Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A methodology is developed where a fundamental parameters approach (FPA) description of a laboratory powder diffraction instrument (configured in divergent-beam Bragg–Brentano geometry) is used to determine GSAS-II profile parameters for peak asymmetry and instrumental peak widths. This allows the instrumental contribution to peak shapes to be robustly determined directly from a physical description of the instrument, even though GSAS-II does not directly implement FPA for peak shape computation. The FPA-derived parameters can be used as the starting point for instrument characterization, or to characterize sample broadening without the use of a standard to determine the instrument profile function. This new method can facilitate generation of training sets for machine learning. A plot is generated that shows the differences between the two approaches, demonstrating upper bounds for the accuracy of the GSAS-II profile model for a particular instrumental configuration.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds