Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
4-Cyano-4'-chlorobenzalazine [systematic name: 4-(4-chloro­benzyl­idenehydrazonomethyl)benzonitrile], C15­H10ClN3, oc­curs in two polymorphs. Polymorph A is iso­struct­ural with the corresponding dichloro compound. Polymorph B is isostructural with the bromo and iodo analogs, viz. C15H10BrN3 and C15H10IN3, respectively. The latter three structures all have approximately linear C-N...X-C inter­molecular contacts in which the N...X contact distances are longer than those in the corresponding benzyl­idene­anilines.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107065171/tr3028sup1.cif
Contains datablocks global, Cl-A, Cl-B, Br, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107065171/tr3028Cl-Asup2.hkl
Contains datablock Cl-A

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107065171/tr3028Cl-Bsup3.hkl
Contains datablock Cl-B

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107065171/tr3028Brsup4.hkl
Contains datablock Br

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107065171/tr3028Isup5.hkl
Contains datablock I

CCDC references: 681538; 681539; 681540; 681541

Comment top

In earlier work (Ojala et al., 1999, 2001), the packings of p-halo-N-(p-cyanobenzylidene)anilines and p-cyano-N-(p-halobenzylidene)anilines were reported for the chloro, bromo and iodo compounds. (Hereafter we will use the descriptor (X/Y) to denote X—C6H4—CHN—C6H4Y). This previous work was prompted by earlier work (Bernstein & Schmidt, 1972; Bernstein & Izak, 1976; Bernstein et al., 1976; Bar & Bernstein, 1977, 1982, 1983; Haller et al., 1995) in which it was shown that in (Cl/Cl), (CH3/CH3), (CH3/Cl) and (Cl/CH3) there was extensive disorder among the orientations of the molecules. The disorder could be by inversion through the pseudo-center of symmetry in the molecule, or by rotation around the X···Y axis, or by both, leading in some cases to fourfold disorder. The purpose of the earlier work (Ojala et al., 1999, 2001) was to see whether a possible –CN···X– interaction could reduce the disorder. In (I/CN), (CN/I), (CN/Br) and (CN/Cl), such interactions did occur; the disorder was eliminated in (I/CN) and (CN/I) and reduced to only the inversion disorder in (CN/Br) and (CN/Cl). In (Br/CN) and (Cl/CN), no –CN···X– interactions were found, but –X···X– interactions removed the disorder completely. We report here the structures of the corresponding 4-(4-halobenzylidenehydrazono)benzonitriles, with the descriptor (CN//X). The –CHN– bridges in benzylideneanilines are replaced by –CHN—NCH– bridges in benzalazines. Two polymorphs, A and B, were found for 4-(4-chlorobenzylidenehydrazono)benzonitrile, viz. (CN//Cl-A) and (CN//Cl-B). Polymorph (CN//Cl–B), 4-(4-bromobenzylidenehydrazono)benzonitrile, (CN//Br), and 4-(4-iodobenzylidenehydrazono)benzonitrile, (CN//I), are isostructural. All four structures show end-for-end disorder of the molecules.

The atom labeling and the anisotropic displacement parameters for (CN//Cl-A) are shown in Fig. 1. The displacement parameters are similar and the labeling scheme is the same for the other three compounds. In every case, there is partial disorder between the two ends; the major component of the disorder has 59.0 (4)% occupancy in (CN//Cl-A), 67.2 (2)% in (CN//Cl-B), 81.45 (8)% in (CN//Br) and 70.16 (4)% in (CN//I). Judging from the changes in these percentages over the course of the refinements, these s.u. values are very optimistic. If the disorder were 50/50 the average molecule, in every case, would lie on a center of symmetry. When the disorder is other than 50/50, there is only a pseudo-center of symmetry and the space groups becomes noncentrosymmetric. There are no unusual bond lengths or angles in any of the structures although, again, the s.u. values seem low. The molecules deviate slightly from planarity; the benzene rings are twisted out of the plane of the CN—NC fragments by 4.2 (2)° in (CN//Cl-A), 8.6 (2)° in (CN//Cl-B), 7.4 (1)° in (CN//Br) and 4.8 (2)° in (CN//I).

The packing for (CN//Cl-A) is shown in Fig. 2. Only the major component of the disorder is used in the figure. The compound is isostructural with (Cl//Cl) (Zheng et al., 2005; Glaser et al., 2006; Ojala et al., 2007). This packing arrangement has no short CN···CN, CN···Cl or Cl···Cl contacts except those arising from the a-axis distance of 3.828 Å.

The packing for (CN//Cl-B) is shown in Fig. 3. To the eye, the corresponding figures for (CN//Br) and (CN//I) are the same. The molecules form layers parallel to the (221) plane, and are tilted away from this plane by 19.6 (1)° for (CN//Cl-B), 19.3 (1)° for (CN//Br) and 18.8 (1)° for (CN//I). In each of these compounds there are approximately linear X···NC contacts. The geometric details of these are listed in Table 1, where they are compared with similar data for the corresponding benzylideneanilines. The N···Cl distances are slightly longer than the usual van der Waals distances, the N···Br distances about the same and the N···I distances slightly shorter. However, the orientation of the contacts is the same in all three structures.

In addition to the N···X contacts there is π stacking in all four compounds. Fig. 4 shows the stacking for (CN//Cl-A) and Fig. 5 that for (CN//Cl-B). The stacking in (CN//Br) and (CN//I) is essentially the same as that in (CN//Cl-B). As a consequence of the disorder, the distance between adjacent C1–C6 rings is slightly different from the distance between adjacent C11–C16 rings. The average distances are as follows: (CN//Cl–A), 3.47 (2); (CN//Cl–B), 3.402 (4); (CN//Br), 3.425 (4); (CN//I), 3.474 (10) Å.

Related literature top

For related literature, see: Bar & Bernstein (1977, 1982, 1983); Bernstein & Izak (1976); Bernstein & Schmidt (1972); Bernstein, Bar & Christensen (1976); Glaser et al. (2006); Haller et al. (1995); Ojala et al. (1999, 2001); Ojala et al. (2007); Zheng et al. (2005).

Experimental top

For the preparation of 4-cyanobenzaldehyde hydrazone, a solution of 4-cyanobenzaldehyde (0.5 g, 4 mmol) dissolved in approximately 10 ml of ethanol was added dropwise with stirring to an aqueous 8% hydrazine solution (14.25 g, 4 mmol hydrazine). The milky solution was stirred for approximately 30 min after the completion of the addition and then was refrigerated overnight. The hydrazone (m.p. 336 K) was not recrystallized.

For the preparation of the 4-cyano-4'-halobenzalazines, to a solution of 4-halobenzaldehyde (1 mmol) dissolved in 10 ml of absolute ethanol was added 4-cyanobenzaldehyde hydrazone (0.1 g, 1 mmol). The mixture was heated (lower than 323 K) with stirring for approximately 1 h, cooled and then refrigerated overnight. The crude benzalazine was recrystallized from carbon tetrachloride.

Crystals of (CN//Cl-A) were grown from CH2Cl2/petroleum ether mixtures. Crystals of (CN//Cl-B) were grown from either CH2Cl2 or CHCl3.

Refinement top

All of the four structures show disorder about a pseudo-center of symmetry. In order to refine the structures, the following distances were restrained: C—CN = 1.445 (1) Å; CN = 1.142 (1) Å; C—Cl = 1.746 (1) Å; C—Br = 1.903 (1) Å; C—I = 2.095 (1) Å. In addition, the pairs of atoms that would be overlapping if the center were real were constrained to have identical displacement parameters. H atoms were placed at geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 Å and with Uiso(H) values of 1.2 Ueq(C).

Structure description top

In earlier work (Ojala et al., 1999, 2001), the packings of p-halo-N-(p-cyanobenzylidene)anilines and p-cyano-N-(p-halobenzylidene)anilines were reported for the chloro, bromo and iodo compounds. (Hereafter we will use the descriptor (X/Y) to denote X—C6H4—CHN—C6H4Y). This previous work was prompted by earlier work (Bernstein & Schmidt, 1972; Bernstein & Izak, 1976; Bernstein et al., 1976; Bar & Bernstein, 1977, 1982, 1983; Haller et al., 1995) in which it was shown that in (Cl/Cl), (CH3/CH3), (CH3/Cl) and (Cl/CH3) there was extensive disorder among the orientations of the molecules. The disorder could be by inversion through the pseudo-center of symmetry in the molecule, or by rotation around the X···Y axis, or by both, leading in some cases to fourfold disorder. The purpose of the earlier work (Ojala et al., 1999, 2001) was to see whether a possible –CN···X– interaction could reduce the disorder. In (I/CN), (CN/I), (CN/Br) and (CN/Cl), such interactions did occur; the disorder was eliminated in (I/CN) and (CN/I) and reduced to only the inversion disorder in (CN/Br) and (CN/Cl). In (Br/CN) and (Cl/CN), no –CN···X– interactions were found, but –X···X– interactions removed the disorder completely. We report here the structures of the corresponding 4-(4-halobenzylidenehydrazono)benzonitriles, with the descriptor (CN//X). The –CHN– bridges in benzylideneanilines are replaced by –CHN—NCH– bridges in benzalazines. Two polymorphs, A and B, were found for 4-(4-chlorobenzylidenehydrazono)benzonitrile, viz. (CN//Cl-A) and (CN//Cl-B). Polymorph (CN//Cl–B), 4-(4-bromobenzylidenehydrazono)benzonitrile, (CN//Br), and 4-(4-iodobenzylidenehydrazono)benzonitrile, (CN//I), are isostructural. All four structures show end-for-end disorder of the molecules.

The atom labeling and the anisotropic displacement parameters for (CN//Cl-A) are shown in Fig. 1. The displacement parameters are similar and the labeling scheme is the same for the other three compounds. In every case, there is partial disorder between the two ends; the major component of the disorder has 59.0 (4)% occupancy in (CN//Cl-A), 67.2 (2)% in (CN//Cl-B), 81.45 (8)% in (CN//Br) and 70.16 (4)% in (CN//I). Judging from the changes in these percentages over the course of the refinements, these s.u. values are very optimistic. If the disorder were 50/50 the average molecule, in every case, would lie on a center of symmetry. When the disorder is other than 50/50, there is only a pseudo-center of symmetry and the space groups becomes noncentrosymmetric. There are no unusual bond lengths or angles in any of the structures although, again, the s.u. values seem low. The molecules deviate slightly from planarity; the benzene rings are twisted out of the plane of the CN—NC fragments by 4.2 (2)° in (CN//Cl-A), 8.6 (2)° in (CN//Cl-B), 7.4 (1)° in (CN//Br) and 4.8 (2)° in (CN//I).

The packing for (CN//Cl-A) is shown in Fig. 2. Only the major component of the disorder is used in the figure. The compound is isostructural with (Cl//Cl) (Zheng et al., 2005; Glaser et al., 2006; Ojala et al., 2007). This packing arrangement has no short CN···CN, CN···Cl or Cl···Cl contacts except those arising from the a-axis distance of 3.828 Å.

The packing for (CN//Cl-B) is shown in Fig. 3. To the eye, the corresponding figures for (CN//Br) and (CN//I) are the same. The molecules form layers parallel to the (221) plane, and are tilted away from this plane by 19.6 (1)° for (CN//Cl-B), 19.3 (1)° for (CN//Br) and 18.8 (1)° for (CN//I). In each of these compounds there are approximately linear X···NC contacts. The geometric details of these are listed in Table 1, where they are compared with similar data for the corresponding benzylideneanilines. The N···Cl distances are slightly longer than the usual van der Waals distances, the N···Br distances about the same and the N···I distances slightly shorter. However, the orientation of the contacts is the same in all three structures.

In addition to the N···X contacts there is π stacking in all four compounds. Fig. 4 shows the stacking for (CN//Cl-A) and Fig. 5 that for (CN//Cl-B). The stacking in (CN//Br) and (CN//I) is essentially the same as that in (CN//Cl-B). As a consequence of the disorder, the distance between adjacent C1–C6 rings is slightly different from the distance between adjacent C11–C16 rings. The average distances are as follows: (CN//Cl–A), 3.47 (2); (CN//Cl–B), 3.402 (4); (CN//Br), 3.425 (4); (CN//I), 3.474 (10) Å.

For related literature, see: Bar & Bernstein (1977, 1982, 1983); Bernstein & Izak (1976); Bernstein & Schmidt (1972); Bernstein, Bar & Christensen (1976); Glaser et al. (2006); Haller et al. (1995); Ojala et al. (1999, 2001); Ojala et al. (2007); Zheng et al. (2005).

Computing details top

For all compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. (CN//Cl-A). Displacement ellipsoids are shown at the 50% probability level. The molecule is disordered: atoms Cl1, N3 and C8 have 59.0 (4)% occupancy; Cl2, N4 and C18, 41.0 (4)%.
[Figure 2] Fig. 2. The packing in (CN//Cl-A), viewed along the b axis. This is isostructural with (Cl//Cl).
[Figure 3] Fig. 3. The packing in (CN//Cl-B), viewed perpendicular to the (221) plane. The CN···Cl contacts are shown as dashed lines. (CN//Br) and (CN//I) are virtually the same.
[Figure 4] Fig. 4. The π stacking in (CN//Cl-A), viewed normal to the mean molecular plane. The mean C6–C6 ring distance is 3.458 (8) Å.
[Figure 5] Fig. 5. The π stacking in (CN//Cl-B). The mean C6–C6 ring distance is 3.402 (4) Å. (CN//Br) and (CN//I) appear the same and have mean ring distances of 3.425 (4) and 3.474 (10) Å, respectively.
(Cl-A) 4-(4-Chlorobenzylidenehydrazono)benzonitrile top
Crystal data top
C15H10ClN3F(000) = 276
Mr = 267.71Dx = 1.407 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 3072 reflections
a = 3.8276 (5) Åθ = 2.8–28.2°
b = 7.1042 (9) ŵ = 0.29 mm1
c = 23.238 (3) ÅT = 173 K
β = 91.151 (2)°Needle, yellow
V = 631.76 (14) Å30.50 × 0.20 × 0.07 mm
Z = 2
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2818 independent reflections
Radiation source: fine-focus sealed tube2207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
h = 55
Tmin = 0.93, Tmax = 0.98k = 99
7125 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.062P)2 + 0.65P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2818 reflectionsΔρmax = 0.53 e Å3
129 parametersΔρmin = 0.60 e Å3
10 restraintsAbsolute structure: Flack (1983), 1369 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.4 (2)
Crystal data top
C15H10ClN3V = 631.76 (14) Å3
Mr = 267.71Z = 2
Monoclinic, PcMo Kα radiation
a = 3.8276 (5) ŵ = 0.29 mm1
b = 7.1042 (9) ÅT = 173 K
c = 23.238 (3) Å0.50 × 0.20 × 0.07 mm
β = 91.151 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2818 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
2207 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.98Rint = 0.025
7125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.53 e Å3
S = 1.06Δρmin = 0.60 e Å3
2818 reflectionsAbsolute structure: Flack (1983), 1369 Friedel pairs
129 parametersAbsolute structure parameter: 0.4 (2)
10 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.9079 (12)1.5806 (3)0.3154 (2)0.0447 (3)0.590 (4)
Cl20.1234 (14)0.0667 (4)0.6875 (3)0.0447 (3)0.410 (4)
N10.4533 (13)0.6651 (6)0.5117 (2)0.0381 (4)
N20.5693 (13)0.8417 (6)0.4919 (3)0.0381 (4)
N30.0362 (14)0.1714 (7)0.6984 (3)0.0545 (12)0.590 (4)
N40.931 (2)1.6882 (10)0.2996 (4)0.0545 (12)0.410 (4)
C10.2440 (10)0.1367 (5)0.65065 (19)0.0324 (4)
C20.1822 (17)0.1542 (7)0.5924 (3)0.0353 (5)
H20.07760.05280.57170.042*
C30.2685 (16)0.3143 (7)0.5640 (3)0.0360 (5)
H30.21770.32570.52390.043*
C40.4375 (15)0.4670 (6)0.5947 (3)0.0318 (4)
C50.4956 (18)0.4438 (6)0.6534 (3)0.0365 (5)
H50.60270.54280.67490.044*
C60.4022 (18)0.2808 (7)0.6816 (3)0.0372 (5)
H60.44610.26770.72180.045*
C70.5270 (16)0.6440 (6)0.5664 (3)0.0335 (5)
H70.63740.74250.58760.040*
C80.128 (3)0.0366 (8)0.6767 (3)0.0447 (3)0.590 (4)
C110.7765 (11)1.3780 (4)0.35161 (19)0.0324 (4)
C120.8389 (17)1.3540 (7)0.4126 (3)0.0353 (5)
H120.94661.45160.43450.042*
C130.7400 (16)1.1863 (7)0.4393 (3)0.0360 (5)
H130.77681.17350.47960.043*
C140.5933 (15)1.0410 (6)0.4095 (3)0.0318 (4)
C150.5185 (18)1.0599 (6)0.3504 (3)0.0365 (5)
H150.40450.96090.32990.044*
C160.6117 (17)1.2241 (7)0.3218 (3)0.0372 (5)
H160.56511.23440.28160.045*
C170.4929 (16)0.8714 (6)0.4399 (3)0.0335 (5)
H170.36290.77820.41940.040*
C180.863 (5)1.5522 (10)0.3231 (3)0.0447 (3)0.410 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0379 (7)0.0510 (7)0.0449 (6)0.0003 (6)0.0060 (6)0.0085 (5)
Cl20.0379 (7)0.0510 (7)0.0449 (6)0.0003 (6)0.0060 (6)0.0085 (5)
N10.0370 (9)0.0360 (9)0.0413 (10)0.0036 (7)0.0001 (7)0.0018 (7)
N20.0370 (9)0.0360 (9)0.0413 (10)0.0036 (7)0.0001 (7)0.0018 (7)
N30.049 (3)0.057 (3)0.057 (3)0.006 (3)0.008 (2)0.004 (2)
N40.049 (3)0.057 (3)0.057 (3)0.006 (3)0.008 (2)0.004 (2)
C10.0267 (9)0.0315 (10)0.0390 (10)0.0037 (8)0.0003 (7)0.0012 (8)
C20.0315 (10)0.0361 (10)0.0379 (10)0.0019 (8)0.0043 (8)0.0068 (8)
C30.0307 (9)0.0445 (12)0.0326 (9)0.0006 (8)0.0029 (7)0.0032 (8)
C40.0242 (9)0.0343 (10)0.0370 (10)0.0007 (7)0.0003 (7)0.0037 (8)
C50.0336 (10)0.0391 (10)0.0366 (10)0.0021 (8)0.0018 (8)0.0091 (8)
C60.0357 (10)0.0443 (11)0.0316 (9)0.0018 (9)0.0029 (7)0.0033 (8)
C70.0290 (9)0.0328 (11)0.0385 (11)0.0014 (8)0.0002 (8)0.0062 (9)
C80.0379 (7)0.0510 (7)0.0449 (6)0.0003 (6)0.0060 (6)0.0085 (5)
C110.0267 (9)0.0315 (10)0.0390 (10)0.0037 (8)0.0003 (7)0.0012 (8)
C120.0315 (10)0.0361 (10)0.0379 (10)0.0019 (8)0.0043 (8)0.0068 (8)
C130.0307 (9)0.0445 (12)0.0326 (9)0.0006 (8)0.0029 (7)0.0032 (8)
C140.0242 (9)0.0343 (10)0.0370 (10)0.0007 (7)0.0003 (7)0.0037 (8)
C150.0336 (10)0.0391 (10)0.0366 (10)0.0021 (8)0.0018 (8)0.0091 (8)
C160.0357 (10)0.0443 (11)0.0316 (9)0.0018 (9)0.0029 (7)0.0033 (8)
C170.0290 (9)0.0328 (11)0.0385 (11)0.0014 (8)0.0002 (8)0.0062 (9)
C180.0379 (7)0.0510 (7)0.0449 (6)0.0003 (6)0.0060 (6)0.0085 (5)
Geometric parameters (Å, º) top
Cl1—C111.7461 (2)C5—H50.9500
Cl2—C11.7461 (2)C6—H60.9500
N1—C71.304 (7)C7—H70.9500
N1—N21.412 (3)C11—C161.434 (7)
N2—C171.255 (7)C11—C121.443 (7)
N3—C81.1421 (2)C11—C181.4451 (2)
N4—C181.1420 (2)C12—C131.399 (8)
C1—C21.374 (7)C12—H120.9500
C1—C61.384 (7)C13—C141.358 (6)
C1—C81.4451 (3)C13—H130.9500
C2—C31.360 (8)C14—C151.403 (8)
C2—H20.9500C14—C171.453 (7)
C3—C41.445 (7)C15—C161.393 (7)
C3—H30.9500C15—H150.9500
C4—C51.389 (8)C16—H160.9500
C4—C71.463 (7)C17—H170.9500
C5—C61.381 (7)
C7—N1—N2110.9 (3)N3—C8—C1178.5 (6)
C17—N2—N1113.3 (3)C16—C11—C12116.6 (3)
C2—C1—C6120.6 (4)C16—C11—C18122.3 (6)
C2—C1—C8116.2 (5)C12—C11—C18121.1 (6)
C6—C1—C8123.1 (5)C16—C11—Cl1121.6 (4)
C2—C1—Cl2121.0 (4)C12—C11—Cl1121.8 (4)
C6—C1—Cl2118.3 (4)C13—C12—C11119.7 (5)
C3—C2—C1121.1 (5)C13—C12—H12120.2
C3—C2—H2119.5C11—C12—H12120.2
C1—C2—H2119.5C14—C13—C12122.3 (6)
C2—C3—C4119.9 (5)C14—C13—H13118.8
C2—C3—H3120.1C12—C13—H13118.8
C4—C3—H3120.1C13—C14—C15120.0 (5)
C5—C4—C3117.3 (4)C13—C14—C17119.5 (5)
C5—C4—C7120.7 (4)C15—C14—C17120.3 (4)
C3—C4—C7122.0 (5)C16—C15—C14119.9 (5)
C6—C5—C4121.8 (5)C16—C15—H15120.1
C6—C5—H5119.1C14—C15—H15120.1
C4—C5—H5119.1C15—C16—C11121.5 (5)
C5—C6—C1119.3 (5)C15—C16—H16119.3
C5—C6—H6120.4C11—C16—H16119.3
C1—C6—H6120.4N2—C17—C14123.3 (5)
N1—C7—C4119.2 (4)N2—C17—H17118.3
N1—C7—H7120.4C14—C17—H17118.3
C4—C7—H7120.4N4—C18—C11178.7 (7)
C7—N1—N2—C17177.6 (6)C16—C11—C12—C130.2 (7)
C6—C1—C2—C31.3 (8)C18—C11—C12—C13177.6 (10)
C8—C1—C2—C3177.5 (7)Cl1—C11—C12—C13177.7 (4)
Cl2—C1—C2—C3178.4 (5)C11—C12—C13—C141.7 (8)
C1—C2—C3—C41.9 (8)C12—C13—C14—C153.5 (8)
C2—C3—C4—C51.8 (7)C12—C13—C14—C17179.3 (5)
C2—C3—C4—C7178.3 (5)C13—C14—C15—C163.4 (8)
C3—C4—C5—C61.1 (8)C17—C14—C15—C16179.2 (5)
C7—C4—C5—C6177.6 (5)C14—C15—C16—C111.5 (8)
C4—C5—C6—C10.5 (8)C12—C11—C16—C150.2 (7)
C2—C1—C6—C50.5 (8)C18—C11—C16—C15177.6 (11)
C8—C1—C6—C5178.2 (8)Cl1—C11—C16—C15177.7 (4)
Cl2—C1—C6—C5179.2 (4)N1—N2—C17—C14178.2 (4)
N2—N1—C7—C4178.1 (4)C13—C14—C17—N28.2 (8)
C5—C4—C7—N1176.6 (5)C15—C14—C17—N2176.0 (5)
C3—C4—C7—N10.2 (8)
(Cl-B) 4-(4-Chlorobenzylidenehydrazono)benzonitrile top
Crystal data top
C15H10ClN3Z = 1
Mr = 267.72F(000) = 138
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6904 (7) ÅCell parameters from 2451 reflections
b = 5.9498 (7) Åθ = 3.2–25.0°
c = 11.4426 (16) ŵ = 0.29 mm1
α = 98.361 (2)°T = 174 K
β = 93.317 (2)°Plate, yellow
γ = 96.823 (1)°0.50 × 0.40 × 0.05 mm
V = 312.78 (7) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2191 independent reflections
Radiation source: fine-focus sealed tube2131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
h = 55
Tmin = 0.87, Tmax = 0.99k = 77
3127 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.047P)2 + 0.222P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2191 reflectionsΔρmax = 0.31 e Å3
124 parametersΔρmin = 0.60 e Å3
11 restraintsAbsolute structure: Flack (1983), 1082 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.42 (12)
Crystal data top
C15H10ClN3γ = 96.823 (1)°
Mr = 267.72V = 312.78 (7) Å3
Triclinic, P1Z = 1
a = 4.6904 (7) ÅMo Kα radiation
b = 5.9498 (7) ŵ = 0.29 mm1
c = 11.4426 (16) ÅT = 174 K
α = 98.361 (2)°0.50 × 0.40 × 0.05 mm
β = 93.317 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2191 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
2131 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.99Rint = 0.015
3127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.31 e Å3
S = 1.09Δρmin = 0.60 e Å3
2191 reflectionsAbsolute structure: Flack (1983), 1082 Friedel pairs
124 parametersAbsolute structure parameter: 0.42 (12)
11 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.3754 (7)0.2194 (6)0.1138 (4)0.0337 (2)0.672 (2)
Cl20.3854 (9)1.2139 (7)0.8804 (5)0.0337 (2)0.328 (2)
N10.4135 (9)0.5810 (7)0.5209 (4)0.0318 (3)
N20.5836 (9)0.4109 (7)0.4794 (4)0.0318 (3)
N30.4756 (5)1.3128 (4)0.9158 (3)0.0337 (2)0.672 (2)
N41.5140 (7)0.2903 (7)0.0883 (5)0.0337 (2)0.328 (2)
C10.1767 (6)1.0234 (5)0.8045 (4)0.0274 (4)
C20.0784 (9)1.0635 (7)0.6958 (4)0.0298 (4)
H20.13051.19030.66140.036*
C30.0949 (9)0.9184 (7)0.6384 (4)0.0296 (4)
H30.16360.94680.56480.036*
C40.1711 (9)0.7288 (7)0.6877 (4)0.0275 (4)
C50.0719 (9)0.6932 (7)0.7973 (4)0.0297 (4)
H50.12430.56750.83260.036*
C60.1015 (10)0.8390 (7)0.8549 (4)0.0303 (4)
H60.16900.81240.92900.036*
C70.3474 (9)0.5702 (7)0.6267 (4)0.0292 (4)
H70.41510.45550.66680.035*
C80.3460 (10)1.1832 (7)0.8666 (7)0.0337 (2)0.672 (2)
C111.1716 (6)0.0278 (5)0.1915 (4)0.0274 (4)
C121.0738 (9)0.0686 (7)0.3017 (4)0.0298 (4)
H121.12710.19500.33610.036*
C130.9008 (9)0.0761 (7)0.3591 (4)0.0296 (4)
H130.83230.04690.43260.036*
C140.8243 (9)0.2648 (7)0.3110 (4)0.0275 (4)
C150.9234 (9)0.3066 (7)0.2031 (4)0.0297 (4)
H150.87160.43500.17010.036*
C161.0971 (9)0.1631 (7)0.1431 (4)0.0303 (4)
H161.16520.19370.06970.036*
C170.6468 (9)0.4235 (7)0.3728 (4)0.0292 (4)
H170.57720.53800.33310.035*
C181.3618 (18)0.1757 (12)0.1341 (13)0.0337 (2)0.328 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0323 (4)0.0367 (5)0.0334 (6)0.0093 (3)0.0091 (3)0.0038 (4)
Cl20.0323 (4)0.0367 (5)0.0334 (6)0.0093 (3)0.0091 (3)0.0038 (4)
N10.0331 (7)0.0320 (7)0.0311 (8)0.0100 (6)0.0045 (6)0.0020 (6)
N20.0331 (7)0.0320 (7)0.0311 (8)0.0100 (6)0.0045 (6)0.0020 (6)
N30.0323 (4)0.0367 (5)0.0334 (6)0.0093 (3)0.0091 (3)0.0038 (4)
N40.0323 (4)0.0367 (5)0.0334 (6)0.0093 (3)0.0091 (3)0.0038 (4)
C10.0215 (7)0.0306 (8)0.0286 (8)0.0036 (6)0.0027 (6)0.0009 (6)
C20.0310 (8)0.0311 (8)0.0282 (8)0.0069 (6)0.0011 (6)0.0057 (6)
C30.0300 (8)0.0351 (9)0.0245 (8)0.0061 (6)0.0032 (6)0.0048 (6)
C40.0225 (7)0.0297 (8)0.0286 (8)0.0016 (6)0.0002 (6)0.0014 (6)
C50.0311 (8)0.0278 (8)0.0301 (8)0.0037 (6)0.0028 (6)0.0049 (6)
C60.0307 (8)0.0333 (9)0.0267 (8)0.0022 (6)0.0059 (6)0.0042 (6)
C70.0272 (8)0.0299 (8)0.0302 (9)0.0044 (6)0.0014 (6)0.0035 (7)
C80.0323 (4)0.0367 (5)0.0334 (6)0.0093 (3)0.0091 (3)0.0038 (4)
C110.0215 (7)0.0306 (8)0.0286 (8)0.0036 (6)0.0027 (6)0.0009 (6)
C120.0310 (8)0.0311 (8)0.0282 (8)0.0069 (6)0.0011 (6)0.0057 (6)
C130.0300 (8)0.0351 (9)0.0245 (8)0.0061 (6)0.0032 (6)0.0048 (6)
C140.0225 (7)0.0297 (8)0.0286 (8)0.0016 (6)0.0002 (6)0.0014 (6)
C150.0311 (8)0.0278 (8)0.0301 (8)0.0037 (6)0.0028 (6)0.0049 (6)
C160.0307 (8)0.0333 (9)0.0267 (8)0.0022 (6)0.0059 (6)0.0042 (6)
C170.0272 (8)0.0299 (8)0.0302 (9)0.0044 (6)0.0014 (6)0.0035 (7)
C180.0323 (4)0.0367 (5)0.0334 (6)0.0093 (3)0.0091 (3)0.0038 (4)
Geometric parameters (Å, º) top
Cl1—C111.7513 (10)C5—H50.9500
Cl2—C11.7525 (10)C6—H60.9500
N1—C71.275 (4)C7—H70.9500
N1—N21.408 (3)C11—C161.405 (4)
N2—C171.282 (4)C11—C121.410 (4)
N3—C81.1420 (1)C11—C181.4450 (2)
N4—C181.1420 (1)C12—C131.376 (5)
C1—C61.383 (4)C12—H120.9500
C1—C21.394 (4)C13—C141.395 (5)
C1—C81.4451 (2)C13—H130.9500
C2—C31.379 (4)C14—C151.389 (5)
C2—H20.9500C14—C171.464 (4)
C3—C41.406 (5)C15—C161.387 (4)
C3—H30.9500C15—H150.9500
C4—C51.398 (5)C16—H160.9500
C4—C71.457 (4)C17—H170.9500
C5—C61.382 (4)
C7—N1—N2112.2 (2)N3—C8—C1178.7 (5)
C17—N2—N1111.4 (2)C16—C11—C12119.6 (2)
C6—C1—C2120.3 (2)C16—C11—C18121.2 (7)
C6—C1—C8120.4 (4)C12—C11—C18119.1 (7)
C2—C1—C8119.2 (4)C16—C11—Cl1120.4 (2)
C6—C1—Cl2119.8 (3)C12—C11—Cl1120.0 (2)
C2—C1—Cl2119.8 (3)C13—C12—C11119.5 (3)
C3—C2—C1119.7 (3)C13—C12—H12120.2
C3—C2—H2120.1C11—C12—H12120.2
C1—C2—H2120.1C12—C13—C14121.1 (3)
C2—C3—C4120.7 (3)C12—C13—H13119.5
C2—C3—H3119.7C14—C13—H13119.5
C4—C3—H3119.7C15—C14—C13119.4 (3)
C5—C4—C3118.6 (3)C15—C14—C17119.0 (3)
C5—C4—C7120.0 (3)C13—C14—C17121.6 (3)
C3—C4—C7121.4 (3)C16—C15—C14120.7 (3)
C6—C5—C4120.7 (3)C16—C15—H15119.6
C6—C5—H5119.6C14—C15—H15119.6
C4—C5—H5119.6C15—C16—C11119.6 (3)
C5—C6—C1120.0 (3)C15—C16—H16120.2
C5—C6—H6120.0C11—C16—H16120.2
C1—C6—H6120.0N2—C17—C14121.3 (3)
N1—C7—C4121.8 (3)N2—C17—H17119.3
N1—C7—H7119.1C14—C17—H17119.3
C4—C7—H7119.1N4—C18—C11179.2 (10)
C7—N1—N2—C17179.7 (4)Cl2—N3—C8—C1166 (54)
C6—C1—C2—C30.0 (5)C16—C11—C12—C131.6 (5)
C8—C1—C2—C3176.9 (4)C18—C11—C12—C13177.8 (6)
Cl2—C1—C2—C3177.5 (3)Cl1—C11—C12—C13176.5 (3)
C1—C2—C3—C40.7 (5)C11—C12—C13—C141.1 (5)
C2—C3—C4—C51.2 (5)C12—C13—C14—C150.3 (5)
C2—C3—C4—C7178.3 (3)C12—C13—C14—C17178.3 (3)
C3—C4—C5—C61.1 (5)C13—C14—C15—C160.0 (5)
C7—C4—C5—C6178.4 (3)C17—C14—C15—C16178.6 (3)
C4—C5—C6—C10.5 (5)C14—C15—C16—C110.5 (5)
C2—C1—C6—C50.0 (5)C12—C11—C16—C151.3 (5)
C8—C1—C6—C5176.9 (4)C18—C11—C16—C15177.4 (7)
Cl2—C1—C6—C5177.6 (3)Cl1—C11—C16—C15176.8 (3)
N2—N1—C7—C4179.7 (3)N1—N2—C17—C14179.6 (3)
C5—C4—C7—N1171.6 (3)C15—C14—C17—N2170.2 (3)
C3—C4—C7—N17.9 (5)C13—C14—C17—N28.4 (5)
(Br) 4-(4-Bromobenzylidenehydrazono)benzonitrile top
Crystal data top
C15H10BrN3Z = 1
Mr = 312.18F(000) = 156
Triclinic, P1Dx = 1.626 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6963 (12) ÅCell parameters from 3155 reflections
b = 6.0023 (15) Åθ = 3.4–25.1°
c = 11.585 (3) ŵ = 3.21 mm1
α = 99.493 (10)°T = 174 K
β = 93.767 (10)°Prism, yellow
γ = 96.629 (9)°0.45 × 0.40 × 0.25 mm
V = 318.74 (14) Å3
Data collection top
Bruker SMART 1K CCD area-detecctor
diffractometer
2189 independent reflections
Radiation source: fine-focus sealed tube2188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
h = 55
Tmin = 0.25, Tmax = 0.45k = 77
3142 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.031P)2 + 0.073P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.019
S = 1.05Δρmax = 0.38 e Å3
2189 reflectionsΔρmin = 0.78 e Å3
124 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
11 restraintsExtinction coefficient: 0.023 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1049 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.236 (10)
Crystal data top
C15H10BrN3γ = 96.629 (9)°
Mr = 312.18V = 318.74 (14) Å3
Triclinic, P1Z = 1
a = 4.6963 (12) ÅMo Kα radiation
b = 6.0023 (15) ŵ = 3.21 mm1
c = 11.585 (3) ÅT = 174 K
α = 99.493 (10)°0.45 × 0.40 × 0.25 mm
β = 93.767 (10)°
Data collection top
Bruker SMART 1K CCD area-detecctor
diffractometer
2189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
2188 reflections with I > 2σ(I)
Tmin = 0.25, Tmax = 0.45Rint = 0.021
3142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.38 e Å3
S = 1.05Δρmin = 0.78 e Å3
2189 reflectionsAbsolute structure: Flack (1983), 1049 Friedel pairs
124 parametersAbsolute structure parameter: 0.236 (10)
11 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.3803 (3)0.2389 (3)0.1074 (2)0.02616 (11)0.8145 (8)
Br20.3822 (5)1.2454 (4)0.8915 (3)0.02616 (11)0.1855 (8)
N10.4173 (6)0.5835 (5)0.5219 (3)0.0268 (4)
N20.5868 (6)0.4134 (5)0.4812 (3)0.0268 (4)
N30.47780 (19)1.3157 (2)0.91348 (19)0.02616 (11)0.8145 (8)
N41.4780 (2)0.3075 (7)0.0837 (5)0.02616 (11)0.1855 (8)
C10.1740 (2)1.0299 (4)0.8033 (3)0.0218 (4)
C20.0769 (7)1.0648 (6)0.6947 (3)0.0253 (4)
H20.12971.18900.66050.030*
C30.0953 (7)0.9180 (6)0.6380 (3)0.0247 (4)
H30.16410.94370.56540.030*
C40.1693 (7)0.7326 (6)0.6861 (3)0.0221 (4)
C50.0711 (7)0.6979 (6)0.7936 (3)0.0248 (4)
H50.12220.57220.82710.030*
C60.0995 (7)0.8441 (6)0.8521 (3)0.0245 (4)
H60.16590.81860.92510.029*
C70.3471 (7)0.5725 (6)0.6261 (3)0.0236 (4)
H70.41180.45810.66520.028*
C80.3480 (3)1.1870 (4)0.8641 (3)0.02616 (11)0.8145 (8)
C111.1694 (2)0.0269 (4)0.1949 (3)0.0218 (4)
C121.0766 (7)0.0665 (6)0.3028 (3)0.0253 (4)
H121.13030.19230.33550.030*
C130.9070 (7)0.0786 (6)0.3611 (3)0.0247 (4)
H130.84150.05110.43390.030*
C140.8290 (7)0.2667 (6)0.3148 (3)0.0221 (4)
C150.9257 (7)0.3042 (6)0.2074 (3)0.0248 (4)
H150.87410.43100.17520.030*
C161.0962 (7)0.1590 (6)0.1471 (3)0.0245 (4)
H161.16210.18600.07420.029*
C170.6531 (7)0.4253 (6)0.3766 (3)0.0236 (4)
H170.58610.54010.33830.028*
C181.3436 (5)0.1824 (11)0.1330 (9)0.02616 (11)0.1855 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02745 (16)0.02742 (18)0.02495 (18)0.01007 (10)0.00973 (10)0.00095 (11)
Br20.02745 (16)0.02742 (18)0.02495 (18)0.01007 (10)0.00973 (10)0.00095 (11)
N10.0286 (8)0.0289 (9)0.0240 (9)0.0114 (7)0.0073 (7)0.0006 (7)
N20.0286 (8)0.0289 (9)0.0240 (9)0.0114 (7)0.0073 (7)0.0006 (7)
N30.02745 (16)0.02742 (18)0.02495 (18)0.01007 (10)0.00973 (10)0.00095 (11)
N40.02745 (16)0.02742 (18)0.02495 (18)0.01007 (10)0.00973 (10)0.00095 (11)
C10.0188 (9)0.0232 (9)0.0214 (9)0.0042 (7)0.0032 (7)0.0033 (7)
C20.0262 (10)0.0281 (10)0.0226 (10)0.0074 (8)0.0027 (8)0.0048 (8)
C30.0258 (9)0.0309 (10)0.0182 (9)0.0069 (8)0.0044 (7)0.0034 (8)
C40.0198 (9)0.0245 (10)0.0201 (9)0.0027 (7)0.0013 (7)0.0018 (7)
C50.0270 (9)0.0237 (10)0.0243 (10)0.0046 (7)0.0039 (8)0.0047 (8)
C60.0261 (10)0.0260 (10)0.0216 (10)0.0037 (8)0.0066 (8)0.0029 (8)
C70.0226 (9)0.0245 (10)0.0239 (10)0.0054 (7)0.0028 (8)0.0026 (8)
C80.02745 (16)0.02742 (18)0.02495 (18)0.01007 (10)0.00973 (10)0.00095 (11)
C110.0188 (9)0.0232 (9)0.0214 (9)0.0042 (7)0.0032 (7)0.0033 (7)
C120.0262 (10)0.0281 (10)0.0226 (10)0.0074 (8)0.0027 (8)0.0048 (8)
C130.0258 (9)0.0309 (10)0.0182 (9)0.0069 (8)0.0044 (7)0.0034 (8)
C140.0198 (9)0.0245 (10)0.0201 (9)0.0027 (7)0.0013 (7)0.0018 (7)
C150.0270 (9)0.0237 (10)0.0243 (10)0.0046 (7)0.0039 (8)0.0047 (8)
C160.0261 (10)0.0260 (10)0.0216 (10)0.0037 (8)0.0066 (8)0.0029 (8)
C170.0226 (9)0.0245 (10)0.0239 (10)0.0054 (7)0.0028 (8)0.0026 (8)
C180.02745 (16)0.02742 (18)0.02495 (18)0.01007 (10)0.00973 (10)0.00095 (11)
Geometric parameters (Å, º) top
Br1—C111.9039 (10)C5—H50.9500
Br2—C11.9136 (10)C6—H60.9500
N1—C71.282 (4)C7—H70.9500
N1—N21.406 (3)C11—C161.392 (4)
N2—C171.282 (4)C11—C121.399 (4)
N3—C81.1421 (2)C11—C181.4450 (3)
N4—C181.1420 (2)C12—C131.373 (4)
C1—C61.399 (4)C12—H120.9500
C1—C21.405 (4)C13—C141.402 (4)
C1—C81.4451 (3)C13—H130.9500
C2—C31.381 (4)C14—C151.395 (4)
C2—H20.9500C14—C171.462 (4)
C3—C41.392 (4)C15—C161.387 (4)
C3—H30.9500C15—H150.9500
C4—C51.395 (4)C16—H160.9500
C4—C71.465 (4)C17—H170.9500
C5—C61.381 (4)
C7—N1—N2111.9 (2)N3—C8—C1177.85 (17)
C17—N2—N1111.1 (2)C16—C11—C12120.95 (18)
C6—C1—C2119.7 (2)C16—C11—C18120.1 (6)
C6—C1—C8120.5 (3)C12—C11—C18119.0 (6)
C2—C1—C8119.8 (3)C16—C11—Br1119.23 (19)
C6—C1—Br2119.2 (2)C12—C11—Br1119.73 (19)
C2—C1—Br2120.9 (2)C13—C12—C11119.2 (3)
C3—C2—C1119.8 (3)C13—C12—H12120.4
C3—C2—H2120.1C11—C12—H12120.4
C1—C2—H2120.1C12—C13—C14121.0 (3)
C2—C3—C4120.6 (3)C12—C13—H13119.5
C2—C3—H3119.7C14—C13—H13119.5
C4—C3—H3119.7C15—C14—C13118.8 (3)
C3—C4—C5119.3 (3)C15—C14—C17119.4 (3)
C3—C4—C7121.4 (3)C13—C14—C17121.8 (3)
C5—C4—C7119.3 (3)C16—C15—C14121.0 (3)
C6—C5—C4120.8 (3)C16—C15—H15119.5
C6—C5—H5119.6C14—C15—H15119.5
C4—C5—H5119.6C15—C16—C11119.0 (2)
C5—C6—C1119.7 (3)C15—C16—H16120.5
C5—C6—H6120.1C11—C16—H16120.5
C1—C6—H6120.1N2—C17—C14121.6 (3)
N1—C7—C4121.5 (3)N2—C17—H17119.2
N1—C7—H7119.3C14—C17—H17119.2
C4—C7—H7119.3N4—C18—C11179.0 (4)
C7—N1—N2—C17179.4 (3)C16—C11—C12—C131.1 (4)
C6—C1—C2—C31.1 (4)C18—C11—C12—C13178.9 (3)
C8—C1—C2—C3178.4 (2)Br1—C11—C12—C13175.3 (2)
Br2—C1—C2—C3174.0 (2)C11—C12—C13—C140.8 (4)
C1—C2—C3—C41.3 (4)C12—C13—C14—C150.3 (4)
C2—C3—C4—C51.0 (4)C12—C13—C14—C17178.8 (3)
C2—C3—C4—C7178.8 (3)C13—C14—C15—C160.0 (4)
C3—C4—C5—C60.4 (5)C17—C14—C15—C16179.1 (3)
C7—C4—C5—C6179.3 (3)C14—C15—C16—C110.3 (4)
C4—C5—C6—C10.3 (4)C12—C11—C16—C150.8 (4)
C2—C1—C6—C50.6 (4)C18—C11—C16—C15179.2 (3)
C8—C1—C6—C5178.9 (2)Br1—C11—C16—C15175.6 (2)
Br2—C1—C6—C5174.7 (2)N1—N2—C17—C14179.9 (2)
N2—N1—C7—C4179.7 (2)C15—C14—C17—N2171.9 (3)
C3—C4—C7—N17.1 (4)C13—C14—C17—N27.3 (4)
C5—C4—C7—N1172.7 (3)
(I) 4-(4-Iodobenzylidenehydrazono)benzonitrile top
Crystal data top
C15H10IN3Z = 1
Mr = 359.16F(000) = 174
Triclinic, P1Dx = 1.780 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7165 (3) ÅCell parameters from 3894 reflections
b = 6.1524 (4) Åθ = 3.4–27.5°
c = 11.9054 (8) ŵ = 2.38 mm1
α = 101.271 (2)°T = 173 K
β = 94.588 (2)°Prism, yellow
γ = 96.038 (3)°0.50 × 0.20 × 0.15 mm
V = 335.13 (4) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2879 independent reflections
Radiation source: fine-focus sealed tube2879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
h = 66
Tmin = 0.59, Tmax = 0.70k = 77
3922 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.038P)2 + 0.181P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2879 reflectionsΔρmax = 0.52 e Å3
123 parametersΔρmin = 0.78 e Å3
11 restraintsAbsolute structure: Flack (1983), 1352 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.41 (2)
Crystal data top
C15H10IN3γ = 96.038 (3)°
Mr = 359.16V = 335.13 (4) Å3
Triclinic, P1Z = 1
a = 4.7165 (3) ÅMo Kα radiation
b = 6.1524 (4) ŵ = 2.38 mm1
c = 11.9054 (8) ÅT = 173 K
α = 101.271 (2)°0.50 × 0.20 × 0.15 mm
β = 94.588 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2879 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
2879 reflections with I > 2σ(I)
Tmin = 0.59, Tmax = 0.70Rint = 0.017
3922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.52 e Å3
S = 0.99Δρmin = 0.78 e Å3
2879 reflectionsAbsolute structure: Flack (1983), 1352 Friedel pairs
123 parametersAbsolute structure parameter: 0.41 (2)
11 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I11.4017 (5)0.2569 (4)0.1066 (2)0.02491 (7)0.7016 (4)
I20.3595 (5)1.2703 (4)0.9026 (2)0.02491 (7)0.2984 (4)
N10.4415 (7)0.5915 (6)0.5275 (3)0.0321 (3)
N20.6094 (7)0.4216 (6)0.4874 (3)0.0321 (3)
N30.4435 (5)1.3194 (4)0.9122 (3)0.02491 (7)0.7016 (4)
N41.4143 (8)0.3195 (8)0.0704 (5)0.02491 (7)0.2984 (4)
C10.1449 (5)1.0348 (5)0.8019 (3)0.0272 (3)
C20.0543 (8)1.0686 (7)0.6977 (3)0.0313 (4)
H20.10681.19100.66640.038*
C30.1136 (8)0.9212 (7)0.6404 (3)0.0305 (4)
H30.17890.94350.56960.037*
C40.1881 (8)0.7395 (6)0.6859 (3)0.0275 (3)
C50.0935 (8)0.7098 (6)0.7907 (4)0.0310 (4)
H50.14480.58720.82230.037*
C60.0740 (8)0.8567 (6)0.8494 (3)0.0308 (4)
H60.13880.83590.92050.037*
C70.3645 (8)0.5798 (6)0.6269 (3)0.0296 (4)
H70.42280.46510.66330.035*
C80.3160 (6)1.1933 (5)0.8612 (2)0.02491 (7)0.7016 (4)
C111.1872 (5)0.0206 (5)0.2068 (3)0.0272 (3)
C121.1029 (8)0.0547 (7)0.3117 (3)0.0313 (4)
H121.15900.17670.34260.038*
C130.9349 (8)0.0923 (7)0.3710 (3)0.0305 (4)
H130.87230.06850.44200.037*
C140.8576 (8)0.2746 (6)0.3269 (3)0.0275 (3)
C150.9486 (8)0.3066 (6)0.2222 (3)0.0310 (4)
H150.89620.42990.19160.037*
C161.1151 (8)0.1600 (6)0.1621 (3)0.0308 (4)
H161.17880.18340.09120.037*
C170.6820 (8)0.4335 (6)0.3878 (3)0.0296 (4)
H170.62110.54820.35210.035*
C181.3105 (10)0.1899 (6)0.1306 (5)0.02491 (7)0.2984 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02856 (10)0.02262 (11)0.02468 (11)0.01082 (6)0.01022 (7)0.00052 (6)
I20.02856 (10)0.02262 (11)0.02468 (11)0.01082 (6)0.01022 (7)0.00052 (6)
N10.0337 (8)0.0319 (8)0.0313 (8)0.0153 (7)0.0077 (6)0.0002 (6)
N20.0337 (8)0.0319 (8)0.0313 (8)0.0153 (7)0.0077 (6)0.0002 (6)
N30.02856 (10)0.02262 (11)0.02468 (11)0.01082 (6)0.01022 (7)0.00052 (6)
N40.02856 (10)0.02262 (11)0.02468 (11)0.01082 (6)0.01022 (7)0.00052 (6)
C10.0256 (8)0.0269 (8)0.0271 (8)0.0067 (6)0.0052 (6)0.0023 (7)
C20.0335 (9)0.0319 (9)0.0293 (9)0.0114 (7)0.0031 (7)0.0044 (7)
C30.0331 (9)0.0348 (9)0.0243 (8)0.0102 (7)0.0037 (7)0.0042 (7)
C40.0272 (8)0.0277 (8)0.0260 (8)0.0071 (6)0.0032 (6)0.0009 (7)
C50.0334 (9)0.0285 (9)0.0323 (9)0.0077 (7)0.0065 (7)0.0057 (7)
C60.0332 (9)0.0323 (9)0.0276 (9)0.0060 (7)0.0090 (7)0.0043 (7)
C70.0288 (9)0.0289 (8)0.0307 (9)0.0091 (7)0.0036 (7)0.0022 (7)
C80.02856 (10)0.02262 (11)0.02468 (11)0.01082 (6)0.01022 (7)0.00052 (6)
C110.0256 (8)0.0269 (8)0.0271 (8)0.0067 (6)0.0052 (6)0.0023 (7)
C120.0335 (9)0.0319 (9)0.0293 (9)0.0114 (7)0.0031 (7)0.0044 (7)
C130.0331 (9)0.0348 (9)0.0243 (8)0.0102 (7)0.0037 (7)0.0042 (7)
C140.0272 (8)0.0277 (8)0.0260 (8)0.0071 (6)0.0032 (6)0.0009 (7)
C150.0334 (9)0.0285 (9)0.0323 (9)0.0077 (7)0.0065 (7)0.0057 (7)
C160.0332 (9)0.0323 (9)0.0276 (9)0.0060 (7)0.0090 (7)0.0043 (7)
C170.0288 (9)0.0289 (8)0.0307 (9)0.0091 (7)0.0036 (7)0.0022 (7)
C180.02856 (10)0.02262 (11)0.02468 (11)0.01082 (6)0.01022 (7)0.00052 (6)
Geometric parameters (Å, º) top
I1—C112.0943 (10)C5—H50.9500
I2—C12.0947 (9)C6—H60.9500
N1—C71.279 (4)C7—H70.9500
N1—N21.410 (3)C11—C161.384 (4)
N2—C171.273 (4)C11—C121.388 (4)
N3—C81.1423 (1)C11—C181.4451 (1)
N4—C181.1421 (1)C12—C131.391 (4)
C1—C61.386 (4)C12—H120.9500
C1—C21.389 (4)C13—C141.398 (4)
C1—C81.4453 (1)C13—H130.9500
C2—C31.382 (4)C14—C151.393 (4)
C2—H20.9500C14—C171.469 (4)
C3—C41.398 (4)C15—C161.389 (4)
C3—H30.9500C15—H150.9500
C4—C51.397 (5)C16—H160.9500
C4—C71.465 (4)C17—H170.9500
C5—C61.386 (4)
C7—N1—N2111.6 (2)N3—C8—C1177.1 (3)
C17—N2—N1111.1 (2)C16—C11—C12121.36 (19)
C6—C1—C2122.0 (2)C16—C11—C18116.4 (4)
C6—C1—C8120.1 (3)C12—C11—C18121.4 (4)
C2—C1—C8117.9 (3)C16—C11—I1118.34 (19)
C6—C1—I2116.71 (19)C12—C11—I1120.1 (2)
C2—C1—I2121.0 (2)C11—C12—C13119.0 (3)
C3—C2—C1118.9 (3)C11—C12—H12120.5
C3—C2—H2120.5C13—C12—H12120.5
C1—C2—H2120.5C12—C13—C14120.5 (3)
C2—C3—C4120.5 (3)C12—C13—H13119.8
C2—C3—H3119.8C14—C13—H13119.8
C4—C3—H3119.8C15—C14—C13119.3 (3)
C5—C4—C3119.3 (3)C15—C14—C17119.0 (3)
C5—C4—C7119.0 (3)C13—C14—C17121.8 (3)
C3—C4—C7121.8 (3)C16—C15—C14120.6 (3)
C6—C5—C4120.9 (3)C16—C15—H15119.7
C6—C5—H5119.6C14—C15—H15119.7
C4—C5—H5119.6C11—C16—C15119.2 (3)
C1—C6—C5118.5 (3)C11—C16—H16120.4
C1—C6—H6120.8C15—C16—H16120.4
C5—C6—H6120.8N2—C17—C14121.7 (3)
N1—C7—C4121.4 (3)N2—C17—H17119.1
N1—C7—H7119.3C14—C17—H17119.1
C4—C7—H7119.3N4—C18—C11178.1 (4)
C7—N1—N2—C17179.3 (3)C16—C11—C12—C132.0 (5)
C6—C1—C2—C30.6 (5)C18—C11—C12—C13167.3 (4)
C8—C1—C2—C3178.9 (3)I1—C11—C12—C13173.3 (2)
I2—C1—C2—C3173.0 (2)C11—C12—C13—C141.4 (5)
C1—C2—C3—C40.8 (5)C12—C13—C14—C150.5 (5)
C2—C3—C4—C50.7 (5)C12—C13—C14—C17179.6 (3)
C2—C3—C4—C7179.7 (3)C13—C14—C15—C160.2 (5)
C3—C4—C5—C60.5 (5)C17—C14—C15—C16179.9 (3)
C7—C4—C5—C6179.9 (3)C12—C11—C16—C151.7 (5)
C2—C1—C6—C50.3 (4)C18—C11—C16—C15168.1 (4)
C8—C1—C6—C5179.2 (3)I1—C11—C16—C15173.7 (2)
I2—C1—C6—C5173.5 (2)C14—C15—C16—C110.8 (5)
C4—C5—C6—C10.3 (5)N1—N2—C17—C14179.9 (3)
N2—N1—C7—C4180.0 (3)C15—C14—C17—N2175.1 (3)
C5—C4—C7—N1175.6 (3)C13—C14—C17—N25.1 (5)
C3—C4—C7—N14.8 (5)

Experimental details

(Cl-A)(Cl-B)(Br)(I)
Crystal data
Chemical formulaC15H10ClN3C15H10ClN3C15H10BrN3C15H10IN3
Mr267.71267.72312.18359.16
Crystal system, space groupMonoclinic, PcTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)173174174173
a, b, c (Å)3.8276 (5), 7.1042 (9), 23.238 (3)4.6904 (7), 5.9498 (7), 11.4426 (16)4.6963 (12), 6.0023 (15), 11.585 (3)4.7165 (3), 6.1524 (4), 11.9054 (8)
α, β, γ (°)90, 91.151 (2), 9098.361 (2), 93.317 (2), 96.823 (1)99.493 (10), 93.767 (10), 96.629 (9)101.271 (2), 94.588 (2), 96.038 (3)
V3)631.76 (14)312.78 (7)318.74 (14)335.13 (4)
Z2111
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.290.293.212.38
Crystal size (mm)0.50 × 0.20 × 0.070.50 × 0.40 × 0.050.45 × 0.40 × 0.250.50 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Bruker SMART 1K CCD area-detector
diffractometer
Bruker SMART 1K CCD area-detecctor
diffractometer
Bruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
Multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
Multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
Multi-scan
(SADABS; Sheldrick, 2003; Blessing, 1995)
Tmin, Tmax0.93, 0.980.87, 0.990.25, 0.450.59, 0.70
No. of measured, independent and
observed [I > 2σ(I)] reflections
7125, 2818, 2207 3127, 2191, 2131 3142, 2189, 2188 3922, 2879, 2879
Rint0.0250.0150.0210.017
(sin θ/λ)max1)0.6500.5950.5960.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.162, 1.06 0.045, 0.116, 1.09 0.025, 0.064, 1.05 0.023, 0.059, 0.99
No. of reflections2818219121892879
No. of parameters129124124123
No. of restraints10111111
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.600.31, 0.600.38, 0.780.52, 0.78
Absolute structureFlack (1983), 1369 Friedel pairsFlack (1983), 1082 Friedel pairsFlack (1983), 1049 Friedel pairsFlack (1983), 1352 Friedel pairs
Absolute structure parameter0.4 (2)0.42 (12)0.236 (10)0.41 (2)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 1997).

Distances and angles (Å, °) in the CN···X contacts*.
For comparison, the van der Waals contact distances (Bondi, 1964; Rowland &amp; Taylor, 1996) are N···Cl = 3.30 Å, N···Br = 3.40 Å and N···I = 3.53 Å. All structures were determined at 173 K, except d, at 183 K.
top
compoundC-N···XCN···XN···X-Cref.
CN//Cl-Ba
N3···Cl11613.49164
N4···Cl21493.61154
CN/Clb
N2···Cl11623.25169
N2'···Cl1'1603.27168
N2···Cl1'1623.23159
N2'···Cl11663.31168
N2A···Cl1A1713.30171
CN//Bra
N3···Br11593.36160
N4···Br21583.35161
CN/Brc
N2···Br11623.17169
N2A···Br1A1653.22170
CN//Ia
N3···I11613.32164
N4···I21633.23170
CN/Ic
N2···I11793.15178
I/CNc
N2···I11763.26176
IφφCNd
N1A···I1A1713.19167
N1B···I1B1723.14175
* The distances and angles have been rounded to 0.01 Å and 1°, respectively, to make the comparison simpler. The s.u. values vary but are smaller than these limits. (a) This work; (b) Ojala et al. (2001); (c) Ojala et al. (1999); (d) 4-cyano-4'-iodobiphenyl (Britton & Gleason, 1991).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds