Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title di­phenyl­carbene porphyrin complex (di­phenyl­carbenyl-[kappa]C)(methanol-[kappa]O)(5,10,15,20-tetra-p-tolyl­por­phy­rin­ato-[kappa]4N)ruthenium(II) methanol solvate, [Ru­(C13H10)(C48H36N4)(CH4O)]·CH4O, has a six-coordinate Ru atom with a methanol mol­ecule as the second axial ligand. The carbene fragment is slightly distorted from an ideal sp2 configuration, with a C(phenyl)-C(carbene)-C(phenyl) angle of 112.2 (3)°. The Ru-C bond length of 1.845 (3) Å is comparable with other carbene complexes. The two phenyl rings of the carbene ligand are perpendicular to the carbene plane. Methanol solvate mol­ecules link the methanol ligands of adjacent porphyrin complexes via hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102019492/tr1039sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019492/tr1039Isup2.hkl
Contains datablock I

CCDC reference: 201257

Comment top

Ruthenium carbene complexes have attracted much attention in recent years as catalysts of the cyclopropanation of olefins (Trost et al., 2001). Some ruthenium porphyrin carbene complexes have been reported as effective catalysts because of their higher stereoselectivity and turnover numbers. However, ruthenium porphyrin carbene complexes are so unstable that, since the early investigation by Collman et al. (1985), they have only been characterized using UV-vis or NMR spectroscopy. The first crystal structure of a (porphyrinato)ruthenium(II) carbene complex, [Ru(tpp){C(CO2Et)2}(CH3OH)]·H2O, (II) (H2tpp is 5,10,15,20-tetraphenylporphyrin), was determined by Galardon et al. (1998). A methanol molecule was bound to the six-coordinate Ru atom trans to the carbene ligand and could be replaced by other ligands such as PPh3, pyridine or CO in solution. Che et al. (2001) reported that (porphyrinato)ruthenium(II) diphenyl or phenyl(allyloxycarbonyl) carbene complexes, recrystallized from CH2Cl2/CH3CN in air, contained five-coordinate Ru atoms in the crystalline state. Both cases show that carbene complexes without α- and β-H atoms would be stable enough for isolation and crystallization even in air. We have synthesized a simple carbene complex, [Ru(ttp)(CPh2)(CH3OH)]·CH3OH, (I) (H2ttp is 5,10,15,20-tetra(p-tolyl)porphyrin), and here we compare its structure with those of some other (porphyrinato)ruthenium(II) carbene complexes. \sch

As shown in Fig. 1, the Ru atom is six-coordinate in (I), similar to (II), while the Ru atoms are square-pyramidally five-coordinate in [Ru(P*)(CPh2)]·2CH2Cl2, (III), and [Ru(P*){C(Ph)CO2CH2CH CH2}]·3CH2Cl2, (IV) {H2P* is 5,10,15,20-tetrakis-[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro- 1,4:5,8-dimethanoanthracene-9-yl]porphyrin} (Che et al., 2001). The Ru—C(carbene) bond length in (I) is similar to that in (II) [1.829 (9) Å], and the Ru—N(porphyrin) bond lengths are also within the range previously reported for RuII porphyrin complexes. A methanol molecule is bonded to the Ru atom trans to the carbene ligand, and is associated with two other methanol solvate molecules through hydrogen bonding. The Ru—O(methanol) bond length in (I) is significantly longer than that in (II) [2.293 (6) Å], perhaps due to the hydrogen bonds.

The carbene fragment in (I) is distorted from an ideal sp2 configuration, as the C(phenyl)-C(carbene)-C(phenyl) angle is 112.2 (3)°, similar to that in the diphenylcarbene complex, (III) [112.1 (5)°]. The two phenyl groups are oriented perpendicular to the plane of the carbene fragment, assuming a face-to-face arrangement, as observed in (III). The projection of the phenyl groups onto the porphyrin plane reveals a staggered configuration with regard to the Ru—N bonds; the N2—Ru—C49—C50 and N4—Ru—C49—C56 torsion angles are 27.1 (3) and 26.4 (3)°, respectively. Because of steric repulsion between the porphyrin group and the phenyl groups of the carbene ligand, the porphyrin in (I) is slightly distorted into a saddle conformation, whereas those of (III) and (IV) in the square-pyramidal configuration are severely distorted. The largest deviations from the [C20N4] least-squares plane in (I) are -0.187 (4) and 0.180 (3) Å for atoms C2 and C7, respectively. The Ru atom is slightly out of this least-squares plane by 0.1139 (7) Å towards the carbene ligand, close to the value of 0.12 Å in (II), but less than the values of 0.19 and 0.22 Å in (III) and (IV), respectively.

Experimental top

The title compound was prepared according to the procedure of Galardon et al. (1998). A CH2Cl2 solution containing equimolar amounts of [Ru(ttp)(CO)(CH3OH)] and the diaza compound N2CPh2 was refluxed under N2 for 3 h. After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel with toluene as the eluent. The compound is stable in air at room temperature. Crystals of (I) suitable for X-ray diffraction were prepared by recrystallization from CH2Cl2/methanol (Ratio?).

Refinement top

The positions of the methanolic H atoms were refined as rotating methyl and hydroxy groups, with C—H = 0.96 Å and O—H = 0.82 Å, respectively. All remaining H atoms were placed in geometrically idealized positions, with Csp2—H = 0.93 Å and Csp3—H = 0.96 Å. The isotropic displacement parameters of all H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, O).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku Corporation, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.
(diphenylcarbenyl-κC)(methanol-κO)(5,10,15,20-tetra-p-tolylporphyrinato- κ4N)ruthenium(II) methanol solvate top
Crystal data top
[Ru(C48H36N4)(C13H10)(CH4O)]·CH4OF(000) = 2080
Mr = 1000.17Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.4608 (12) Åθ = 14.4–15.0°
b = 17.744 (2) ŵ = 0.35 mm1
c = 23.7491 (13) ÅT = 296 K
β = 102.428 (6)°Prism, dark red
V = 5128.0 (8) Å30.28 × 0.14 × 0.13 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.030
Radiation source: rotating Mo anodeθmax = 27.5°, θmin = 2.7°
Graphite monochromatorh = 160
ω/2θ scansk = 023
12304 measured reflectionsl = 3030
11769 independent reflections3 standard reflections every 150 reflections
6589 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0531P)2 + 1.1504P]
where P = (Fo2 + 2Fc2)/3
11769 reflections(Δ/σ)max = 0.001
635 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ru(C48H36N4)(C13H10)(CH4O)]·CH4OV = 5128.0 (8) Å3
Mr = 1000.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4608 (12) ŵ = 0.35 mm1
b = 17.744 (2) ÅT = 296 K
c = 23.7491 (13) Å0.28 × 0.14 × 0.13 mm
β = 102.428 (6)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.030
12304 measured reflections3 standard reflections every 150 reflections
11769 independent reflections intensity decay: 0.9%
6589 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
11769 reflectionsΔρmin = 0.33 e Å3
635 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.01297 (2)0.281035 (16)0.072200 (11)0.04669 (9)
O10.0653 (2)0.39865 (15)0.03973 (12)0.0771 (8)
H470.06230.40840.00640.092*
O20.0633 (8)0.5389 (3)0.0639 (2)0.214 (3)
H510.04580.49480.06690.257*
N10.1422 (2)0.23654 (15)0.04885 (11)0.0506 (7)
N20.0167 (2)0.30812 (15)0.15093 (11)0.0474 (6)
N30.1571 (2)0.33982 (16)0.09154 (11)0.0511 (7)
N40.0336 (2)0.26619 (16)0.01048 (11)0.0538 (7)
C10.1840 (3)0.1980 (2)0.00178 (15)0.0573 (9)
C20.2831 (3)0.1609 (2)0.00344 (16)0.0670 (10)
H10.32700.13080.02440.080*
C30.3018 (3)0.1776 (2)0.05615 (16)0.0668 (10)
H20.36100.16130.07100.080*
C40.2141 (3)0.2246 (2)0.08475 (14)0.0544 (8)
C50.2014 (3)0.2530 (2)0.14107 (15)0.0537 (8)
C60.1106 (3)0.29254 (19)0.17093 (14)0.0492 (8)
C70.0986 (3)0.3232 (2)0.22821 (14)0.0564 (9)
H30.15100.32200.25080.068*
C80.0015 (3)0.3538 (2)0.24289 (15)0.0579 (9)
H40.03130.37730.27770.070*
C90.0553 (3)0.34406 (19)0.19543 (14)0.0498 (8)
C100.1607 (3)0.36861 (19)0.19401 (14)0.0494 (8)
C110.2067 (3)0.36810 (19)0.14507 (15)0.0526 (8)
C120.3122 (3)0.3966 (2)0.14178 (17)0.0640 (10)
H50.36320.41810.17190.077*
C130.3252 (3)0.3870 (2)0.08743 (17)0.0682 (11)
H60.38560.40220.07300.082*
C140.2308 (3)0.3497 (2)0.05606 (15)0.0565 (9)
C150.2143 (3)0.3256 (2)0.00151 (15)0.0585 (9)
C160.1229 (3)0.2875 (2)0.03190 (14)0.0598 (9)
C170.1065 (4)0.2632 (2)0.09118 (16)0.0741 (12)
H70.15490.27060.11550.089*
C180.0106 (4)0.2284 (3)0.10461 (16)0.0739 (12)
H80.02070.20750.14030.089*
C190.0373 (3)0.2285 (2)0.05408 (14)0.0591 (9)
C200.1368 (3)0.1957 (2)0.05012 (14)0.0582 (9)
C210.2917 (3)0.2370 (2)0.17190 (15)0.0552 (9)
C220.2743 (3)0.1897 (2)0.21935 (17)0.0657 (10)
H90.20560.16780.23240.079*
C230.3585 (4)0.1747 (2)0.24758 (19)0.0758 (12)
H100.34520.14290.27950.091*
C240.4605 (4)0.2057 (3)0.2296 (2)0.0753 (12)
C250.4768 (3)0.2525 (3)0.1826 (2)0.0835 (14)
H110.54560.27440.16980.100*
C260.3944 (3)0.2682 (3)0.15392 (19)0.0746 (12)
H120.40830.30020.12210.090*
C270.5521 (4)0.1916 (4)0.2610 (3)0.125 (2)
H130.52680.15770.29260.150*
H140.61390.16960.23500.150*
H150.57380.23840.27550.150*
C280.2330 (3)0.3934 (2)0.24973 (15)0.0543 (8)
C290.2592 (3)0.3433 (2)0.29476 (16)0.0708 (11)
H160.22820.29540.29100.085*
C300.3314 (4)0.3632 (3)0.34594 (18)0.0804 (13)
H170.34840.32800.37550.096*
C310.3779 (3)0.4329 (3)0.35364 (18)0.0731 (12)
C320.3491 (3)0.4839 (3)0.30915 (19)0.0758 (12)
H180.37850.53230.31360.091*
C330.2775 (3)0.4652 (2)0.25798 (17)0.0636 (10)
H190.25920.50100.22890.076*
C340.4614 (4)0.4535 (3)0.4078 (2)0.1099 (19)
H200.47120.41170.43410.132*
H210.43570.49640.42570.132*
H220.53020.46550.39800.132*
C350.3087 (3)0.3411 (2)0.03061 (16)0.0663 (10)
C360.4033 (4)0.3007 (3)0.0180 (2)0.0884 (15)
H230.40770.25940.00650.106*
C370.4935 (4)0.3194 (3)0.0405 (2)0.0975 (16)
H240.55700.29050.03040.117*
C380.4923 (5)0.3775 (3)0.0764 (2)0.0950 (16)
C390.3935 (6)0.4143 (3)0.0942 (3)0.128 (2)
H250.38800.45200.12180.153*
C400.3002 (5)0.3968 (3)0.0719 (2)0.1056 (18)
H260.23420.42220.08490.127*
C410.5934 (5)0.4007 (4)0.0983 (3)0.140 (3)
H270.57560.44270.12400.168*
H280.61740.35920.11840.168*
H290.65110.41470.06630.168*
C420.1969 (3)0.1517 (2)0.10123 (14)0.0600 (9)
C430.1553 (4)0.0852 (2)0.11704 (18)0.0819 (14)
H300.08840.06740.09600.098*
C440.2116 (4)0.0441 (3)0.16408 (19)0.0862 (14)
H310.18300.00160.17320.103*
C450.3078 (4)0.0696 (2)0.19701 (17)0.0713 (11)
C460.3488 (4)0.1357 (3)0.18149 (17)0.0825 (13)
H320.41530.15360.20300.099*
C470.2943 (4)0.1769 (2)0.13460 (17)0.0783 (13)
H330.32390.22230.12550.094*
C480.3670 (5)0.0256 (3)0.2489 (2)0.117 (2)
H340.43310.05180.26670.140*
H350.38540.02350.23690.140*
H360.32030.02070.27590.140*
C490.0744 (3)0.18900 (19)0.09689 (13)0.0475 (8)
C500.0461 (3)0.1456 (2)0.14529 (16)0.0580 (9)
C510.1031 (4)0.1557 (2)0.20130 (17)0.0797 (13)
H370.15890.19140.20950.096*
C520.0774 (6)0.1121 (3)0.2463 (2)0.113 (2)
H380.11540.11910.28410.135*
C530.0044 (7)0.0595 (3)0.2334 (3)0.119 (2)
H390.02120.03030.26290.143*
C540.0610 (5)0.0490 (3)0.1790 (3)0.109 (2)
H400.11620.01280.17100.131*
C550.0367 (4)0.0922 (2)0.1351 (2)0.0817 (13)
H410.07700.08520.09770.098*
C560.1560 (3)0.1491 (2)0.07041 (16)0.0611 (10)
C570.1238 (5)0.0984 (3)0.0264 (2)0.1051 (18)
H420.04940.08920.01230.126*
C580.2007 (8)0.0610 (4)0.0031 (3)0.155 (4)
H430.17780.02800.02750.186*
C590.3083 (8)0.0719 (5)0.0242 (4)0.160 (4)
H440.35990.04510.00920.192*
C600.3419 (5)0.1222 (4)0.0674 (4)0.149 (3)
H450.41660.13020.08150.179*
C610.2661 (4)0.1615 (3)0.0908 (3)0.0998 (16)
H460.28970.19620.12020.120*
C620.1688 (5)0.4222 (3)0.0499 (3)0.142 (3)
H480.19380.46570.02670.170*
H490.16100.43470.08990.170*
H500.22120.38220.03990.170*
C630.0931 (6)0.5676 (4)0.1135 (3)0.151 (3)
H520.03280.56650.13280.181*
H530.11560.61880.11000.181*
H540.15350.53920.13540.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.05534 (16)0.04805 (15)0.03828 (13)0.00454 (15)0.01360 (10)0.00024 (13)
O10.098 (2)0.0691 (18)0.0658 (17)0.0234 (16)0.0221 (16)0.0111 (14)
O20.394 (10)0.121 (4)0.112 (4)0.048 (5)0.018 (5)0.027 (3)
N10.0539 (17)0.0579 (18)0.0393 (14)0.0086 (13)0.0087 (12)0.0027 (12)
N20.0503 (17)0.0505 (16)0.0434 (15)0.0026 (13)0.0146 (13)0.0042 (12)
N30.0594 (18)0.0530 (17)0.0446 (15)0.0019 (14)0.0191 (13)0.0020 (13)
N40.0652 (19)0.0546 (19)0.0440 (15)0.0093 (14)0.0170 (14)0.0025 (13)
C10.062 (2)0.061 (2)0.0452 (19)0.0066 (18)0.0027 (17)0.0079 (16)
C20.063 (2)0.076 (3)0.058 (2)0.003 (2)0.0026 (19)0.014 (2)
C30.057 (2)0.082 (3)0.061 (2)0.006 (2)0.0117 (19)0.012 (2)
C40.0484 (19)0.064 (2)0.0497 (18)0.0022 (18)0.0082 (15)0.0043 (18)
C50.051 (2)0.062 (2)0.0491 (19)0.0049 (17)0.0138 (16)0.0010 (16)
C60.052 (2)0.054 (2)0.0441 (17)0.0040 (16)0.0156 (15)0.0033 (15)
C70.059 (2)0.070 (2)0.0447 (18)0.0041 (19)0.0205 (16)0.0110 (17)
C80.067 (2)0.063 (2)0.0459 (19)0.0072 (19)0.0173 (17)0.0131 (17)
C90.056 (2)0.0484 (19)0.0465 (18)0.0013 (16)0.0143 (16)0.0052 (15)
C100.055 (2)0.0468 (19)0.0478 (18)0.0019 (16)0.0134 (16)0.0025 (15)
C110.055 (2)0.050 (2)0.055 (2)0.0021 (16)0.0179 (17)0.0013 (16)
C120.065 (2)0.066 (2)0.066 (2)0.012 (2)0.024 (2)0.008 (2)
C130.072 (3)0.071 (3)0.071 (3)0.010 (2)0.035 (2)0.002 (2)
C140.063 (2)0.054 (2)0.056 (2)0.0019 (18)0.0218 (18)0.0050 (17)
C150.074 (3)0.057 (2)0.051 (2)0.010 (2)0.0287 (19)0.0115 (17)
C160.077 (3)0.061 (2)0.0448 (18)0.011 (2)0.0215 (18)0.0023 (18)
C170.092 (3)0.088 (3)0.049 (2)0.009 (3)0.030 (2)0.000 (2)
C180.098 (3)0.085 (3)0.0418 (19)0.008 (3)0.022 (2)0.006 (2)
C190.077 (3)0.061 (2)0.0399 (17)0.012 (2)0.0129 (17)0.0002 (17)
C200.072 (3)0.058 (2)0.0407 (18)0.0135 (19)0.0036 (17)0.0031 (15)
C210.049 (2)0.067 (2)0.052 (2)0.0067 (17)0.0142 (16)0.0157 (17)
C220.060 (2)0.076 (3)0.066 (2)0.011 (2)0.026 (2)0.000 (2)
C230.079 (3)0.079 (3)0.078 (3)0.004 (2)0.037 (2)0.003 (2)
C240.059 (3)0.080 (3)0.094 (3)0.010 (2)0.034 (2)0.016 (2)
C250.047 (2)0.102 (4)0.101 (4)0.007 (2)0.017 (2)0.010 (3)
C260.058 (2)0.092 (3)0.073 (3)0.007 (2)0.011 (2)0.003 (2)
C270.096 (4)0.133 (5)0.168 (6)0.014 (4)0.076 (4)0.009 (4)
C280.053 (2)0.059 (2)0.0519 (19)0.0042 (17)0.0134 (16)0.0073 (17)
C290.083 (3)0.073 (3)0.055 (2)0.012 (2)0.012 (2)0.004 (2)
C300.084 (3)0.096 (3)0.055 (2)0.004 (3)0.001 (2)0.010 (2)
C310.060 (3)0.099 (3)0.059 (2)0.006 (2)0.011 (2)0.011 (2)
C320.074 (3)0.074 (3)0.077 (3)0.012 (2)0.011 (2)0.016 (2)
C330.062 (2)0.063 (2)0.064 (2)0.0057 (19)0.0091 (19)0.0057 (19)
C340.092 (4)0.160 (6)0.071 (3)0.022 (4)0.001 (3)0.019 (3)
C350.081 (3)0.070 (3)0.059 (2)0.004 (2)0.037 (2)0.006 (2)
C360.084 (3)0.091 (3)0.100 (4)0.013 (3)0.041 (3)0.031 (3)
C370.086 (3)0.111 (4)0.108 (4)0.012 (3)0.048 (3)0.015 (3)
C380.112 (4)0.089 (3)0.105 (4)0.009 (3)0.070 (3)0.005 (3)
C390.175 (6)0.101 (4)0.139 (5)0.012 (4)0.103 (5)0.040 (4)
C400.122 (4)0.105 (4)0.108 (4)0.027 (3)0.066 (4)0.039 (3)
C410.141 (5)0.149 (6)0.161 (6)0.045 (5)0.104 (5)0.022 (5)
C420.075 (3)0.061 (2)0.0424 (18)0.010 (2)0.0095 (18)0.0019 (17)
C430.093 (3)0.076 (3)0.066 (3)0.029 (3)0.007 (2)0.012 (2)
C440.109 (4)0.068 (3)0.078 (3)0.019 (3)0.011 (3)0.021 (2)
C450.083 (3)0.073 (3)0.055 (2)0.002 (2)0.009 (2)0.012 (2)
C460.091 (3)0.086 (3)0.058 (2)0.018 (3)0.012 (2)0.007 (2)
C470.095 (3)0.066 (3)0.063 (2)0.024 (2)0.007 (2)0.013 (2)
C480.135 (5)0.113 (4)0.089 (4)0.002 (4)0.004 (3)0.043 (3)
C490.050 (2)0.0484 (18)0.0422 (17)0.0043 (15)0.0063 (15)0.0034 (14)
C500.071 (2)0.047 (2)0.061 (2)0.0134 (19)0.0258 (19)0.0065 (17)
C510.121 (4)0.063 (3)0.055 (2)0.010 (3)0.019 (2)0.003 (2)
C520.203 (7)0.081 (4)0.064 (3)0.040 (4)0.049 (4)0.014 (3)
C530.193 (7)0.078 (4)0.114 (5)0.028 (4)0.094 (5)0.032 (4)
C540.115 (5)0.078 (3)0.155 (6)0.004 (3)0.077 (4)0.034 (4)
C550.081 (3)0.068 (3)0.101 (3)0.002 (2)0.030 (3)0.021 (3)
C560.073 (3)0.057 (2)0.055 (2)0.017 (2)0.0203 (19)0.0116 (18)
C570.133 (5)0.106 (4)0.071 (3)0.048 (4)0.011 (3)0.023 (3)
C580.217 (9)0.158 (7)0.089 (4)0.114 (7)0.032 (5)0.013 (4)
C590.204 (9)0.164 (8)0.149 (7)0.107 (8)0.119 (7)0.047 (6)
C600.095 (5)0.129 (6)0.250 (10)0.046 (4)0.097 (6)0.052 (6)
C610.071 (3)0.087 (3)0.149 (5)0.015 (3)0.040 (3)0.006 (3)
C620.143 (6)0.106 (5)0.191 (7)0.064 (4)0.070 (5)0.047 (4)
C630.205 (8)0.148 (6)0.093 (5)0.046 (6)0.022 (5)0.002 (4)
Geometric parameters (Å, º) top
Ru—N12.051 (3)C30—C311.362 (6)
Ru—N22.040 (2)C30—H170.9300
Ru—N32.042 (3)C31—C321.379 (6)
Ru—N42.051 (3)C31—C341.516 (6)
Ru—C491.845 (3)C32—C331.384 (5)
Ru—O12.362 (3)C32—H180.9300
O1—C621.424 (6)C33—H190.9300
O1—H470.8200C34—H200.9600
O2—C631.264 (7)C34—H210.9600
O2—H510.8200C34—H220.9600
N1—C11.384 (4)C35—C361.356 (6)
N1—C41.380 (4)C35—C401.381 (6)
N2—C61.382 (4)C36—C371.385 (6)
N2—C91.386 (4)C36—H230.9300
N3—C111.382 (4)C37—C381.336 (7)
N3—C141.384 (4)C37—H240.9300
N4—C161.373 (5)C38—C391.377 (8)
N4—C191.380 (4)C38—C411.520 (6)
C1—C201.399 (5)C39—C401.411 (7)
C1—C21.429 (5)C39—H250.9300
C2—C31.354 (5)C40—H260.9300
C2—H10.9300C41—H270.9600
C3—C41.425 (5)C41—H280.9600
C3—H20.9300C41—H290.9600
C4—C51.406 (5)C42—C431.372 (5)
C5—C61.389 (5)C42—C471.374 (5)
C5—C211.496 (5)C43—C441.391 (6)
C6—C71.443 (4)C43—H300.9300
C7—C81.336 (5)C44—C451.360 (6)
C7—H30.9300C44—H310.9300
C8—C91.441 (4)C45—C461.362 (6)
C8—H40.9300C45—C481.509 (6)
C9—C101.391 (5)C46—C471.382 (5)
C10—C111.402 (4)C46—H320.9300
C10—C281.498 (5)C47—H330.9300
C11—C121.427 (5)C48—H340.9600
C12—C131.346 (5)C48—H350.9600
C12—H50.9300C48—H360.9600
C13—C141.415 (5)C49—C561.485 (5)
C13—H60.9300C49—C501.488 (5)
C14—C151.405 (5)C50—C511.378 (5)
C15—C161.387 (5)C50—C551.384 (6)
C15—C351.512 (5)C51—C521.410 (6)
C16—C171.444 (5)C51—H370.9300
C17—C181.322 (6)C52—C531.367 (8)
C17—H70.9300C52—H380.9300
C18—C191.451 (5)C53—C541.345 (8)
C18—H80.9300C53—H390.9300
C19—C201.391 (5)C54—C551.378 (6)
C20—C421.501 (5)C54—H400.9300
C21—C261.376 (5)C55—H410.9300
C21—C221.384 (5)C56—C611.370 (6)
C22—C231.387 (5)C56—C571.372 (6)
C22—H90.9300C57—C581.375 (8)
C23—C241.366 (6)C57—H420.9300
C23—H100.9300C58—C591.341 (11)
C24—C251.371 (6)C58—H430.9300
C24—C271.513 (6)C59—C601.356 (11)
C25—C261.378 (6)C59—H440.9300
C25—H110.9300C60—C611.383 (8)
C26—H120.9300C60—H450.9300
C27—H130.9600C61—H460.9300
C27—H140.9600C62—H480.9600
C27—H150.9600C62—H490.9600
C28—C291.375 (5)C62—H500.9600
C28—C331.386 (5)C63—H520.9600
C29—C301.393 (5)C63—H530.9600
C29—H160.9300C63—H540.9600
N1—Ru—N289.57 (11)C28—C29—H16119.5
N1—Ru—N3171.76 (11)C30—C29—H16119.5
N1—Ru—N489.80 (11)C31—C30—C29121.5 (4)
N1—Ru—O187.29 (11)C31—C30—H17119.2
N2—Ru—N389.85 (11)C29—C30—H17119.2
N2—Ru—N4172.91 (11)C30—C31—C32117.4 (4)
N2—Ru—O186.99 (10)C30—C31—C34121.8 (5)
N3—Ru—N489.76 (11)C32—C31—C34120.7 (5)
N3—Ru—O184.47 (11)C31—C32—C33121.8 (4)
N4—Ru—O185.93 (10)C31—C32—H18119.1
C49—Ru—N192.74 (13)C33—C32—H18119.1
C49—Ru—N293.55 (13)C32—C33—C28120.5 (4)
C49—Ru—N395.50 (13)C32—C33—H19119.7
C49—Ru—N493.53 (12)C28—C33—H19119.7
C49—Ru—O1179.46 (12)C31—C34—H20109.5
C62—O1—Ru122.0 (3)C31—C34—H21109.5
C62—O1—H47109.5H20—C34—H21109.5
Ru—O1—H47113.6C31—C34—H22109.5
C63—O2—H51109.5H20—C34—H22109.5
C4—N1—C1106.7 (3)H21—C34—H22109.5
C4—N1—Ru126.3 (2)C36—C35—C40117.7 (4)
C1—N1—Ru125.6 (2)C36—C35—C15121.8 (4)
C6—N2—C9106.7 (3)C40—C35—C15120.4 (4)
C6—N2—Ru127.0 (2)C35—C36—C37121.8 (4)
C9—N2—Ru126.3 (2)C35—C36—H23119.1
C11—N3—C14106.9 (3)C37—C36—H23119.1
C11—N3—Ru126.1 (2)C38—C37—C36122.2 (5)
C14—N3—Ru126.4 (2)C38—C37—H24118.9
C16—N4—C19107.1 (3)C36—C37—H24118.9
C16—N4—Ru126.7 (2)C37—C38—C39116.6 (5)
C19—N4—Ru126.1 (2)C37—C38—C41122.1 (6)
N1—C1—C20125.6 (4)C39—C38—C41121.3 (5)
N1—C1—C2108.8 (3)C38—C39—C40122.4 (5)
C20—C1—C2125.6 (3)C38—C39—H25118.8
C3—C2—C1107.7 (3)C40—C39—H25118.8
C3—C2—H1126.2C35—C40—C39118.7 (5)
C1—C2—H1126.2C35—C40—H26120.7
C2—C3—C4107.6 (4)C39—C40—H26120.7
C2—C3—H2126.2C38—C41—H27109.5
C4—C3—H2126.2C38—C41—H28109.5
N1—C4—C5125.2 (3)H27—C41—H28109.5
N1—C4—C3109.2 (3)C38—C41—H29109.5
C5—C4—C3125.5 (3)H27—C41—H29109.5
C6—C5—C4125.4 (3)H28—C41—H29109.5
C6—C5—C21117.5 (3)C43—C42—C47117.5 (4)
C4—C5—C21117.0 (3)C43—C42—C20121.1 (4)
N2—C6—C5125.6 (3)C47—C42—C20121.4 (3)
N2—C6—C7109.0 (3)C42—C43—C44121.0 (4)
C5—C6—C7125.4 (3)C42—C43—H30119.5
C8—C7—C6107.5 (3)C44—C43—H30119.5
C8—C7—H3126.2C45—C44—C43121.2 (4)
C6—C7—H3126.2C45—C44—H31119.4
C7—C8—C9108.2 (3)C43—C44—H31119.4
C7—C8—H4125.9C44—C45—C46117.8 (4)
C9—C8—H4125.9C44—C45—C48120.9 (4)
N2—C9—C10125.8 (3)C46—C45—C48121.3 (4)
N2—C9—C8108.5 (3)C45—C46—C47121.7 (4)
C10—C9—C8125.6 (3)C45—C46—H32119.1
C9—C10—C11125.1 (3)C47—C46—H32119.1
C9—C10—C28117.5 (3)C42—C47—C46120.8 (4)
C11—C10—C28117.3 (3)C42—C47—H33119.6
N3—C11—C10125.7 (3)C46—C47—H33119.6
N3—C11—C12108.2 (3)C45—C48—H34109.5
C10—C11—C12126.1 (3)C45—C48—H35109.5
C13—C12—C11108.1 (4)H34—C48—H35109.5
C13—C12—H5126.0C45—C48—H36109.5
C11—C12—H5126.0H34—C48—H36109.5
C12—C13—C14107.8 (3)H35—C48—H36109.5
C12—C13—H6126.1C50—C49—C56112.2 (3)
C14—C13—H6126.1Ru—C49—C50123.5 (2)
N3—C14—C15125.3 (3)Ru—C49—C56124.2 (2)
N3—C14—C13108.9 (3)C51—C50—C55117.8 (4)
C15—C14—C13125.8 (3)C51—C50—C49121.3 (4)
C16—C15—C14125.9 (3)C55—C50—C49120.8 (4)
C16—C15—C35118.9 (3)C50—C51—C52120.4 (5)
C14—C15—C35115.2 (4)C50—C51—H37119.8
N4—C16—C15125.6 (3)C52—C51—H37119.8
N4—C16—C17108.9 (4)C51—C52—C53119.0 (5)
C15—C16—C17125.5 (4)C53—C52—H38120.5
C18—C17—C16107.8 (4)C51—C52—H38120.5
C18—C17—H7126.1C52—C53—C54121.4 (5)
C16—C17—H7126.1C54—C53—H39119.3
C17—C18—C19108.1 (4)C52—C53—H39119.3
C17—C18—H8125.9C53—C54—C55119.6 (6)
C19—C18—H8125.9C53—C54—H40120.2
N4—C19—C20126.0 (3)C55—C54—H40120.2
N4—C19—C18108.1 (4)C50—C55—C54121.8 (5)
C20—C19—C18125.9 (4)C54—C55—H41119.1
C19—C20—C1125.6 (3)C50—C55—H41119.1
C19—C20—C42117.4 (3)C49—C56—C57121.3 (4)
C1—C20—C42117.0 (4)C57—C56—C61118.8 (4)
C26—C21—C22118.0 (4)C49—C56—C61119.9 (4)
C26—C21—C5121.3 (4)C56—C57—C58120.5 (6)
C22—C21—C5120.7 (3)C56—C57—H42119.8
C21—C22—C23120.5 (4)C58—C57—H42119.8
C21—C22—H9119.8C59—C58—C57120.5 (7)
C23—C22—H9119.8C59—C58—H43119.7
C24—C23—C22121.5 (4)C57—C58—H43119.7
C24—C23—H10119.3C58—C59—C60119.9 (7)
C22—C23—H10119.3C58—C59—H44120.1
C23—C24—C25117.6 (4)C60—C59—H44120.1
C23—C24—C27122.0 (5)C59—C60—C61120.6 (7)
C25—C24—C27120.4 (5)C59—C60—H45119.7
C24—C25—C26121.9 (4)C61—C60—H45119.7
C24—C25—H11119.0C56—C61—C60119.7 (6)
C26—C25—H11119.0C56—C61—H46120.2
C21—C26—C25120.5 (4)C60—C61—H46120.2
C21—C26—H12119.7O1—C62—H48109.5
C25—C26—H12119.7O1—C62—H49109.5
C24—C27—H13109.5H48—C62—H49109.5
C24—C27—H14109.5O1—C62—H50109.5
H13—C27—H14109.5H48—C62—H50109.5
C24—C27—H15109.5H49—C62—H50109.5
H13—C27—H15109.5O2—C63—H52109.5
H14—C27—H15109.5O2—C63—H53109.5
C29—C28—C33117.6 (4)H52—C63—H53109.5
C29—C28—C10119.6 (3)O2—C63—H54109.5
C33—C28—C10122.8 (3)H52—C63—H54109.5
C28—C29—C30121.0 (4)H53—C63—H54109.5
N2—Ru—O1—C6249.9 (4)N2—Ru—C49—C5027.1 (3)
N3—Ru—O1—C62140.0 (4)N2—Ru—C49—C56153.9 (3)
N1—Ru—O1—C6239.8 (4)N3—Ru—C49—C50117.3 (3)
N4—Ru—O1—C62129.8 (4)N3—Ru—C49—C5663.7 (3)
N1—Ru—C49—C5062.6 (3)N4—Ru—C49—C50152.6 (3)
N1—Ru—C49—C56116.4 (3)N4—Ru—C49—C5626.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H47···O2i0.821.912.704 (5)163
O2—H51···O10.822.202.949 (6)151
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ru(C48H36N4)(C13H10)(CH4O)]·CH4O
Mr1000.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.4608 (12), 17.744 (2), 23.7491 (13)
β (°) 102.428 (6)
V3)5128.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.28 × 0.14 × 0.13
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12304, 11769, 6589
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.02
No. of reflections11769
No. of parameters635
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.33

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, CrystalStructure (Molecular Structure Corporation & Rigaku Corporation, 2001), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ru—N12.051 (3)Ru—N42.051 (3)
Ru—N22.040 (2)Ru—C491.845 (3)
Ru—N32.042 (3)Ru—O12.362 (3)
N1—Ru—N289.57 (11)N4—Ru—O185.93 (10)
N1—Ru—N3171.76 (11)C49—Ru—N192.74 (13)
N1—Ru—N489.80 (11)C49—Ru—N293.55 (13)
N1—Ru—O187.29 (11)C49—Ru—N395.50 (13)
N2—Ru—N389.85 (11)C49—Ru—N493.53 (12)
N2—Ru—N4172.91 (11)C49—Ru—O1179.46 (12)
N2—Ru—O186.99 (10)C50—C49—C56112.2 (3)
N3—Ru—N489.76 (11)Ru—C49—C50123.5 (2)
N3—Ru—O184.47 (11)Ru—C49—C56124.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H47···O2i0.821.9102.704 (5)163
O2—H51···O10.822.2042.949 (6)151
Symmetry code: (i) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds