Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614003386/uk3089sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003386/uk3089Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003386/uk3089IIsup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003386/uk3089IIIsup4.hkl |
CCDC references: 986816; 986817; 986818
Platinum complexes have been known for a long time and have important medical applications. Among them, Cisplatin (cis-[PtCl2(NH3)2]) is one of the most effective antitumor agents used in chemotherapy to treat various types of human cancers (Klein & Hambley, 2009; Wong & Giandomenico, 1999). Recently, there has been an intense interest in developing platinum complexes bearing either piperidine (pip) or its derivatives as ligand, most of which exhibit promising antitumor activity (Ali et al., 2007; Da, 2001a,b; Mukhopadhyay et al., 2003; Rounaq Ali Khan et al., 2000a,b; Solin et al., 1982). However, crystal data of these complexes are very limited, e.g. the crystal structures of cis-[PtCl2(pip)2] (Rounaq Ali Khan et al., 2000a) [OK?], and trans-[PtCl2(4-pic)(pip)] (4-pic is ????; Najajreh et al., 2005). Herein, we report the crystal structures and molecular arrangement of three compounds, namely cis-[PtCl2(ethylamine)(pip)], (I), cis-[PtCl2(m-anisidine)(pip)], (II), and cis-[PtCl2(pip)(quinoline)], (III). They all contain the piperidine ligand and another amine. The latter in compound (I) is a primary amine with an aliphatic chain, while in compound (II) a larger aromatic ring is present. In compound (III), a heterocyclic aromatic amine (quinoline) without an amine H atom was studied for comparison with (I) and (II).
The title complexes were synthesized according to the methods described by Vu et al. (2002) and Da et al. (2005). K[PtCl3(piperidine)] (0.425 g, 1 mmol), prepared according to the synthetic protocol of Da et al. (2001b), was dissolved in an aqueous ethanol solution (15 ml, 1:1 v/v) and then filtered to afford a saturated solution. To this solution, amine (1.5 mol) in an aqueous ethanol solution (5 ml, 1:1 v/v) was added gradually at 288–293 K for ethylamine, and at 298–303 K for m-anisidine (3-methoxyaniline) and quinoline. The reaction mixture was stirred for 4–5 h. After cooling in an ice bath at 278 K for 30 min, the precipitated yellow substance was filtered off and washed with an aqueous ethanol solution (1:1 v/v). The products were first dried in air at room temperature for 1 h, and then in a vacuum at 323 K for 2 h. The yields of (I), (II) and (III) were 70, 60 and 75%, respectively. Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from ethanol–water (2.5:1 v/v) for (I) and (II), and from chloroform–ethanol (1:3 v/v) for (III).
All H atoms were placed in idealized positions and refined in riding mode with Uiso(H) values assigned as 1.2 times Ueq of the parent atoms (1.5 times for methyl groups), with C—H distances of 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methylene) and N—H distances of 0.93 (NH) and 0.92 Å (NH2).
Compounds (I)–(III) crystallize in three different space groups: Pbca, P1 and P21/c for (I), (II) and (III), respectively. The molecular structures are shown in Fig. 1, and selected bond lengths and angles are given in Table 2. The PtII atoms exhibit the usual square-planar coordination and are surrounded by two Cl atoms and two N atoms [one belonging to piperidine (pip) and the other to ethylamine in (I), m-anisidine in (II) or quinoline in (III)]. The structures show unambiguously the cis positions of the two Cl atoms. The angles between two adjacent coordinating atoms are close to the expected values of 90°. The Pt—Cl bond lengths vary from 2.3020 (8) to 2.3155 (12) Å and are in good agreement with the average Pt—Cl bond distance of 2.33 (4) Å for cis-platinum complexes present in the Cambridge Structural Database (CSD, Version 5.34; Allen, 2002). The Pt—N(piperidine) distances are between 2.057 (3) and 2.074 (3) Å, and agree well with the closely related compound [PtCl2(pip)2] (Rounaq Ali Khan et al., 2000a) [OK?]. All the piperidine rings adopt chair conformations, as expected based on the 1H NMR results (Dinh & Da, 2003). Moreover, the piperidine ring in all three compounds are arranged perpendicular to the coordination plane of the PtII atom, thereby reducing the van der Waals repulsion [dihedral angles between best planes through the piperidine ring and the four atoms coordinating to Pt are 86.52 (13) and 86.13 (13)° in (I), 79.15 (14)° in (II) and 85.31 (19)° in (III). The ethylamine ligands in compound (I) exhibit different conformations: one shows an anti conformation [Pt1—N2—C6—C7 = 177.9 (2)°] and the other shows a gauche conformation [Pt2—N4—C13—C14 = -55.2 (3)°].
The crystal packing of (I) is dominated by hydrogen-bonding interactions of the N—H···Cl type (Table 3). The resulting corrugated layers parallel to the ab plane (Fig. 2a) are similar to those observed for cis-amminedichloroispropylamineplatinum(II) (Kirik et al., 2006). Between the layers only hydrophobic interactions between piperidine rings and ethyl groups are observed. The molecules in these layers are arranged in a pseudo-antiparallel β-sheet motif in which each strand is formed by a head-to-tail arrangement of molecules stabilized by hydrogen bonds between the Cl1/Cl2 and N3/N4 atoms, and betweenthe Cl3/Cl4 and N1/N2 atoms (green dotted lines in Fig. 2b; Table 3). Atoms N1 and N3 belong to the piperidine rings, and atoms N2 and N4 to the ethylamine ligands. The chains are linked to each other by hydrogen bonds between N2/N4 and Cl2/Cl4 (magenta dotted lines in Fig. 2b; Table 3). The unit cell contains eight voids of 32 Å3 each.
In the crystal packing of (II) chains of molecules are formed along the a axis by hydrogen bonding between the piperidine N2—H2A group and atom Cl2 (N2—H2A···Cl2i; Table 4 and green dotted lines in Fig. 3). The head-to-tail arrangement of two neighbouring chains is stabilized by hydrogen bonding between the m-anisidine N1—H1B group and atom Cl1 (N1—H1B···Cl1ii; Table 4 and red dotted lines in Fig. 3). Additionally, in the two other directions, hydrophobic interactions are observed between aliphatic piperidine rings and π–π stacking of the benzene rings of the m-anisidine ligand [interplanar distance = 3.373 (2) Å and centroid–centroid distance between benzene rings = 3.866 (2) Å; Fig. 3].
The crystal packing of (III) is much simpler than those of (I) and (II). Hydrogen-bonding contacts are limited compared to (I) and (II) due to the presence of the quinoline ligand having no amine H atom and the bulkier quinoline ring pushing molecules further away. As a result, each molecule contributes one donor (the amine H atom of piperidine) and one acceptor (Cl1) to the hydrogen-bonding network. However, a head-to-tail arrangement of molecules is still observed in this case and a chain of molecules along the b axis is formed by hydrogen bonding (N1—H1···Cl1i; Table 5 and Fig. 4). Two neighbouring chains are again antiparallel, but this time the chains do not interacting by hydrogen bonding, but by π–π interactions between quinoline rings (Cg1···Cg2ii = 3.646 (3) Å; Cg1 and Cg2 are the centroids of the N2/C6–C9/C14 and C9–C14 rings, respectively; symmetry code: (ii) -x+2, -y+1, -z; Fig. 4).
The different nature of the nonpiperidine ligands characterizes the packing of (I), (II) and (III). For ethylamine in (I) with two amine H atoms and a small side chain, hydrogen bonds are dominant in the crystal packing. Replacing the aliphatic side chain with an aromatic side chain of m-anisidine in (II) decreases the number of hydrogen bonds and introduces π–π interactions between the aromatic rings in the crystal packing. Following this trend, compound (III), carrying a quinoline ligand, which has no amine H atom and a larger aromatic ring compared to that of (II), shows mainly π–π interactions. Although hydrogen bonds do not play a key role in the packing of (II) and (III), they are still responsible for the chain-building process.
(type here to add)
For related literature, see: Ali et al. (2007); Allen (2002); Da (2001a,b); Da et al. (2005); Dinh & Da (2003); Dolomanov et al. (2009); Kirik et al. (2006); Klein & Hambley (2009); Mukhopadhyay et al. (2003); Najajreh et al. (2005); Rounaq Ali Khan et al. (2000a,b); Sheldrick (2008); Solin et al. (1982); Vu et al. (2002); Wong & Giandomenico (1999).
For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
[PtCl2(C2H7N)(C5H11N)] | Dx = 2.216 Mg m−3 |
Mr = 396.21 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 14625 reflections |
a = 17.2910 (17) Å | θ = 3.4–29.1° |
b = 12.5737 (5) Å | µ = 12.22 mm−1 |
c = 21.8534 (5) Å | T = 100 K |
V = 4751.2 (5) Å3 | Plate, yellow |
Z = 16 | 0.3 × 0.1 × 0.05 mm |
F(000) = 2976 |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 4847 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 4116 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.041 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.7° |
ω scans | h = −21→21 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −15→15 |
Tmin = 0.577, Tmax = 1.000 | l = −27→27 |
46115 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.041 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0141P)2 + 3.0137P] where P = (Fo2 + 2Fc2)/3 |
4847 reflections | (Δ/σ)max = 0.005 |
219 parameters | Δρmax = 0.92 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
[PtCl2(C2H7N)(C5H11N)] | V = 4751.2 (5) Å3 |
Mr = 396.21 | Z = 16 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 17.2910 (17) Å | µ = 12.22 mm−1 |
b = 12.5737 (5) Å | T = 100 K |
c = 21.8534 (5) Å | 0.3 × 0.1 × 0.05 mm |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 4847 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 4116 reflections with I > 2σ(I) |
Tmin = 0.577, Tmax = 1.000 | Rint = 0.041 |
46115 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.041 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.92 e Å−3 |
4847 reflections | Δρmin = −0.72 e Å−3 |
219 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. X-ray diffraction data were collected on an Agilent SuperNova diffractometer using mirror-monochromated Mo Kα radiation (λ = 0.71073 Å). Using OLEX2 (Dolomanov et al., 2009) the structures were solved by direct methods using SHELXS (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using OLEX2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.29677 (19) | 0.2586 (3) | 0.44488 (15) | 0.0166 (8) | |
H1A | 0.2670 | 0.2649 | 0.4834 | 0.020* | |
H1B | 0.3285 | 0.1931 | 0.4473 | 0.020* | |
C2 | 0.2409 (2) | 0.2498 (3) | 0.39119 (16) | 0.0225 (8) | |
H2A | 0.2704 | 0.2362 | 0.3532 | 0.027* | |
H2B | 0.2056 | 0.1889 | 0.3980 | 0.027* | |
C3 | 0.1937 (2) | 0.3505 (3) | 0.38370 (16) | 0.0236 (9) | |
H3A | 0.1591 | 0.3595 | 0.4194 | 0.028* | |
H3B | 0.1612 | 0.3449 | 0.3466 | 0.028* | |
C4 | 0.2469 (2) | 0.4464 (3) | 0.37824 (16) | 0.0242 (9) | |
H4A | 0.2765 | 0.4417 | 0.3396 | 0.029* | |
H4B | 0.2154 | 0.5122 | 0.3769 | 0.029* | |
C5 | 0.3028 (2) | 0.4524 (3) | 0.43185 (16) | 0.0198 (8) | |
H5A | 0.3385 | 0.5131 | 0.4257 | 0.024* | |
H5B | 0.2734 | 0.4652 | 0.4700 | 0.024* | |
C6 | 0.5815 (2) | 0.2868 (3) | 0.45023 (16) | 0.0258 (9) | |
H6A | 0.5610 | 0.2134 | 0.4528 | 0.031* | |
H6B | 0.6087 | 0.3026 | 0.4890 | 0.031* | |
C7 | 0.6381 (2) | 0.2938 (3) | 0.39770 (17) | 0.0285 (9) | |
H7A | 0.6121 | 0.2738 | 0.3596 | 0.043* | |
H7B | 0.6815 | 0.2454 | 0.4052 | 0.043* | |
H7C | 0.6575 | 0.3668 | 0.3943 | 0.043* | |
N1 | 0.34858 (15) | 0.3526 (2) | 0.43825 (12) | 0.0133 (6) | |
H1 | 0.3755 | 0.3436 | 0.4018 | 0.016* | |
N2 | 0.51662 (15) | 0.3616 (2) | 0.44271 (12) | 0.0143 (6) | |
H2C | 0.4943 | 0.3481 | 0.4053 | 0.017* | |
H2D | 0.5371 | 0.4291 | 0.4408 | 0.017* | |
Cl1 | 0.33257 (5) | 0.37675 (7) | 0.57835 (4) | 0.01687 (18) | |
Cl2 | 0.52002 (5) | 0.37554 (7) | 0.58450 (4) | 0.01634 (18) | |
Pt1 | 0.430069 (7) | 0.363713 (10) | 0.506495 (5) | 0.01013 (4) | |
C8 | 0.34304 (19) | 0.1193 (3) | 0.66174 (15) | 0.0181 (8) | |
H8A | 0.2985 | 0.1649 | 0.6728 | 0.022* | |
H8B | 0.3445 | 0.0589 | 0.6908 | 0.022* | |
C9 | 0.3317 (2) | 0.0769 (3) | 0.59713 (16) | 0.0205 (8) | |
