Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, O-benzyl-N-(benzyl­oxy­carbonyl)­threonyl-2,N-dimethyl­alanin­anilide, C30H35N3O5, and methyl (4R)-4-benzyl­oxy-N-(benzyl­oxy­carbonyl)­valyl-2-(methyl­alanyl)prolinate, C30H39N3O7, were obtained from the `azirine coupling' of the corresponding protected amino acids with 2,2,N-trimethyl-2H-azirin-3-amine and methyl (4R)-4-(benzyl­oxy)-N-(2,2-dimethyl-2H-azirin-2-yl)prolinate, respectively. The Aib unit in each mol­ecule has the greatest turn- or helix-inducing effect on the mol­ecular conformation. Inter­molecular N-H...O inter­actions link the mol­ecules of the tripeptide into sheets and those of the dipeptide into extended chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106007992/tr3003sup1.cif
Contains datablocks III, VI, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106007992/tr3003IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106007992/tr3003VIsup3.hkl
Contains datablock VI

CCDC references: 609412; 609413

Comment top

In recent years, 2H-azirin-3-amines have been shown to be useful synthons for 2,2-disubstituted glycines, such as 2-aminoisobutyric acid (Aib, 2-methylalanin), in peptide synthesis (Wipf & Heimgartner, 1990; Heimgartner, 1991). Furthermore, methyl (2H-azirin-3-yl)prolinates have proved to be convenient dipeptide synthons (Luykx et al., 1996; Breitenmoser et al., 2001). This novel method, the `azirine/oxazolone method', for the introduction of sterically hindered α,α-disubstituted α-amino acids into peptides, is especially suitable for the preparation of peptaibols, which are amphiphilic membrane-active peptide antibiotics (Benedetti et al., 1982) containing up to 50% of the non-protein amino acid Aib. These metabolites of some fungi have antibacterial properties because of their ability to self-associate in lipid membranes to form ion channels (Latorre & Alvarez, 1981; Chugh et al., 2002; Duclohier et al., 2003). A condition for this ability is a helical conformation of the molecule, which is induced and stabilized by the presence of Aib (Karle et al., 1989; Toniolo et al., 1993; Di Blasio et al., 1993). The helical structure of some peptaibols has been established by X-ray crystallography; for example, for zervamicin IIB (Karle et al., 1991, 1994; Karle, 1996) and antiamoebin (Karle et al., 1998). The data for more than 300 peptaibols or segments of peptaibols, including crystal structures, are now available from the online peptaibol database maintained by Chugh and Wallace in London (Whitmore & Wallace, 2004; https://www.cryst.bbk.ac.uk/peptaibol).

Recently, the `azirine/oxazolone method' has been used for the synthesis of peptaibols or segments thereof, for example, alamethicin F30 (Wipf & Heimgartner, 1990), trichotoxin A-50(G) (Altherr & Heimgartner, 1991; Altherr, 1994), antiamoebin (Altherr & Heimgartner, 1993), tichovirin I 1B (Luykx et al., 1996, 2003), hypomurocin A1 (Pradeille et al., 2005) and zervamicin II-2 (Pradeille & Heimgartner, 2003). In the last-mentioned paper, the 6–16 segment was prepared by the coupling of the segments 6–7, 8–10 and 11–16, which had been obtained by the reaction of the corresponding amino acids with 2H-azirin-3-amines. Treatment of the threonine derivative, (I), with the Aib synthon, (II), yielded the title dipeptide, (III), and the analogous reaction of the N-protected valine, (IV), with the Aib–Hyp dipeptide synthon, (V), led to the title tripeptide, (VI) (see scheme). The X-ray crystallographic analyses of compounds (III) and (VI) were undertaken in order to elucidate their molecular structures and conformations and to investigate their hydrogen-bonding interactions, and the results are presented here.

The molecular structures of compounds (III) and (VI) are shown in Figs. 1 and 2, respectively. The bond lengths and angles fall within normal ranges. The torsion angles along the peptide backbones of (III) and (VI) are listed in Table 1, together with those of the related compound, Z-Val-Aib-Pro-OH (Pradeille et al., 2005). Although there are small variations in the magnitudes of the torsion angles, their signs are consistent and on the whole the values are quite similar. The two consecutive small torsion angles on either side of atom C14 in the Aib group confirm the turn- or helix-inducing property of Aib in a peptide chain. The turns occur despite the absence of any significant intramolecular hydrogen bonds. The proline ring in compound (VI) has a slightly distorted half-chair conformation twisted on C26—C27, with a value for the ϕ2 puckering parameter (Cremer & Pople, 1975) of 94.9 (4)° for the atom sequence N16—C17—C27—C26—C25. Atoms C26 and C27 lie 0.367 (2) and −0.206 (2) Å, respectively, from the plane defined by atoms N16, C17 and C25.

In the structure of compound (III), the amide H atom of Aib forms an intermolecular hydrogen bond with the carbonyl O atom of Aib of a neighbouring molecule (Table 2). This thereby links the molecules into extended chains which run parallel to the [010] direction (Fig. 3) and can be described by a graph-set motif (Bernstein et al., 1995) of C(5). The amide H atom of Thr is not involved in any intermolecular interactions. Although this H atom is 2.50 (2) Å from the O atom of the benzoyl substituent on Thr, this intramolecular interaction is probably insignificant, given the very sharp N—H···O angle of 104 (2)°.

In the structure of compound (VI), the amide H atom of Val forms an intermolecular hydrogen bond with the C-terminal carbonyl O atom of a neighbouring molecule (Table 3). This interaction links the molecules into extended chains which run parallel to the [010] direction and can be described by a graph-set motif of C(11). As with compound (III), the amide H atom of Aib forms an intermolecular hydrogen bond with the carbonyl O atom of Aib of a different neighbouring molecule. This interaction links the molecules into extended chains which run parallel to the [100] direction and can be described by a graph-set motif of C(5). The combination of the hydrogen-bonding interactions links the molecules into two-dimensional networks which lie parallel to the (001) plane (Fig. 4). Within these networks, the two different hydrogen-bonding interactions unite to form a ring which can be described by the binary graph-set motif of R44(28).

Experimental top

The syntheses of compounds (III) and (VI) have already been described by Pradeille & Heimgartner (2003). Suitable crystals were obtained by slow evaporation of solutions of the compounds in deuterochloroform and methanol–hexane–ethyl acetate (Ratio?), respectively, at room temperature [m.p. 407–408 K for (III) and 403–407 K for (VI)].

Refinement top

The amide H atoms were located in difference Fourier maps and their positions were refined freely along with individual isotropic displacement parameters. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atom at distances of 0.95, 0.99 or 1.00 Å for phenyl, methylene or methine groups, respectively, and with Uiso(H) = 1.2Ueq(C). As there are no significant anomalous dispersion effects with these compounds, Friedel opposites were merged prior to the final cycles of refinement. The enantiomers used in the refinement models were chosen so as to correspond with the chirality of the stereogenic centres known from the syntheses of the compounds. For (III), two low-angle reflections were omitted from the final cycles of refinement because their observed intensities were much lower than the calculated values, as a result of being partially obscured by the beam stop.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. A view of the molecule of (VI), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.
[Figure 3] Fig. 3. The crystal packing in (III), viewed along the a axis and showing the hydrogen-bonded chains. Most of the H atoms have been omitted for clarity. Hydrogen bonds are represented by thin lines.
[Figure 4] Fig. 4. The crystal packing in (VI), showing a hydrogen-bonded sheet with the R44(28) motif. Most of the H atoms have been omitted for clarity. Hydrogen bonds are represented by thin lines.
(III) O-benzyl-N-(benzyloxycarbonyl)threonyl-2,N-dimethylalaninanilide top
Crystal data top
C30H35N3O5Dx = 1.251 Mg m3
Mr = 517.62Melting point: 407 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2773 reflections
a = 10.4178 (2) Åθ = 2.0–25.0°
b = 10.6996 (2) ŵ = 0.09 mm1
c = 24.6636 (5) ÅT = 160 K
V = 2749.16 (9) Å3Tablet, colourless
Z = 40.22 × 0.10 × 0.05 mm
F(000) = 1104
Data collection top
Nonius KappaCCD area-detector
diffractometer
2388 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.058
Horizontally mounted graphite crystal monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 9 pixels mm-1h = 012
ϕ and ω scans with κ offsetsk = 012
30620 measured reflectionsl = 029
2759 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3586P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2757 reflectionsΔρmax = 0.17 e Å3
356 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0090 (13)
Crystal data top
C30H35N3O5V = 2749.16 (9) Å3
Mr = 517.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.4178 (2) ŵ = 0.09 mm1
b = 10.6996 (2) ÅT = 160 K
c = 24.6636 (5) Å0.22 × 0.10 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2388 reflections with I > 2σ(I)
30620 measured reflectionsRint = 0.058
2759 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.17 e Å3
2757 reflectionsΔρmin = 0.15 e Å3
356 parameters
Special details top

Experimental. Solvent used: deuterochloroform Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.730 (1) Frames collected: 866 Seconds exposure per frame: 200 Degrees rotation per frame: 0.5 Crystal-Detector distance (mm): 36.9

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O80.67678 (16)0.82688 (15)0.88495 (6)0.0359 (4)
O90.82540 (16)0.67544 (15)0.87255 (7)0.0365 (4)
O120.87384 (16)0.80522 (14)0.75789 (7)0.0364 (4)
O151.16391 (17)0.86069 (15)0.74267 (6)0.0384 (5)
O240.59475 (19)0.71173 (17)0.69995 (7)0.0437 (5)
N100.6689 (2)0.7081 (2)0.81003 (8)0.0313 (5)
H100.622 (2)0.766 (2)0.7980 (10)0.030 (7)*
N130.9445 (2)0.6198 (2)0.72662 (8)0.0299 (5)
H130.938 (2)0.543 (2)0.7262 (9)0.021 (6)*
N161.1470 (2)0.70186 (18)0.80182 (8)0.0309 (5)
C10.6590 (2)0.9446 (2)0.96727 (10)0.0338 (6)
C20.5847 (3)0.9017 (3)1.00999 (10)0.0404 (7)
H20.58890.81621.02020.048*
C30.5043 (3)0.9826 (3)1.03795 (11)0.0488 (8)
H30.45280.95191.06680.059*
C40.4988 (3)1.1064 (3)1.02409 (11)0.0505 (8)
H40.44331.16141.04320.061*
C50.5737 (3)1.1507 (3)0.98240 (11)0.0537 (8)
H50.57071.23680.97310.064*
C60.6537 (3)1.0705 (3)0.95382 (11)0.0446 (7)
H60.70501.10190.92500.053*
C70.7421 (3)0.8568 (3)0.93584 (10)0.0388 (6)
H710.82620.89620.92830.047*
H720.75710.77950.95700.047*
C90.7325 (2)0.7327 (2)0.85660 (9)0.0303 (6)
C110.7332 (2)0.6287 (2)0.77056 (9)0.0295 (6)
H110.75730.54860.78890.035*
C120.8565 (2)0.6927 (2)0.75132 (9)0.0292 (6)
C141.0656 (2)0.6746 (2)0.70680 (9)0.0300 (6)
C151.1285 (2)0.7531 (2)0.75198 (9)0.0314 (6)
C171.1876 (2)0.7846 (2)0.84446 (10)0.0327 (6)
C181.3131 (3)0.7864 (3)0.86181 (12)0.0521 (8)
H181.37550.73520.84460.062*
C191.3480 (3)0.8631 (3)0.90438 (13)0.0631 (9)
H191.43450.86380.91670.076*
C201.2583 (3)0.9385 (3)0.92911 (11)0.0532 (8)
H201.28330.99240.95780.064*
C211.1327 (3)0.9357 (3)0.91219 (11)0.0443 (7)
H211.07040.98680.92950.053*
C221.0971 (2)0.8585 (2)0.86985 (10)0.0362 (6)
H221.01020.85620.85820.043*
C230.6429 (3)0.5978 (2)0.72318 (10)0.0361 (6)
H230.69260.55170.69480.043*
C250.6469 (3)0.7445 (4)0.64997 (13)0.0678 (10)
H2510.65290.66930.62680.081*
H2520.73480.77740.65540.081*
C260.5668 (3)0.8414 (2)0.62200 (10)0.0384 (6)
C270.4374 (3)0.8555 (2)0.63249 (10)0.0383 (6)
H270.39740.80480.65920.046*
C280.3661 (3)0.9420 (2)0.60466 (10)0.0420 (7)
H280.27730.95140.61250.050*
C290.4219 (3)1.0151 (3)0.56554 (11)0.0498 (8)
H290.37151.07370.54590.060*
C300.5511 (3)1.0035 (3)0.55473 (12)0.0513 (8)
H300.59011.05480.52800.062*
C310.6238 (3)0.9169 (3)0.58284 (11)0.0467 (7)
H310.71290.90890.57540.056*
C320.5288 (3)0.5190 (3)0.73979 (12)0.0468 (7)
H3210.47490.50260.70800.070*
H3220.47850.56390.76720.070*
H3230.55900.43960.75490.070*
C331.0368 (3)0.7583 (2)0.65799 (10)0.0378 (6)
H3310.98120.82750.66930.057*
H3320.99340.70930.62990.057*
H3331.11740.79190.64350.057*
C341.1582 (3)0.5727 (2)0.68789 (10)0.0370 (6)
H3411.12420.53280.65510.055*
H3421.16790.51000.71650.055*
H3431.24200.61000.67990.055*
C351.1131 (3)0.5756 (2)0.82034 (10)0.0385 (7)
H3511.11410.51810.78940.058*
H3521.02720.57690.83650.058*
H3531.17550.54770.84750.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0367 (10)0.0384 (10)0.0326 (9)0.0074 (9)0.0044 (8)0.0084 (8)
O90.0323 (10)0.0370 (9)0.0402 (10)0.0054 (9)0.0042 (8)0.0009 (8)
O120.0427 (11)0.0208 (9)0.0456 (10)0.0001 (8)0.0038 (9)0.0020 (7)
O150.0498 (11)0.0246 (9)0.0409 (10)0.0088 (9)0.0009 (9)0.0035 (8)
O240.0616 (12)0.0380 (10)0.0315 (9)0.0139 (10)0.0008 (9)0.0039 (8)
N100.0331 (12)0.0297 (12)0.0310 (12)0.0086 (11)0.0024 (10)0.0016 (9)
N130.0354 (12)0.0191 (11)0.0350 (11)0.0014 (10)0.0039 (10)0.0004 (9)
N160.0390 (12)0.0237 (10)0.0301 (11)0.0013 (10)0.0014 (9)0.0004 (9)
C10.0347 (14)0.0395 (14)0.0272 (12)0.0009 (13)0.0026 (11)0.0031 (11)
C20.0433 (16)0.0439 (15)0.0339 (13)0.0085 (14)0.0045 (13)0.0034 (12)
C30.0428 (17)0.076 (2)0.0281 (14)0.0096 (16)0.0033 (13)0.0048 (15)
C40.0516 (18)0.066 (2)0.0343 (15)0.0142 (16)0.0021 (14)0.0115 (15)
C50.080 (2)0.0415 (16)0.0392 (16)0.0096 (17)0.0059 (16)0.0043 (13)
C60.0583 (18)0.0428 (16)0.0326 (14)0.0012 (15)0.0112 (14)0.0018 (13)
C70.0351 (15)0.0439 (16)0.0374 (14)0.0025 (13)0.0077 (12)0.0087 (12)
C90.0306 (14)0.0281 (13)0.0321 (13)0.0010 (12)0.0052 (12)0.0014 (11)
C110.0332 (14)0.0244 (12)0.0308 (13)0.0036 (11)0.0006 (11)0.0017 (11)
C120.0352 (14)0.0243 (13)0.0281 (13)0.0006 (12)0.0023 (11)0.0011 (10)
C140.0341 (14)0.0244 (13)0.0314 (13)0.0029 (12)0.0046 (11)0.0007 (10)
C150.0334 (14)0.0254 (14)0.0354 (14)0.0005 (12)0.0029 (11)0.0003 (11)
C170.0335 (15)0.0308 (13)0.0337 (13)0.0026 (12)0.0044 (12)0.0034 (11)
C180.0388 (17)0.069 (2)0.0483 (17)0.0058 (16)0.0035 (14)0.0110 (16)
C190.0415 (17)0.092 (3)0.0564 (19)0.0057 (19)0.0148 (16)0.0133 (19)
C200.061 (2)0.057 (2)0.0418 (17)0.0159 (17)0.0096 (15)0.0061 (15)
C210.0511 (18)0.0394 (15)0.0424 (15)0.0023 (14)0.0008 (14)0.0052 (13)
C220.0333 (14)0.0324 (13)0.0428 (15)0.0008 (12)0.0053 (12)0.0029 (12)
C230.0419 (15)0.0304 (13)0.0360 (14)0.0045 (12)0.0028 (12)0.0021 (12)
C250.0518 (19)0.094 (3)0.0580 (19)0.025 (2)0.0115 (16)0.036 (2)
C260.0392 (15)0.0426 (15)0.0333 (13)0.0043 (13)0.0035 (12)0.0020 (12)
C270.0420 (15)0.0343 (14)0.0386 (14)0.0001 (13)0.0021 (13)0.0022 (12)
C280.0399 (16)0.0422 (15)0.0439 (16)0.0054 (14)0.0018 (13)0.0021 (13)
C290.065 (2)0.0427 (17)0.0420 (16)0.0134 (16)0.0009 (15)0.0060 (14)
C300.0605 (19)0.0497 (18)0.0436 (16)0.0010 (16)0.0071 (15)0.0127 (14)
C310.0395 (16)0.0602 (19)0.0404 (15)0.0013 (15)0.0040 (13)0.0012 (15)
C320.0403 (16)0.0459 (17)0.0542 (18)0.0031 (14)0.0063 (14)0.0011 (15)
C330.0471 (16)0.0315 (14)0.0348 (14)0.0014 (13)0.0040 (12)0.0014 (12)
C340.0408 (15)0.0290 (13)0.0410 (14)0.0020 (12)0.0111 (13)0.0024 (12)
C350.0482 (16)0.0287 (13)0.0387 (14)0.0009 (13)0.0000 (13)0.0072 (12)
Geometric parameters (Å, º) top
O8—C91.357 (3)C18—C191.381 (4)
O8—C71.463 (3)C18—H180.9500
O9—C91.211 (3)C19—C201.377 (4)
O12—C121.228 (3)C19—H190.9500
O15—C151.230 (3)C20—C211.374 (4)
O24—C251.392 (3)C20—H200.9500
O24—C231.437 (3)C21—C221.382 (4)
N10—C91.352 (3)C21—H210.9500
N10—C111.456 (3)C22—H220.9500
N10—H100.84 (3)C23—C321.514 (4)
N13—C121.349 (3)C23—H231.0000
N13—C141.475 (3)C25—C261.499 (4)
N13—H130.82 (2)C25—H2510.9900
N16—C151.360 (3)C25—H2520.9900
N16—C171.438 (3)C26—C271.381 (4)
N16—C351.469 (3)C26—C311.392 (4)
C1—C21.385 (4)C27—C281.371 (4)
C1—C61.389 (4)C27—H270.9500
C1—C71.495 (4)C28—C291.371 (4)
C2—C31.388 (4)C28—H280.9500
C2—H20.9500C29—C301.377 (5)
C3—C41.369 (4)C29—H290.9500
C3—H30.9500C30—C311.383 (4)
C4—C51.376 (4)C30—H300.9500
C4—H40.9500C31—H310.9500
C5—C61.388 (4)C32—H3210.9800
C5—H50.9500C32—H3220.9800
C6—H60.9500C32—H3230.9800
C7—H710.9900C33—H3310.9800
C7—H720.9900C33—H3320.9800
C11—C121.531 (3)C33—H3330.9800
C11—C231.536 (3)C34—H3410.9800
C11—H111.0000C34—H3420.9800
C14—C341.529 (3)C34—H3430.9800
C14—C331.530 (3)C35—H3510.9800
C14—C151.541 (3)C35—H3520.9800
C17—C181.376 (4)C35—H3530.9800
C17—C221.381 (3)
C9—O8—C7113.93 (19)C18—C19—H19119.8
C25—O24—C23115.5 (2)C21—C20—C19120.0 (3)
C9—N10—C11117.1 (2)C21—C20—H20120.0
C9—N10—H10116.2 (17)C19—C20—H20120.0
C11—N10—H10117.4 (17)C20—C21—C22119.9 (3)
C12—N13—C14120.1 (2)C20—C21—H21120.1
C12—N13—H13121.9 (17)C22—C21—H21120.1
C14—N13—H13117.4 (17)C17—C22—C21120.1 (2)
C15—N16—C17117.05 (19)C17—C22—H22119.9
C15—N16—C35128.2 (2)C21—C22—H22119.9
C17—N16—C35114.15 (19)O24—C23—C32107.8 (2)
C2—C1—C6118.8 (3)O24—C23—C11109.57 (19)
C2—C1—C7120.6 (2)C32—C23—C11113.3 (2)
C6—C1—C7120.6 (2)O24—C23—H23108.7
C1—C2—C3120.5 (3)C32—C23—H23108.7
C1—C2—H2119.7C11—C23—H23108.7
C3—C2—H2119.7O24—C25—C26111.4 (2)
C4—C3—C2120.3 (3)O24—C25—H251109.4
C4—C3—H3119.8C26—C25—H251109.4
C2—C3—H3119.8O24—C25—H252109.4
C3—C4—C5119.8 (3)C26—C25—H252109.4
C3—C4—H4120.1H251—C25—H252108.0
C5—C4—H4120.1C27—C26—C31118.9 (2)
C4—C5—C6120.5 (3)C27—C26—C25122.2 (2)
C4—C5—H5119.8C31—C26—C25118.9 (2)
C6—C5—H5119.8C28—C27—C26120.6 (2)
C5—C6—C1120.1 (3)C28—C27—H27119.7
C5—C6—H6119.9C26—C27—H27119.7
C1—C6—H6119.9C29—C28—C27120.5 (3)
O8—C7—C1108.24 (19)C29—C28—H28119.8
O8—C7—H71110.1C27—C28—H28119.8
C1—C7—H71110.1C28—C29—C30120.0 (3)
O8—C7—H72110.1C28—C29—H29120.0
C1—C7—H72110.1C30—C29—H29120.0
H71—C7—H72108.4C29—C30—C31119.9 (3)
O9—C9—N10124.7 (2)C29—C30—H30120.1
O9—C9—O8123.4 (2)C31—C30—H30120.1
N10—C9—O8111.9 (2)C30—C31—C26120.2 (3)
N10—C11—C12109.43 (19)C30—C31—H31119.9
N10—C11—C23110.6 (2)C26—C31—H31119.9
C12—C11—C23111.97 (19)C23—C32—H321109.5
N10—C11—H11108.2C23—C32—H322109.5
C12—C11—H11108.2H321—C32—H322109.5
C23—C11—H11108.2C23—C32—H323109.5
O12—C12—N13121.8 (2)H321—C32—H323109.5
O12—C12—C11121.4 (2)H322—C32—H323109.5
N13—C12—C11116.8 (2)C14—C33—H331109.5
N13—C14—C34110.93 (19)C14—C33—H332109.5
N13—C14—C33109.0 (2)H331—C33—H332109.5
C34—C14—C33107.53 (19)C14—C33—H333109.5
N13—C14—C15109.92 (19)H331—C33—H333109.5
C34—C14—C15109.9 (2)H332—C33—H333109.5
C33—C14—C15109.47 (19)C14—C34—H341109.5
O15—C15—N16120.2 (2)C14—C34—H342109.5
O15—C15—C14120.1 (2)H341—C34—H342109.5
N16—C15—C14119.6 (2)C14—C34—H343109.5
C18—C17—C22120.0 (2)H341—C34—H343109.5
C18—C17—N16121.0 (2)H342—C34—H343109.5
C22—C17—N16118.9 (2)N16—C35—H351109.5
C17—C18—C19119.7 (3)N16—C35—H352109.5
C17—C18—H18120.2H351—C35—H352109.5
C19—C18—H18120.2N16—C35—H353109.5
C20—C19—C18120.4 (3)H351—C35—H353109.5
C20—C19—H19119.8H352—C35—H353109.5
C6—C1—C2—C31.5 (4)N13—C14—C15—N1651.6 (3)
C7—C1—C2—C3177.8 (2)C34—C14—C15—N1670.7 (3)
C1—C2—C3—C40.9 (4)C33—C14—C15—N16171.4 (2)
C2—C3—C4—C50.3 (4)C15—N16—C17—C18103.3 (3)
C3—C4—C5—C60.8 (4)C35—N16—C17—C1885.1 (3)
C4—C5—C6—C10.2 (4)C15—N16—C17—C2279.8 (3)
C2—C1—C6—C51.0 (4)C35—N16—C17—C2291.7 (3)
C7—C1—C6—C5178.3 (2)C22—C17—C18—C190.5 (4)
C9—O8—C7—C1170.0 (2)N16—C17—C18—C19177.3 (3)
C2—C1—C7—O8101.3 (3)C17—C18—C19—C200.7 (5)
C6—C1—C7—O878.0 (3)C18—C19—C20—C211.4 (5)
C11—N10—C9—O915.3 (3)C19—C20—C21—C220.9 (4)
C11—N10—C9—O8167.11 (19)C18—C17—C22—C210.9 (4)
C7—O8—C9—O92.2 (3)N16—C17—C22—C21177.8 (2)
C7—O8—C9—N10179.8 (2)C20—C21—C22—C170.3 (4)
C9—N10—C11—C1262.6 (3)C25—O24—C23—C32130.2 (3)
C9—N10—C11—C23173.6 (2)C25—O24—C23—C11106.1 (3)
C14—N13—C12—O120.2 (3)N10—C11—C23—O2454.9 (3)
C14—N13—C12—C11179.82 (19)C12—C11—C23—O2467.5 (3)
N10—C11—C12—O1217.9 (3)N10—C11—C23—C3265.5 (3)
C23—C11—C12—O12105.1 (3)C12—C11—C23—C32172.2 (2)
N10—C11—C12—N13162.4 (2)C23—O24—C25—C26163.9 (2)
C23—C11—C12—N1374.5 (3)O24—C25—C26—C2725.1 (4)
C12—N13—C14—C34171.7 (2)O24—C25—C26—C31157.1 (3)
C12—N13—C14—C3370.0 (3)C31—C26—C27—C280.2 (4)
C12—N13—C14—C1550.0 (3)C25—C26—C27—C28177.6 (3)
C17—N16—C15—O1510.6 (4)C26—C27—C28—C290.7 (4)
C35—N16—C15—O15179.2 (2)C27—C28—C29—C301.3 (4)
C17—N16—C15—C14170.7 (2)C28—C29—C30—C310.9 (5)
C35—N16—C15—C140.5 (4)C29—C30—C31—C260.0 (4)
N13—C14—C15—O15129.7 (2)C27—C26—C31—C300.6 (4)
C34—C14—C15—O15107.9 (3)C25—C26—C31—C30177.3 (3)
C33—C14—C15—O1510.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O240.84 (3)2.50 (2)2.823 (3)104 (2)
N13—H13···O15i0.82 (2)2.35 (3)3.088 (3)149 (2)
Symmetry code: (i) x+2, y1/2, z+3/2.
(VI) methyl (4R)-N-(benzyloxycarbonyl)valyl-2-methylalanyl-4-(benzyloxy)prolinate top
Crystal data top
C30H39N3O7Z = 1
Mr = 553.65F(000) = 296
Triclinic, P1Dx = 1.247 Mg m3
Hall symbol: P 1Melting point: 405 K
a = 6.2705 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7577 (2) ÅCell parameters from 3287 reflections
c = 13.2491 (3) Åθ = 2.0–27.5°
α = 106.6479 (13)°µ = 0.09 mm1
β = 94.2733 (10)°T = 160 K
γ = 105.7257 (12)°Prism, colourless
V = 737.36 (3) Å30.33 × 0.25 × 0.15 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3096 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.041
Horizontally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 2.4°
Detector resolution: 9 pixels mm-1h = 08
ϕ and ω scans with κ offsetsk = 1212
17488 measured reflectionsl = 1716
3359 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.1302P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3359 reflectionsΔρmax = 0.15 e Å3
375 parametersΔρmin = 0.16 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.090 (9)
Crystal data top
C30H39N3O7γ = 105.7257 (12)°
Mr = 553.65V = 737.36 (3) Å3
Triclinic, P1Z = 1
a = 6.2705 (1) ÅMo Kα radiation
b = 9.7577 (2) ŵ = 0.09 mm1
c = 13.2491 (3) ÅT = 160 K
α = 106.6479 (13)°0.33 × 0.25 × 0.15 mm
β = 94.2733 (10)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3096 reflections with I > 2σ(I)
17488 measured reflectionsRint = 0.041
3359 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.15 e Å3
3359 reflectionsΔρmin = 0.16 e Å3
375 parameters
Special details top

Experimental. Solvent used: MeOH / hexane / ethyl acetate Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.520 (1) Frames collected: 665 Seconds exposure per frame: 15 Degrees rotation per frame: 1.0 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O80.6029 (3)0.01347 (18)0.72453 (13)0.0367 (4)
O90.8323 (3)0.20356 (18)0.68077 (14)0.0404 (4)
O120.3181 (2)0.08475 (17)0.45076 (13)0.0316 (4)
O150.1107 (2)0.35873 (17)0.40511 (11)0.0264 (3)
O180.3253 (3)0.69548 (18)0.55051 (14)0.0404 (4)
O190.0282 (3)0.68588 (18)0.63548 (15)0.0381 (4)
O260.5756 (2)0.50285 (18)0.83369 (11)0.0298 (3)
N100.6265 (3)0.0152 (2)0.55360 (15)0.0290 (4)
H100.514 (5)0.100 (3)0.543 (2)0.036 (7)*
N130.6146 (3)0.25728 (19)0.42662 (14)0.0226 (4)
H130.759 (4)0.281 (3)0.4188 (19)0.021 (6)*
N160.3376 (3)0.42052 (19)0.56014 (13)0.0217 (4)
C10.5127 (5)0.0380 (3)0.89971 (19)0.0411 (6)
C20.5358 (5)0.0829 (3)0.9290 (2)0.0505 (7)
H20.65200.12450.90720.061*
C30.3924 (7)0.1437 (3)0.9895 (3)0.0630 (9)
H30.41050.22661.00920.076*
C40.2235 (6)0.0855 (4)1.0214 (2)0.0646 (10)
H40.12450.12821.06290.078*
C50.1979 (6)0.0340 (4)0.9935 (3)0.0664 (9)
H50.08160.07501.01600.080*
C60.3415 (6)0.0959 (4)0.9324 (2)0.0533 (7)
H60.32210.17860.91280.064*
C70.6666 (6)0.1081 (4)0.8353 (2)0.0603 (9)
H710.65560.20950.84180.072*
H720.82390.11830.86170.072*
C90.6987 (4)0.0785 (2)0.65437 (18)0.0299 (5)
C110.6791 (4)0.0402 (2)0.46491 (17)0.0257 (4)
H110.83600.11040.48440.031*
C120.5192 (3)0.1280 (2)0.44646 (16)0.0240 (4)
C140.4796 (3)0.3381 (2)0.38722 (16)0.0232 (4)
C150.2934 (3)0.3663 (2)0.45236 (16)0.0207 (4)
C170.1785 (3)0.4866 (2)0.61538 (16)0.0217 (4)
H170.02250.41520.59180.026*
C180.1897 (4)0.6336 (2)0.59441 (17)0.0260 (4)
C190.0239 (5)0.8304 (3)0.6265 (3)0.0516 (7)
H1910.15530.90980.67260.077*
H1920.11340.85040.64860.077*
H1930.02680.82830.55220.077*
C200.6665 (4)0.0905 (2)0.36341 (18)0.0323 (5)
H200.75940.14990.38400.039*
C210.4316 (4)0.1981 (3)0.3176 (2)0.0399 (6)
H2110.33660.14490.29350.060*
H2120.36790.23730.37270.060*
H2130.43870.28160.25700.060*
C220.7722 (5)0.0307 (3)0.2782 (2)0.0447 (6)
H2210.78350.11470.21920.067*
H2220.92260.03980.30950.067*
H2230.67840.02110.25140.067*
C230.3782 (4)0.2522 (3)0.27015 (17)0.0311 (5)
H2310.49910.24450.22810.047*
H2320.28740.30570.24340.047*
H2330.28310.15120.26380.047*
C240.6377 (4)0.4953 (2)0.39816 (18)0.0286 (5)
H2410.69570.55120.47390.043*
H2420.55440.54970.36760.043*
H2430.76330.48460.36000.043*
C250.5262 (3)0.4245 (3)0.63516 (16)0.0257 (4)
H2510.67160.46140.61220.031*
H2520.51030.32380.64170.031*
C260.5077 (3)0.5345 (2)0.74051 (16)0.0247 (4)
H260.59130.63990.74570.030*
C270.2584 (3)0.5135 (2)0.73279 (16)0.0258 (4)
H2710.22980.60430.77860.031*
H2720.18150.42620.75460.031*
C280.8116 (3)0.5319 (3)0.85671 (17)0.0290 (5)
H2810.89040.63580.85910.035*
H2820.86050.46170.80010.035*
C290.8692 (4)0.5121 (2)0.96309 (16)0.0272 (4)
C301.0503 (4)0.4624 (3)0.98270 (18)0.0322 (5)
H301.13880.44120.92850.039*
C311.1047 (4)0.4430 (3)1.07985 (19)0.0350 (5)
H311.22960.40881.09170.042*
C320.9785 (4)0.4730 (3)1.1591 (2)0.0418 (6)
H321.01430.45891.22560.050*
C330.7987 (5)0.5242 (4)1.1409 (2)0.0523 (8)
H330.71200.54661.19570.063*
C340.7433 (5)0.5430 (3)1.0434 (2)0.0422 (6)
H340.61850.57731.03170.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0439 (9)0.0333 (8)0.0280 (8)0.0040 (7)0.0031 (7)0.0106 (7)
O90.0416 (10)0.0329 (9)0.0364 (9)0.0008 (7)0.0034 (7)0.0079 (7)
O120.0249 (8)0.0275 (8)0.0454 (9)0.0075 (6)0.0085 (6)0.0159 (7)
O150.0210 (7)0.0333 (8)0.0254 (7)0.0099 (6)0.0014 (6)0.0091 (6)
O180.0521 (11)0.0252 (8)0.0461 (10)0.0097 (7)0.0187 (8)0.0142 (7)
O190.0315 (9)0.0324 (9)0.0552 (11)0.0189 (7)0.0059 (7)0.0128 (8)
O260.0217 (7)0.0474 (9)0.0229 (7)0.0108 (6)0.0042 (6)0.0149 (7)
N100.0349 (10)0.0232 (9)0.0296 (9)0.0077 (8)0.0017 (8)0.0114 (7)
N130.0194 (9)0.0255 (8)0.0264 (9)0.0084 (7)0.0062 (7)0.0114 (7)
N160.0184 (8)0.0269 (8)0.0226 (8)0.0100 (7)0.0046 (6)0.0092 (7)
C10.0483 (15)0.0376 (13)0.0257 (11)0.0012 (11)0.0020 (10)0.0048 (10)
C20.0606 (18)0.0385 (14)0.0438 (15)0.0110 (12)0.0040 (13)0.0052 (11)
C30.089 (3)0.0398 (16)0.0464 (17)0.0012 (16)0.0015 (17)0.0165 (13)
C40.071 (2)0.060 (2)0.0362 (15)0.0131 (17)0.0114 (14)0.0056 (14)
C50.0515 (19)0.077 (2)0.0516 (18)0.0088 (17)0.0104 (14)0.0006 (17)
C60.0629 (19)0.0470 (16)0.0471 (16)0.0161 (14)0.0007 (14)0.0134 (13)
C70.0666 (19)0.0590 (18)0.0292 (13)0.0134 (15)0.0024 (12)0.0068 (12)
C90.0314 (11)0.0289 (11)0.0327 (12)0.0127 (9)0.0044 (9)0.0116 (9)
C110.0277 (10)0.0229 (10)0.0280 (11)0.0089 (8)0.0032 (8)0.0095 (8)
C120.0238 (10)0.0229 (10)0.0253 (10)0.0068 (8)0.0051 (8)0.0079 (8)
C140.0237 (10)0.0281 (10)0.0224 (9)0.0114 (8)0.0051 (8)0.0114 (8)
C150.0199 (9)0.0198 (9)0.0244 (10)0.0064 (7)0.0037 (7)0.0098 (7)
C170.0181 (9)0.0247 (10)0.0237 (10)0.0086 (8)0.0053 (7)0.0075 (8)
C180.0263 (10)0.0235 (10)0.0265 (10)0.0087 (8)0.0019 (8)0.0053 (8)
C190.0493 (16)0.0324 (13)0.076 (2)0.0245 (12)0.0016 (14)0.0130 (13)
C200.0377 (12)0.0267 (11)0.0340 (12)0.0147 (9)0.0044 (10)0.0077 (9)
C210.0470 (15)0.0299 (12)0.0382 (13)0.0091 (10)0.0053 (11)0.0067 (10)
C220.0527 (16)0.0390 (14)0.0377 (14)0.0113 (12)0.0170 (12)0.0053 (11)
C230.0315 (12)0.0426 (13)0.0226 (10)0.0169 (10)0.0041 (8)0.0103 (9)
C240.0283 (11)0.0311 (11)0.0338 (11)0.0115 (9)0.0111 (9)0.0179 (9)
C250.0220 (10)0.0364 (11)0.0219 (10)0.0125 (8)0.0037 (8)0.0105 (8)
C260.0214 (10)0.0327 (11)0.0213 (9)0.0082 (8)0.0036 (7)0.0103 (8)
C270.0215 (10)0.0341 (11)0.0236 (10)0.0105 (8)0.0065 (8)0.0096 (8)
C280.0223 (10)0.0421 (12)0.0237 (10)0.0102 (9)0.0042 (8)0.0114 (9)
C290.0247 (10)0.0323 (11)0.0230 (10)0.0061 (8)0.0015 (8)0.0096 (8)
C300.0291 (11)0.0447 (13)0.0261 (11)0.0148 (10)0.0069 (9)0.0123 (9)
C310.0302 (12)0.0463 (14)0.0333 (12)0.0154 (10)0.0040 (9)0.0166 (10)
C320.0443 (15)0.0616 (17)0.0292 (12)0.0224 (13)0.0082 (11)0.0227 (12)
C330.0558 (17)0.091 (2)0.0341 (14)0.0455 (17)0.0209 (12)0.0308 (14)
C340.0436 (14)0.0664 (17)0.0324 (12)0.0326 (13)0.0148 (11)0.0226 (12)
Geometric parameters (Å, º) top
O8—C91.357 (3)C17—H171.0000
O8—C71.450 (3)C19—H1910.9800
O9—C91.213 (3)C19—H1920.9800
O12—C121.227 (3)C19—H1930.9800
O15—C151.237 (2)C20—C211.518 (3)
O18—C181.193 (3)C20—C221.527 (3)
O19—C181.336 (3)C20—H201.0000
O19—C191.456 (3)C21—H2110.9800
O26—C261.418 (2)C21—H2120.9800
O26—C281.421 (3)C21—H2130.9800
N10—C91.345 (3)C22—H2210.9800
N10—C111.451 (3)C22—H2220.9800
N10—H100.90 (3)C22—H2230.9800
N13—C121.350 (3)C23—H2310.9800
N13—C141.464 (3)C23—H2320.9800
N13—H130.89 (2)C23—H2330.9800
N16—C151.351 (2)C24—H2410.9800
N16—C171.461 (2)C24—H2420.9800
N16—C251.471 (3)C24—H2430.9800
C1—C21.383 (4)C25—C261.532 (3)
C1—C61.385 (4)C25—H2510.9900
C1—C71.493 (4)C25—H2520.9900
C2—C31.376 (5)C26—C271.512 (3)
C2—H20.9500C26—H261.0000
C3—C41.370 (5)C27—H2710.9900
C3—H30.9500C27—H2720.9900
C4—C51.365 (6)C28—C291.508 (3)
C4—H40.9500C28—H2810.9900
C5—C61.387 (5)C28—H2820.9900
C5—H50.9500C29—C341.384 (3)
C6—H60.9500C29—C301.385 (3)
C7—H710.9900C30—C311.385 (3)
C7—H720.9900C30—H300.9500
C11—C121.533 (3)C31—C321.374 (3)
C11—C201.545 (3)C31—H310.9500
C11—H111.0000C32—C331.383 (4)
C14—C231.527 (3)C32—H320.9500
C14—C151.540 (3)C33—C341.389 (4)
C14—C241.543 (3)C33—H330.9500
C17—C181.522 (3)C34—H340.9500
C17—C271.523 (3)
C9—O8—C7114.49 (19)C21—C20—C22110.6 (2)
C18—O19—C19116.3 (2)C21—C20—C11114.25 (19)
C26—O26—C28113.10 (15)C22—C20—C11110.76 (18)
C9—N10—C11119.64 (18)C21—C20—H20107.0
C9—N10—H10117.2 (17)C22—C20—H20107.0
C11—N10—H10120.5 (17)C11—C20—H20107.0
C12—N13—C14121.82 (17)C20—C21—H211109.5
C12—N13—H13119.4 (15)C20—C21—H212109.5
C14—N13—H13116.5 (15)H211—C21—H212109.5
C15—N16—C17117.81 (15)C20—C21—H213109.5
C15—N16—C25130.18 (16)H211—C21—H213109.5
C17—N16—C25112.01 (15)H212—C21—H213109.5
C2—C1—C6118.4 (3)C20—C22—H221109.5
C2—C1—C7122.2 (3)C20—C22—H222109.5
C6—C1—C7119.4 (3)H221—C22—H222109.5
C3—C2—C1120.7 (3)C20—C22—H223109.5
C3—C2—H2119.7H221—C22—H223109.5
C1—C2—H2119.7H222—C22—H223109.5
C4—C3—C2120.4 (3)C14—C23—H231109.5
C4—C3—H3119.8C14—C23—H232109.5
C2—C3—H3119.8H231—C23—H232109.5
C5—C4—C3119.8 (3)C14—C23—H233109.5
C5—C4—H4120.1H231—C23—H233109.5
C3—C4—H4120.1H232—C23—H233109.5
C4—C5—C6120.1 (3)C14—C24—H241109.5
C4—C5—H5119.9C14—C24—H242109.5
C6—C5—H5119.9H241—C24—H242109.5
C1—C6—C5120.5 (3)C14—C24—H243109.5
C1—C6—H6119.7H241—C24—H243109.5
C5—C6—H6119.7H242—C24—H243109.5
O8—C7—C1108.7 (2)N16—C25—C26103.19 (16)
O8—C7—H71110.0N16—C25—H251111.1
C1—C7—H71110.0C26—C25—H251111.1
O8—C7—H72110.0N16—C25—H252111.1
C1—C7—H72110.0C26—C25—H252111.1
H71—C7—H72108.3H251—C25—H252109.1
O9—C9—N10125.7 (2)O26—C26—C27106.96 (16)
O9—C9—O8123.7 (2)O26—C26—C25115.04 (17)
N10—C9—O8110.64 (19)C27—C26—C25103.52 (16)
N10—C11—C12109.27 (17)O26—C26—H26110.3
N10—C11—C20110.81 (17)C27—C26—H26110.3
C12—C11—C20111.64 (17)C25—C26—H26110.3
N10—C11—H11108.3C26—C27—C17104.44 (16)
C12—C11—H11108.3C26—C27—H271110.9
C20—C11—H11108.3C17—C27—H271110.9
O12—C12—N13122.15 (19)C26—C27—H272110.9
O12—C12—C11122.28 (18)C17—C27—H272110.9
N13—C12—C11115.57 (17)H271—C27—H272108.9
N13—C14—C23109.11 (16)O26—C28—C29109.00 (17)
N13—C14—C15114.15 (16)O26—C28—H281109.9
C23—C14—C15110.13 (17)C29—C28—H281109.9
N13—C14—C24107.50 (17)O26—C28—H282109.9
C23—C14—C24110.20 (18)C29—C28—H282109.9
C15—C14—C24105.64 (16)H281—C28—H282108.3
O15—C15—N16119.42 (17)C34—C29—C30118.4 (2)
O15—C15—C14119.07 (17)C34—C29—C28121.1 (2)
N16—C15—C14120.77 (16)C30—C29—C28120.53 (19)
N16—C17—C18109.82 (16)C31—C30—C29121.2 (2)
N16—C17—C27103.95 (15)C31—C30—H30119.4
C18—C17—C27111.17 (17)C29—C30—H30119.4
N16—C17—H17110.6C32—C31—C30120.2 (2)
C18—C17—H17110.6C32—C31—H31119.9
C27—C17—H17110.6C30—C31—H31119.9
O18—C18—O19124.8 (2)C31—C32—C33119.2 (2)
O18—C18—C17125.43 (19)C31—C32—H32120.4
O19—C18—C17109.72 (17)C33—C32—H32120.4
O19—C19—H191109.5C32—C33—C34120.7 (2)
O19—C19—H192109.5C32—C33—H33119.6
H191—C19—H192109.5C34—C33—H33119.6
O19—C19—H193109.5C29—C34—C33120.3 (2)
H191—C19—H193109.5C29—C34—H34119.8
H192—C19—H193109.5C33—C34—H34119.8
C6—C1—C2—C30.2 (4)C15—N16—C17—C1869.2 (2)
C7—C1—C2—C3179.3 (3)C25—N16—C17—C18110.97 (18)
C1—C2—C3—C40.2 (4)C15—N16—C17—C27171.81 (17)
C2—C3—C4—C50.3 (5)C25—N16—C17—C278.0 (2)
C3—C4—C5—C60.4 (5)C19—O19—C18—O181.1 (3)
C2—C1—C6—C50.3 (4)C19—O19—C18—C17177.1 (2)
C7—C1—C6—C5179.1 (3)N16—C17—C18—O188.3 (3)
C4—C5—C6—C10.5 (5)C27—C17—C18—O18106.2 (2)
C9—O8—C7—C1167.3 (2)N16—C17—C18—O19173.53 (16)
C2—C1—C7—O877.5 (4)C27—C17—C18—O1972.0 (2)
C6—C1—C7—O8103.0 (3)N10—C11—C20—C2167.3 (2)
C11—N10—C9—O910.6 (3)C12—C11—C20—C2154.8 (3)
C11—N10—C9—O8170.08 (18)N10—C11—C20—C22167.1 (2)
C7—O8—C9—O92.2 (4)C12—C11—C20—C2270.9 (2)
C7—O8—C9—N10178.5 (2)C15—N16—C25—C26165.96 (19)
C9—N10—C11—C1278.8 (2)C17—N16—C25—C2614.2 (2)
C9—N10—C11—C20157.74 (19)C28—O26—C26—C27174.39 (18)
C14—N13—C12—O1213.0 (3)C28—O26—C26—C2571.3 (2)
C14—N13—C12—C11167.92 (17)N16—C25—C26—O26147.06 (16)
N10—C11—C12—O1241.5 (3)N16—C25—C26—C2730.7 (2)
C20—C11—C12—O1281.4 (3)O26—C26—C27—C17158.15 (16)
N10—C11—C12—N13137.62 (18)C25—C26—C27—C1736.3 (2)
C20—C11—C12—N1399.5 (2)N16—C17—C27—C2627.4 (2)
C12—N13—C14—C2373.2 (2)C18—C17—C27—C2690.6 (2)
C12—N13—C14—C1550.5 (2)C26—O26—C28—C29173.58 (18)
C12—N13—C14—C24167.33 (18)O26—C28—C29—C3431.3 (3)
C17—N16—C15—O158.1 (3)O26—C28—C29—C30148.7 (2)
C25—N16—C15—O15171.74 (19)C34—C29—C30—C310.4 (4)
C17—N16—C15—C14161.98 (17)C28—C29—C30—C31179.7 (2)
C25—N16—C15—C1418.2 (3)C29—C30—C31—C320.0 (4)
N13—C14—C15—O15142.91 (18)C30—C31—C32—C330.6 (4)
C23—C14—C15—O1519.8 (3)C31—C32—C33—C340.9 (5)
C24—C14—C15—O1599.2 (2)C30—C29—C34—C330.1 (4)
N13—C14—C15—N1647.0 (2)C28—C29—C34—C33180.0 (3)
C23—C14—C15—N16170.14 (18)C32—C33—C34—C290.6 (5)
C24—C14—C15—N1670.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O18i0.90 (3)2.06 (3)2.927 (3)163 (2)
N13—H13···O15ii0.89 (2)2.17 (3)3.060 (2)175 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.

Experimental details

(III)(VI)
Crystal data
Chemical formulaC30H35N3O5C30H39N3O7
Mr517.62553.65
Crystal system, space groupOrthorhombic, P212121Triclinic, P1
Temperature (K)160160
a, b, c (Å)10.4178 (2), 10.6996 (2), 24.6636 (5)6.2705 (1), 9.7577 (2), 13.2491 (3)
α, β, γ (°)90, 90, 90106.6479 (13), 94.2733 (10), 105.7257 (12)
V3)2749.16 (9)737.36 (3)
Z41
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.22 × 0.10 × 0.050.33 × 0.25 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
30620, 2759, 2388 17488, 3359, 3096
Rint0.0580.041
(sin θ/λ)max1)0.5950.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.07 0.036, 0.085, 1.07
No. of reflections27573359
No. of parameters356375
No. of restraints03
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.150.15, 0.16

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O240.84 (3)2.50 (2)2.823 (3)104 (2)
N13—H13···O15i0.82 (2)2.35 (3)3.088 (3)149 (2)
Symmetry code: (i) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O18i0.90 (3)2.06 (3)2.927 (3)163 (2)
N13—H13···O15ii0.89 (2)2.17 (3)3.060 (2)175 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
A comparison of selected peptide backbone torsion angles (°) top
Torsion angleCompound (III)Compound (VI)Z-Val-Aib-Pro-OHa
O8—C9—N10—C11167.11 (19)170.08 (18)178.4 (4)
C9—N10—C11—C12-62.6 (3)-78.8 (2)-89.7 (5)
N10—C11—C12—N13162.4 (2)137.62 (18)164.4 (4)
C11—C12—N13—C14179.82 (19)167.92 (17)177.2 (4)
C12—N13—C14—C1550.0 (3)50.5 (2)52.3 (6)
N13—C14—C15—N1651.6 (3)47.0 (2)35.8 (6)
C14—C15—N16—C17-170.7 (2)161.98 (17)172.7 (4)
C15—N16—C17—C18-103.3 (3)-69.2 (2)-78.5 (5)
N16—C17—C18—O19173.53 (16)172.3 (4)
(a) Pradeille et al. (2005)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds