (8) Å3 | 0.10 × 0.05 × 0.03 mm |
Z = 8 | |
Data collection top
Nonius KappaCCD diffractometer | 2312 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 2068 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
ϕ scans, and ω scans with κ offsets | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | h = −19→19 |
Tmin = 0.530, Tmax = 0.829 | k = −21→18 |
7397 measured reflections | l = −10→10 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0371P)2] where P = (Fo2 + 2Fc2)/3 |
2312 reflections | (Δ/σ)max < 0.001 |
119 parameters | Δρmax = 1.42 e Å−3 |
0 restraints | Δρmin = −1.65 e Å−3 |
Crystal data top
C7H5I2NO3 | V = 2037.22 (8) Å3 |
Mr = 404.92 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.2372 (3) Å | µ = 6.15 mm−1 |
b = 16.2672 (4) Å | T = 120 K |
c = 8.3262 (2) Å | 0.10 × 0.05 × 0.03 mm |
β = 99.2039 (15)° | |
Data collection top
Nonius KappaCCD diffractometer | 2312 independent reflections |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | 2068 reflections with I > 2σ(I) |
Tmin = 0.530, Tmax = 0.829 | Rint = 0.056 |
7397 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.42 e Å−3 |
2312 reflections | Δρmin = −1.65 e Å−3 |
119 parameters | |
Special details top
Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm
[Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891] which
effectively corrects for absorption effects. High-redundancy data were used in
the scaling program, hence the `multi-scan' code word was used. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.2503 (3) | 0.0792 (3) | 0.2707 (5) | 0.0190 (8) | |
O1 | 0.30537 (18) | 0.02160 (17) | 0.2193 (3) | 0.0222 (6) | |
C11 | 0.3802 (3) | −0.0013 (3) | 0.3404 (6) | 0.0297 (10) | |
C2 | 0.2648 (3) | 0.1619 (3) | 0.2520 (5) | 0.0198 (8) | |
I2 | 0.371418 (17) | 0.199410 (16) | 0.13802 (3) | 0.02086 (11) | |
C3 | 0.2082 (3) | 0.2206 (3) | 0.2988 (4) | 0.0193 (8) | |
C4 | 0.1356 (3) | 0.1926 (3) | 0.3624 (5) | 0.0209 (10) | |
N4 | 0.0728 (2) | 0.2537 (2) | 0.4084 (4) | 0.0238 (8) | |
O41 | 0.0919 (2) | 0.32653 (19) | 0.4042 (4) | 0.0314 (7) | |
O42 | 0.0042 (2) | 0.2282 (2) | 0.4497 (4) | 0.0314 (7) | |
C5 | 0.1168 (3) | 0.1110 (3) | 0.3794 (4) | 0.0211 (9) | |
C6 | 0.1750 (3) | 0.0535 (3) | 0.3330 (5) | 0.0204 (8) | |
I6 | 0.146602 (18) | −0.071663 (18) | 0.34506 (3) | 0.02502 (12) | |
H11A | 0.4198 | 0.0461 | 0.3647 | 0.045* | |
H11B | 0.4127 | −0.0465 | 0.2987 | 0.045* | |
H11C | 0.3588 | −0.0190 | 0.4398 | 0.045* | |
H3 | 0.2190 | 0.2776 | 0.2876 | 0.023* | |
H5 | 0.0653 | 0.0943 | 0.4218 | 0.025* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.017 (2) | 0.025 (2) | 0.0138 (18) | 0.0011 (15) | −0.0008 (16) | 0.0007 (15) |
O1 | 0.0237 (15) | 0.0216 (15) | 0.0219 (14) | 0.0020 (12) | 0.0054 (12) | −0.0007 (11) |
C11 | 0.026 (2) | 0.031 (2) | 0.032 (2) | 0.0080 (18) | 0.0048 (18) | 0.0054 (18) |
C2 | 0.0177 (19) | 0.026 (2) | 0.0160 (18) | 0.0006 (16) | 0.0027 (16) | 0.0007 (16) |
I2 | 0.01738 (17) | 0.02245 (18) | 0.02354 (18) | −0.00091 (10) | 0.00564 (12) | 0.00054 (9) |
C3 | 0.020 (2) | 0.023 (2) | 0.0139 (18) | −0.0010 (17) | 0.0014 (16) | 0.0000 (16) |
C4 | 0.017 (2) | 0.029 (3) | 0.017 (2) | 0.0062 (16) | 0.0027 (18) | −0.0036 (15) |
N4 | 0.0214 (19) | 0.030 (2) | 0.0198 (18) | 0.0017 (15) | 0.0018 (15) | −0.0036 (15) |
O41 | 0.0319 (18) | 0.0261 (18) | 0.0371 (19) | 0.0035 (14) | 0.0080 (15) | −0.0030 (14) |
O42 | 0.0215 (16) | 0.042 (2) | 0.0325 (17) | −0.0003 (14) | 0.0092 (14) | −0.0066 (15) |
C5 | 0.016 (2) | 0.033 (2) | 0.0149 (18) | −0.0009 (17) | 0.0029 (16) | −0.0002 (16) |
C6 | 0.020 (2) | 0.024 (2) | 0.0161 (19) | −0.0026 (17) | 0.0008 (16) | 0.0010 (15) |
I6 | 0.02599 (19) | 0.0248 (2) | 0.02382 (18) | −0.00485 (11) | 0.00265 (13) | 0.00228 (10) |
Geometric parameters (Å, º) top
C1—O1 | 1.372 (5) | C3—C4 | 1.378 (6) |
C1—C2 | 1.376 (6) | C3—H3 | 0.9500 |
C1—C6 | 1.396 (6) | C4—C5 | 1.371 (6) |
O1—C11 | 1.444 (5) | C4—N4 | 1.472 (5) |
C11—H11A | 0.9800 | N4—O41 | 1.222 (5) |
C11—H11B | 0.9800 | N4—O42 | 1.223 (5) |
C11—H11C | 0.9800 | C5—C6 | 1.385 (6) |
C2—C3 | 1.384 (6) | C5—H5 | 0.9500 |
C2—I2 | 2.099 (4) | C6—I6 | 2.087 (4) |
| | | |
O1—C1—C2 | 120.9 (4) | C4—C3—H3 | 121.4 |
O1—C1—C6 | 119.4 (4) | C2—C3—H3 | 121.4 |
C2—C1—C6 | 119.5 (4) | C5—C4—C3 | 123.6 (4) |
C1—O1—C11 | 114.4 (3) | C5—C4—N4 | 118.1 (4) |
O1—C11—H11A | 109.5 | C3—C4—N4 | 118.2 (4) |
O1—C11—H11B | 109.5 | O41—N4—O42 | 123.7 (4) |
H11A—C11—H11B | 109.5 | O41—N4—C4 | 118.6 (3) |
O1—C11—H11C | 109.5 | O42—N4—C4 | 117.7 (4) |
H11A—C11—H11C | 109.5 | C4—C5—C6 | 118.1 (4) |
H11B—C11—H11C | 109.5 | C4—C5—H5 | 120.9 |
C1—C2—C3 | 121.5 (4) | C6—C5—H5 | 120.9 |
C1—C2—I2 | 119.1 (3) | C5—C6—C1 | 120.1 (4) |
C3—C2—I2 | 119.3 (3) | C5—C6—I6 | 119.9 (3) |
C4—C3—C2 | 117.1 (4) | C1—C6—I6 | 119.9 (3) |
| | | |
C3—C4—N4—O41 | −7.4 (5) | C5—C4—N4—O42 | −4.5 (5) |
C3—C4—N4—O42 | 173.0 (4) | C2—C1—O1—C11 | 89.7 (5) |
C5—C4—N4—O41 | 175.1 (4) | C6—C1—O1—C11 | −94.7 (5) |
Experimental details
| (I) | (II) | (III) |
Crystal data |
Chemical formula | C6H3I2NO3 | C8H5I2NO4 | C7H5I2NO3 |
Mr | 390.89 | 432.93 | 404.92 |
Crystal system, space group | Triclinic, P1 | Orthorhombic, Pnma | Monoclinic, C2/c |
Temperature (K) | 120 | 292 | 120 |
a, b, c (Å) | 7.9749 (2), 8.0952 (3), 8.1395 (3) | 8.0608 (9), 12.4501 (14), 11.6790 (13) | 15.2372 (3), 16.2672 (4), 8.3262 (2) |
α, β, γ (°) | 69.3082 (18), 66.657 (2), 67.3547 (15) | 90, 90, 90 | 90, 99.2039 (15), 90 |
V (Å3) | 432.59 (3) | 1172.1 (2) | 2037.22 (8) |
Z | 2 | 4 | 8 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 7.24 | 5.36 | 6.15 |
Crystal size (mm) | 0.15 × 0.10 × 0.05 | 0.50 × 0.23 × 0.12 | 0.10 × 0.05 × 0.03 |
|
Data collection |
Diffractometer | Nonius KappaCCD diffractometer | Bruker SMART 1000 CCD area-detector diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | Multi-scan (SADABS; Bruker, 1999) | Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.297, 0.700 | 0.258, 0.528 | 0.530, 0.829 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4596, 1850, 1735 | 11456, 2206, 1555 | 7397, 2312, 2068 |
Rint | 0.091 | 0.044 | 0.056 |
(sin θ/λ)max (Å−1) | 0.648 | 0.758 | 0.649 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.115, 1.17 | 0.041, 0.112, 1.04 | 0.033, 0.077, 1.07 |
No. of reflections | 1850 | 2206 | 2312 |
No. of parameters | 110 | 81 | 119 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.35, −1.57 | 1.20, −0.41 | 1.42, −1.65 |
Selected torsion angles (º) for (I) topC3—C4—N4—O41 | −178.5 (6) | C3—C4—N4—O42 | 1.1 (8) |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O41i | 0.84 | 2.20 | 2.808 (6) | 129 |
Symmetry code: (i) x+1, y−1, z. |
Selected torsion angles (º) for (II) topC3—C4—N4—O4 | 1.6 (6) | C2—C1—O1—C11 | −92.6 (3) |
C3—C4—N4—O4i | 179.9 (4) | | |
Symmetry code: (i) x, −y+1/2, z. |
Selected torsion angles (º) for (III) topC3—C4—N4—O41 | −7.4 (5) | C2—C1—O1—C11 | 89.7 (5) |
C3—C4—N4—O42 | 173.0 (4) | C6—C1—O1—C11 | −94.7 (5) |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
We have recently reported the molecular and supramolecular structures of several iodo-nitro anilines, unsubstituted at N (Garden et al., 2002). In these compounds, the supramolecular aggregation is dominated by a combination of N—H···O hydrogen bonds, iodo···nitro interactions and aromatic π···π stacking interactions, to give either two-dimensional or three-dimensional structures. The title compounds, 2,6-diiodo-4-nitrophenol, (I), 2,6-diiodo-4-nitrophenyl acetate, (II), and 2,6-diiodo-4-nitroanisole, (III), have been designed to reduce the scope for formation of hard (Braga et al., 1995) hydrogen bonds, while retaining the other potential intermolecular interactions, in that (I) has an OH group in place of the NH2 group in simple anilines, allowing the molecule to act as only a single donor in such bonds, while (II) and (III) have no scope at all for the formation of hard hydrogen bonds. \sch
In compound (I) (Fig. 1), a combination of O—H···O hydrogen bonds and two independent iodo···nitro interactions links the molecules into sheets, and these sheets are weakly linked by aromatic π···π stacking interactions to form a continuous three-dimensional structure. The phenolic atom O1 acts as a hydrogen-bond donor to nitro atom O41 at (1 + x, y - 1, z) (Table 2), so generating by translation a C(8) chain (Bernstein et al., 1995) running parallel to the [110] direction. Chains of this type are linked into sheets by the iodo···nitro interactions, which involve both I atoms and both nitro O atoms. Atoms I2 and I6 participate in iodo···nitro interactions with nitro atoms O42 and O41, respectively [I2···O42i 3.326 (4) Å and C2—I2···O42i 152.2 (2)°, and I6···O41ii 3.552 (4) Å and C6—I6···O41ii 157.9 (2)°; symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, 2 - z], so generating centrosymmetric R22(12) rings centred at (1/2,0,0) and (0,0,1), respectively. The combination of these two motifs generates a chain of fused rings running parallel to the [102] direction, while the combination of this chain with the hydrogen-bonded chain along [110] generates a (221) sheet in which there are four distinct types of ring, all centrosymmetric (Fig. 2).
The aromatic ring of (I) forms a close π···π contact with that at (1 - x, 1 - y, 1 - z) (Fig. 3); the interplanar spacing between parallel rings is 3.379 (4) Å, the centroid separation is 3.493 (4) Å and the centroid offset is 0.886 (4) Å. In this manner, each (221) sheet (Fig. 2) is linked to the two adjacent sheets, so generating a continuous framework in three dimensions.
Molecules of compound (II) lie across the mirror planes in space group Pnma (Fig. 4). The non-H atoms of the acetate group all lie on the mirror plane (chosen for the sake of convenience as that at y = 1/4 for the reference molecule), so that the plane of the acetate group is orthogonal to the aromatic ring. The methyl group was modelled using six H-atom sites, each with occupancy 0.5. The crystal structure exhibits neither C—H···O hydrogen bonds nor aromatic π···π stacking interactions. Instead, the single short iodo···nitro interaction generates a simple and elegant sheet structure (Fig. 5).
Each of the two symmetry-related I atoms in (II) participates in a two-centre iodo···nitro interaction with the O4 atoms at (1/2 - x, 1 - y, z - 1/2) and at (1/2 - x, y - 1/2, z - 1/2), respectively, with I2···O4 3.323 (3) Å and C—I···O4 140.8 (2)°. Propagation of these interactions produces two C(6) chain motifs running parallel to the [001] direction and generated by the 21 screw axes along (1/4,1/2,z) and (1/4,0,z). The combination of these two symmetry-related motifs and their propagation by the space group generates a (100) sheet in the form of a (4,4) net (Batten & Robson, 1998) built from a single type of R44(20) ring. The central space in each ring is occupied by an acetate group.
In compound (III) (Fig. 6), neither C—H···O hydrogen bonds nor aromatic π···π stacking interactions are present in the crystal structure. The molecules are linked into chains by an iodo···nitro interaction involving only one of the two I atoms and only one of the nitro O atoms. Atom I2 in the molecule at (x,y,z) forms a very short I···O contact with nitro atom O42 in the molecule at (1/2 + x, 1/2 - y, z - 1/2) [I2···O42iv 2.992 (3) Å and C2—I2···O42iv 171.3 (2)°; symmetry code: (iv) 1/2 + x, 1/2 - y, z - 1/2], and propagation of this interaction leads to the formation of a chain running parallel to the [101] direction, generated by the n glide plane at y = 1/4 (Fig. 7).
The intermolecular distances and angles in (I)-(III) present no unusual features. In each compound, the nitro group is almost coplanar with the adjacent aryl ring (Tables 1, 3 and 4).