H9A | 0.3244 | 0.1372 | 0.5685 | 0.025* | |
H9B | 0.2845 | 0.0323 | 0.5957 | 0.025* | |
C10 | 0.4012 (2) | 0.0111 (3) | 0.57703 (16) | 0.0222 (8) | |
H10A | 0.4049 | −0.0537 | 0.6026 | 0.027* | |
H10B | 0.3945 | −0.0111 | 0.5339 | 0.027* | |
C11 | 0.4749 (2) | 0.0762 (3) | 0.58336 (15) | 0.0192 (8) | |
H11A | 0.5200 | 0.0313 | 0.5728 | 0.023* | |
H11B | 0.4734 | 0.1366 | 0.5544 | 0.023* | |
C12 | 0.48393 (19) | 0.1180 (3) | 0.64813 (15) | 0.0176 (8) | |
H12A | 0.4905 | 0.0573 | 0.6765 | 0.021* | |
H12B | 0.5311 | 0.1624 | 0.6505 | 0.021* | |
C13 | 0.3470 (2) | 0.4609 (3) | 0.73897 (16) | 0.0260 (9) | |
H13A | 0.3434 | 0.5287 | 0.7161 | 0.031* | |
H13B | 0.3556 | 0.4782 | 0.7826 | 0.031* | |
C14 | 0.2713 (2) | 0.4009 (3) | 0.73257 (17) | 0.0318 (10) | |
H14A | 0.2752 | 0.3326 | 0.7539 | 0.048* | |
H14B | 0.2605 | 0.3884 | 0.6891 | 0.048* | |
H14C | 0.2293 | 0.4430 | 0.7505 | 0.048* | |
N3 | 0.41593 (14) | 0.1823 (2) | 0.66766 (12) | 0.0124 (6) | |
H3 | 0.4120 | 0.2382 | 0.6399 | 0.015* | |
N4 | 0.41404 (16) | 0.3988 (2) | 0.71569 (12) | 0.0172 (6) | |
H4C | 0.4583 | 0.4377 | 0.7226 | 0.021* | |
H4D | 0.4087 | 0.3914 | 0.6740 | 0.021* | |
Cl3 | 0.44578 (5) | 0.33064 (7) | 0.84693 (4) | 0.01915 (19) | |
Cl4 | 0.44297 (5) | 0.08527 (7) | 0.79815 (4) | 0.01935 (19) | |
Pt2 | 0.429206 (7) | 0.250441 (10) | 0.752744 (5) | 0.01126 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0172 (19) | 0.0157 (19) | 0.0169 (18) | −0.0011 (15) | −0.0015 (15) | −0.0009 (14) |
C2 | 0.018 (2) | 0.023 (2) | 0.026 (2) | −0.0051 (16) | −0.0043 (16) | −0.0045 (16) |
C3 | 0.0158 (19) | 0.034 (2) | 0.0208 (19) | −0.0004 (17) | −0.0046 (15) | 0.0037 (17) |
C4 | 0.021 (2) | 0.026 (2) | 0.025 (2) | −0.0021 (17) | −0.0107 (17) | 0.0106 (17) |
C5 | 0.0194 (19) | 0.0165 (19) | 0.0235 (19) | 0.0010 (16) | −0.0061 (16) | 0.0061 (16) |
C6 | 0.024 (2) | 0.035 (2) | 0.0185 (19) | 0.0158 (18) | −0.0031 (16) | 0.0002 (17) |
C7 | 0.017 (2) | 0.031 (2) | 0.038 (2) | 0.0032 (18) | 0.0026 (18) | −0.0068 (19) |
N1 | 0.0090 (14) | 0.0170 (16) | 0.0137 (14) | 0.0009 (12) | −0.0015 (11) | 0.0022 (12) |
N2 | 0.0124 (14) | 0.0164 (16) | 0.0143 (14) | −0.0021 (12) | −0.0002 (12) | 0.0003 (12) |
Cl1 | 0.0173 (4) | 0.0213 (5) | 0.0120 (4) | 0.0031 (4) | 0.0020 (3) | −0.0003 (3) |
Cl2 | 0.0165 (4) | 0.0206 (5) | 0.0120 (4) | −0.0024 (4) | −0.0041 (3) | 0.0006 (3) |
Pt1 | 0.01166 (7) | 0.01011 (7) | 0.00862 (7) | 0.00033 (5) | −0.00112 (5) | 0.00066 (5) |
C8 | 0.0149 (18) | 0.016 (2) | 0.0229 (19) | −0.0032 (15) | 0.0005 (15) | 0.0004 (15) |
C9 | 0.0211 (19) | 0.019 (2) | 0.022 (2) | −0.0031 (16) | −0.0046 (16) | −0.0041 (16) |
C10 | 0.033 (2) | 0.0152 (19) | 0.0185 (19) | −0.0004 (17) | −0.0039 (16) | −0.0029 (15) |
C11 | 0.024 (2) | 0.0165 (19) | 0.0168 (18) | 0.0038 (16) | 0.0028 (16) | −0.0014 (15) |
C12 | 0.0133 (17) | 0.022 (2) | 0.0178 (18) | 0.0014 (15) | 0.0032 (15) | −0.0007 (15) |
C13 | 0.043 (3) | 0.021 (2) | 0.0140 (18) | 0.0142 (19) | 0.0028 (17) | 0.0020 (16) |
C14 | 0.037 (2) | 0.040 (3) | 0.018 (2) | 0.018 (2) | 0.0031 (18) | 0.0072 (18) |
N3 | 0.0122 (14) | 0.0138 (15) | 0.0111 (14) | −0.0010 (12) | −0.0009 (11) | 0.0010 (11) |
N4 | 0.0243 (17) | 0.0165 (16) | 0.0109 (14) | −0.0013 (13) | 0.0016 (12) | 0.0021 (12) |
Cl3 | 0.0287 (5) | 0.0178 (4) | 0.0109 (4) | −0.0011 (4) | −0.0024 (4) | −0.0007 (3) |
Cl4 | 0.0296 (5) | 0.0149 (4) | 0.0136 (4) | 0.0055 (4) | −0.0001 (4) | 0.0034 (3) |
Pt2 | 0.01303 (8) | 0.01170 (7) | 0.00906 (7) | 0.00013 (6) | 0.00032 (5) | 0.00102 (5) |
C1—H1A | 0.9900 | C8—H8A | 0.9900 |
C1—H1B | 0.9900 | C8—H8B | 0.9900 |
C1—C2 | 1.524 (4) | C8—C9 | 1.522 (5) |
C1—N1 | 1.490 (4) | C8—N3 | 1.494 (4) |
C2—H2A | 0.9900 | C9—H9A | 0.9900 |
C2—H2B | 0.9900 | C9—H9B | 0.9900 |
C2—C3 | 1.515 (5) | C9—C10 | 1.523 (5) |
C3—H3A | 0.9900 | C10—H10A | 0.9900 |
C3—H3B | 0.9900 | C10—H10B | 0.9900 |
C3—C4 | 1.521 (5) | C10—C11 | 1.521 (5) |
C4—H4A | 0.9900 | C11—H11A | 0.9900 |
C4—H4B | 0.9900 | C11—H11B | 0.9900 |
C4—C5 | 1.521 (4) | C11—C12 | 1.518 (4) |
C5—H5A | 0.9900 | C12—H12A | 0.9900 |
C5—H5B | 0.9900 | C12—H12B | 0.9900 |
C5—N1 | 1.491 (4) | C12—N3 | 1.489 (4) |
C6—H6A | 0.9900 | C13—H13A | 0.9900 |
C6—H6B | 0.9900 | C13—H13B | 0.9900 |
C6—C7 | 1.512 (5) | C13—C14 | 1.517 (5) |
C6—N2 | 1.473 (4) | C13—N4 | 1.488 (4) |
C7—H7A | 0.9800 | C14—H14A | 0.9800 |
C7—H7B | 0.9800 | C14—H14B | 0.9800 |
C7—H7C | 0.9800 | C14—H14C | 0.9800 |
N1—H1 | 0.9300 | N3—H3 | 0.9300 |
N1—Pt1 | 2.057 (3) | N3—Pt2 | 2.060 (3) |
N2—H2C | 0.9200 | N4—H4C | 0.9200 |
N2—H2D | 0.9200 | N4—H4D | 0.9200 |
N2—Pt1 | 2.045 (3) | N4—Pt2 | 2.050 (3) |
Cl1—Pt1 | 2.3097 (8) | Cl3—Pt2 | 2.3099 (8) |
Cl2—Pt1 | 2.3124 (8) | Cl4—Pt2 | 2.3140 (8) |
H1A—C1—H1B | 108.0 | H8A—C8—H8B | 107.9 |
C2—C1—H1A | 109.4 | C9—C8—H8A | 109.2 |
C2—C1—H1B | 109.4 | C9—C8—H8B | 109.2 |
N1—C1—H1A | 109.4 | N3—C8—H8A | 109.2 |
N1—C1—H1B | 109.4 | N3—C8—H8B | 109.2 |
N1—C1—C2 | 111.3 (3) | N3—C8—C9 | 112.0 (3) |
C1—C2—H2A | 109.4 | C8—C9—H9A | 109.5 |
C1—C2—H2B | 109.4 | C8—C9—H9B | 109.5 |
H2A—C2—H2B | 108.0 | C8—C9—C10 | 110.9 (3) |
C3—C2—C1 | 111.4 (3) | H9A—C9—H9B | 108.1 |
C3—C2—H2A | 109.4 | C10—C9—H9A | 109.5 |
C3—C2—H2B | 109.4 | C10—C9—H9B | 109.5 |
C2—C3—H3A | 109.6 | C9—C10—H10A | 109.6 |
C2—C3—H3B | 109.6 | C9—C10—H10B | 109.6 |
C2—C3—C4 | 110.2 (3) | H10A—C10—H10B | 108.2 |
H3A—C3—H3B | 108.1 | C11—C10—C9 | 110.1 (3) |
C4—C3—H3A | 109.6 | C11—C10—H10A | 109.6 |
C4—C3—H3B | 109.6 | C11—C10—H10B | 109.6 |
C3—C4—H4A | 109.4 | C10—C11—H11A | 109.5 |
C3—C4—H4B | 109.4 | C10—C11—H11B | 109.5 |
H4A—C4—H4B | 108.0 | H11A—C11—H11B | 108.0 |
C5—C4—C3 | 111.3 (3) | C12—C11—C10 | 110.9 (3) |
C5—C4—H4A | 109.4 | C12—C11—H11A | 109.5 |
C5—C4—H4B | 109.4 | C12—C11—H11B | 109.5 |
C4—C5—H5A | 109.3 | C11—C12—H12A | 109.2 |
C4—C5—H5B | 109.3 | C11—C12—H12B | 109.2 |
H5A—C5—H5B | 108.0 | H12A—C12—H12B | 107.9 |
N1—C5—C4 | 111.6 (3) | N3—C12—C11 | 112.0 (3) |
N1—C5—H5A | 109.3 | N3—C12—H12A | 109.2 |
N1—C5—H5B | 109.3 | N3—C12—H12B | 109.2 |
H6A—C6—H6B | 107.9 | H13A—C13—H13B | 107.9 |
C7—C6—H6A | 109.3 | C14—C13—H13A | 109.1 |
C7—C6—H6B | 109.3 | C14—C13—H13B | 109.1 |
N2—C6—H6A | 109.3 | N4—C13—H13A | 109.1 |
N2—C6—H6B | 109.3 | N4—C13—H13B | 109.1 |
N2—C6—C7 | 111.8 (3) | N4—C13—C14 | 112.3 (3) |
C6—C7—H7A | 109.5 | C13—C14—H14A | 109.5 |
C6—C7—H7B | 109.5 | C13—C14—H14B | 109.5 |
C6—C7—H7C | 109.5 | C13—C14—H14C | 109.5 |
H7A—C7—H7B | 109.5 | H14A—C14—H14B | 109.5 |
H7A—C7—H7C | 109.5 | H14A—C14—H14C | 109.5 |
H7B—C7—H7C | 109.5 | H14B—C14—H14C | 109.5 |
C1—N1—C5 | 111.0 (2) | C8—N3—H3 | 106.4 |
C1—N1—H1 | 106.7 | C8—N3—Pt2 | 113.11 (19) |
C1—N1—Pt1 | 113.30 (19) | C12—N3—C8 | 110.7 (3) |
C5—N1—H1 | 106.7 | C12—N3—H3 | 106.4 |
C5—N1—Pt1 | 112.0 (2) | C12—N3—Pt2 | 113.35 (19) |
Pt1—N1—H1 | 106.7 | Pt2—N3—H3 | 106.4 |
C6—N2—H2C | 107.5 | C13—N4—H4C | 108.2 |
C6—N2—H2D | 107.5 | C13—N4—H4D | 108.2 |
C6—N2—Pt1 | 119.3 (2) | C13—N4—Pt2 | 116.2 (2) |
H2C—N2—H2D | 107.0 | H4C—N4—H4D | 107.4 |
Pt1—N2—H2C | 107.5 | Pt2—N4—H4C | 108.2 |
Pt1—N2—H2D | 107.5 | Pt2—N4—H4D | 108.2 |
N1—Pt1—Cl1 | 89.88 (8) | N3—Pt2—Cl3 | 178.47 (8) |
N1—Pt1—Cl2 | 178.98 (8) | N3—Pt2—Cl4 | 91.44 (8) |
N2—Pt1—N1 | 90.36 (11) | N4—Pt2—N3 | 90.44 (11) |
N2—Pt1—Cl1 | 176.67 (8) | N4—Pt2—Cl3 | 88.32 (8) |
N2—Pt1—Cl2 | 90.64 (8) | N4—Pt2—Cl4 | 177.49 (8) |
Cl1—Pt1—Cl2 | 89.15 (3) | Cl3—Pt2—Cl4 | 89.82 (3) |
C1—C2—C3—C4 | 54.6 (4) | C8—C9—C10—C11 | −55.0 (4) |
C1—N1—Pt1—N2 | 122.5 (2) | C8—N3—Pt2—N4 | −111.5 (2) |
C1—N1—Pt1—Cl1 | −60.8 (2) | C8—N3—Pt2—Cl4 | 66.8 (2) |
C2—C1—N1—C5 | 56.7 (4) | C9—C8—N3—C12 | −55.9 (4) |
C2—C1—N1—Pt1 | −176.4 (2) | C9—C8—N3—Pt2 | 175.7 (2) |
C2—C3—C4—C5 | −54.3 (4) | C9—C10—C11—C12 | 55.4 (4) |
C3—C4—C5—N1 | 55.7 (4) | C10—C11—C12—N3 | −56.5 (4) |
C4—C5—N1—C1 | −56.6 (4) | C11—C12—N3—C8 | 56.1 (4) |
C4—C5—N1—Pt1 | 175.7 (2) | C11—C12—N3—Pt2 | −175.5 (2) |
C5—N1—Pt1—N2 | −111.0 (2) | C12—N3—Pt2—N4 | 121.4 (2) |
C5—N1—Pt1—Cl1 | 65.6 (2) | C12—N3—Pt2—Cl4 | −60.2 (2) |
C6—N2—Pt1—N1 | −129.6 (3) | C13—N4—Pt2—N3 | 119.2 (2) |
C6—N2—Pt1—Cl2 | 50.2 (2) | C13—N4—Pt2—Cl3 | −61.8 (2) |
C7—C6—N2—Pt1 | 177.9 (2) | C14—C13—N4—Pt2 | −55.2 (3) |
N1—C1—C2—C3 | −56.2 (4) | N3—C8—C9—C10 | 55.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl3i | 0.93 | 2.78 | 3.481 (3) | 133 |
N1—H1···Cl4i | 0.93 | 2.70 | 3.556 (3) | 153 |
N2—H2C···Cl3i | 0.92 | 2.72 | 3.424 (3) | 134 |
N2—H2C···Cl4i | 0.92 | 2.64 | 3.471 (3) | 151 |
N2—H2D···Cl2ii | 0.92 | 2.70 | 3.417 (3) | 135 |
N3—H3···Cl1 | 0.93 | 2.59 | 3.445 (3) | 152 |
N3—H3···Cl2 | 0.93 | 2.82 | 3.528 (3) | 134 |
N4—H4C···Cl4iii | 0.92 | 2.56 | 3.421 (3) | 155 |
N4—H4D···Cl1 | 0.92 | 2.48 | 3.327 (3) | 154 |
N4—H4D···Cl2 | 0.92 | 2.75 | 3.415 (3) | 130 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y+1/2, −z+3/2. |
[PtCl2(C5H11N)(C7H9NO)] | Z = 2 |
Mr = 474.29 | F(000) = 452 |
Triclinic, P1 | Dx = 2.162 Mg m−3 |
a = 6.3800 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9376 (9) Å | Cell parameters from 3469 reflections |
c = 12.7899 (8) Å | θ = 3.3–29.0° |
α = 108.733 (7)° | µ = 9.99 mm−1 |
β = 91.463 (5)° | T = 100 K |
γ = 106.893 (7)° | Block, yellow |
V = 728.46 (9) Å3 | 0.35 × 0.15 × 0.1 mm |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 2911 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2762 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 3.3° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −11→12 |
Tmin = 0.493, Tmax = 1.000 | l = −15→15 |
5750 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.038 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0085P)2] where P = (Fo2 + 2Fc2)/3 |
2911 reflections | (Δ/σ)max = 0.005 |
164 parameters | Δρmax = 1.07 e Å−3 |
0 restraints | Δρmin = −1.08 e Å−3 |
[PtCl2(C5H11N)(C7H9NO)] | γ = 106.893 (7)° |
Mr = 474.29 | V = 728.46 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.3800 (4) Å | Mo Kα radiation |
b = 9.9376 (9) Å | µ = 9.99 mm−1 |
c = 12.7899 (8) Å | T = 100 K |
α = 108.733 (7)° | 0.35 × 0.15 × 0.1 mm |
β = 91.463 (5)° |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 2911 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2762 reflections with I > 2σ(I) |
Tmin = 0.493, Tmax = 1.000 | Rint = 0.027 |
5750 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.038 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.07 e Å−3 |
2911 reflections | Δρmin = −1.08 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. X-ray diffraction data were collected on an Agilent SuperNova diffractometer using mirror-monochromated Mo Kα radiation (λ = 0.71073 Å). Using OLEX2 (Dolomanov et al., 2009) the structures were solved by direct methods using SHELXS (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using OLEX2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1098 (6) | 0.1280 (4) | 0.3890 (3) | 0.0108 (7) | |
C2 | 0.2058 (6) | 0.0317 (4) | 0.4135 (3) | 0.0143 (8) | |
H2 | 0.3426 | 0.0699 | 0.4606 | 0.017* | |
C3 | 0.1005 (6) | −0.1205 (4) | 0.3685 (3) | 0.0161 (8) | |
H3 | 0.1653 | −0.1872 | 0.3853 | 0.019* | |
C4 | −0.0980 (6) | −0.1775 (4) | 0.2993 (3) | 0.0168 (8) | |
H4 | −0.1684 | −0.2827 | 0.2684 | 0.020* | |
C5 | −0.1949 (6) | −0.0789 (4) | 0.2751 (3) | 0.0123 (8) | |
C6 | −0.0902 (6) | 0.0746 (4) | 0.3195 (3) | 0.0120 (7) | |
H6 | −0.1536 | 0.1420 | 0.3028 | 0.014* | |
C7 | −0.4896 (6) | −0.0485 (4) | 0.1755 (3) | 0.0205 (9) | |
H7A | −0.6284 | −0.1082 | 0.1261 | 0.031* | |
H7B | −0.3872 | 0.0067 | 0.1365 | 0.031* | |
H7C | −0.5191 | 0.0225 | 0.2423 | 0.031* | |
C8 | 0.2589 (6) | 0.2151 (4) | 0.1233 (3) | 0.0134 (8) | |
H8A | 0.1962 | 0.1245 | 0.1434 | 0.016* | |
H8B | 0.4028 | 0.2128 | 0.0969 | 0.016* | |
C9 | 0.1038 (6) | 0.2120 (4) | 0.0299 (3) | 0.0158 (8) | |
H9A | −0.0451 | 0.2023 | 0.0532 | 0.019* | |
H9B | 0.0917 | 0.1235 | −0.0366 | 0.019* | |
C10 | 0.1847 (6) | 0.3531 (4) | 0.0000 (3) | 0.0163 (8) | |
H10A | 0.0746 | 0.3510 | −0.0570 | 0.020* | |
H10B | 0.3252 | 0.3569 | −0.0320 | 0.020* | |
C11 | 0.2204 (6) | 0.4918 (4) | 0.1030 (3) | 0.0157 (8) | |
H11A | 0.2841 | 0.5826 | 0.0833 | 0.019* | |
H11B | 0.0762 | 0.4941 | 0.1290 | 0.019* | |
C12 | 0.3747 (6) | 0.4934 (4) | 0.1967 (3) | 0.0139 (8) | |
H12A | 0.5244 | 0.5046 | 0.1741 | 0.017* | |
H12B | 0.3851 | 0.5807 | 0.2638 | 0.017* | |
N1 | 0.2228 (4) | 0.2887 (3) | 0.4335 (2) | 0.0104 (6) | |
H1A | 0.2675 | 0.3169 | 0.5085 | 0.013* | |
H1B | 0.1261 | 0.3385 | 0.4249 | 0.013* | |
N2 | 0.2950 (4) | 0.3517 (3) | 0.2247 (2) | 0.0097 (6) | |
H2A | 0.1574 | 0.3477 | 0.2484 | 0.012* | |
O1 | −0.3933 (4) | −0.1455 (3) | 0.2071 (2) | 0.0186 (6) | |
Cl1 | 0.71152 (14) | 0.34972 (10) | 0.50180 (7) | 0.01352 (18) | |
Cl2 | 0.80064 (14) | 0.40292 (10) | 0.26551 (7) | 0.01604 (19) | |
Pt1 | 0.49406 (2) | 0.349543 (15) | 0.354443 (10) | 0.00847 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0143 (18) | 0.0085 (19) | 0.0086 (16) | 0.0024 (15) | 0.0068 (14) | 0.0022 (14) |
C2 | 0.0137 (19) | 0.017 (2) | 0.0158 (18) | 0.0063 (17) | 0.0030 (15) | 0.0088 (17) |
C3 | 0.022 (2) | 0.016 (2) | 0.0177 (19) | 0.0107 (18) | 0.0080 (16) | 0.0109 (17) |
C4 | 0.022 (2) | 0.011 (2) | 0.0177 (19) | 0.0061 (17) | 0.0073 (17) | 0.0052 (16) |
C5 | 0.0107 (18) | 0.012 (2) | 0.0136 (18) | 0.0038 (16) | 0.0051 (15) | 0.0040 (16) |
C6 | 0.0158 (19) | 0.0110 (19) | 0.0111 (17) | 0.0065 (16) | 0.0034 (15) | 0.0042 (15) |
C7 | 0.018 (2) | 0.020 (2) | 0.020 (2) | 0.0061 (18) | −0.0034 (16) | 0.0021 (17) |
C8 | 0.0144 (19) | 0.0094 (19) | 0.0129 (17) | 0.0020 (16) | −0.0008 (15) | 0.0010 (15) |
C9 | 0.0155 (19) | 0.015 (2) | 0.0149 (18) | 0.0023 (17) | −0.0013 (15) | 0.0051 (16) |
C10 | 0.0165 (19) | 0.021 (2) | 0.0146 (18) | 0.0081 (17) | 0.0021 (16) | 0.0086 (17) |
C11 | 0.0149 (19) | 0.018 (2) | 0.0192 (19) | 0.0061 (17) | 0.0075 (16) | 0.0124 (17) |
C12 | 0.0146 (19) | 0.012 (2) | 0.0166 (18) | 0.0051 (16) | 0.0035 (15) | 0.0054 (16) |
N1 | 0.0112 (15) | 0.0113 (16) | 0.0081 (14) | 0.0040 (13) | 0.0016 (12) | 0.0020 (13) |
N2 | 0.0070 (14) | 0.0108 (16) | 0.0133 (15) | 0.0042 (13) | 0.0037 (12) | 0.0052 (13) |
O1 | 0.0163 (14) | 0.0114 (14) | 0.0239 (14) | 0.0036 (12) | −0.0038 (11) | 0.0018 (12) |
Cl1 | 0.0139 (4) | 0.0135 (5) | 0.0125 (4) | 0.0063 (4) | −0.0016 (3) | 0.0020 (4) |
Cl2 | 0.0100 (4) | 0.0201 (5) | 0.0233 (5) | 0.0065 (4) | 0.0069 (4) | 0.0124 (4) |
Pt1 | 0.00807 (8) | 0.00719 (8) | 0.00964 (7) | 0.00287 (6) | 0.00125 (5) | 0.00180 (6) |
C1—C2 | 1.383 (4) | C9—H9A | 0.9900 |
C1—C6 | 1.395 (5) | C9—H9B | 0.9900 |
C1—N1 | 1.456 (4) | C9—C10 | 1.521 (5) |
C2—H2 | 0.9500 | C10—H10A | 0.9900 |
C2—C3 | 1.379 (5) | C10—H10B | 0.9900 |
C3—H3 | 0.9500 | C10—C11 | 1.525 (5) |
C3—C4 | 1.383 (5) | C11—H11A | 0.9900 |
C4—H4 | 0.9500 | C11—H11B | 0.9900 |
C4—C5 | 1.406 (5) | C11—C12 | 1.525 (5) |
C5—C6 | 1.389 (5) | C12—H12A | 0.9900 |
C5—O1 | 1.373 (4) | C12—H12B | 0.9900 |
C6—H6 | 0.9500 | C12—N2 | 1.512 (4) |
C7—H7A | 0.9800 | N1—H1A | 0.9200 |
C7—H7B | 0.9800 | N1—H1B | 0.9200 |
C7—H7C | 0.9800 | N1—Pt1 | 2.063 (3) |
C7—O1 | 1.432 (4) | N2—H2A | 0.9300 |
C8—H8A | 0.9900 | N2—Pt1 | 2.074 (3) |
C8—H8B | 0.9900 | Cl1—Pt1 | 2.3109 (8) |
C8—C9 | 1.518 (4) | Cl2—Pt1 | 2.3020 (8) |
C8—N2 | 1.500 (4) | ||
C2—C1—C6 | 121.5 (3) | C9—C10—H10B | 109.6 |
C2—C1—N1 | 119.5 (3) | C9—C10—C11 | 110.4 (3) |
C6—C1—N1 | 118.9 (3) | H10A—C10—H10B | 108.1 |
C1—C2—H2 | 120.4 | C11—C10—H10A | 109.6 |
C3—C2—C1 | 119.1 (3) | C11—C10—H10B | 109.6 |
C3—C2—H2 | 120.4 | C10—C11—H11A | 109.3 |
C2—C3—H3 | 119.5 | C10—C11—H11B | 109.3 |
C2—C3—C4 | 121.0 (3) | H11A—C11—H11B | 108.0 |
C4—C3—H3 | 119.5 | C12—C11—C10 | 111.5 (3) |
C3—C4—H4 | 120.2 | C12—C11—H11A | 109.3 |
C3—C4—C5 | 119.6 (4) | C12—C11—H11B | 109.3 |
C5—C4—H4 | 120.2 | C11—C12—H12A | 109.2 |
C6—C5—C4 | 120.0 (3) | C11—C12—H12B | 109.2 |
O1—C5—C4 | 115.5 (3) | H12A—C12—H12B | 107.9 |
O1—C5—C6 | 124.5 (3) | N2—C12—C11 | 111.9 (3) |
C1—C6—H6 | 120.6 | N2—C12—H12A | 109.2 |
C5—C6—C1 | 118.8 (3) | N2—C12—H12B | 109.2 |
C5—C6—H6 | 120.6 | C1—N1—H1A | 109.3 |
H7A—C7—H7B | 109.5 | C1—N1—H1B | 109.3 |
H7A—C7—H7C | 109.5 | C1—N1—Pt1 | 111.7 (2) |
H7B—C7—H7C | 109.5 | H1A—N1—H1B | 107.9 |
O1—C7—H7A | 109.5 | Pt1—N1—H1A | 109.3 |
O1—C7—H7B | 109.5 | Pt1—N1—H1B | 109.3 |
O1—C7—H7C | 109.5 | C8—N2—C12 | 111.3 (3) |
H8A—C8—H8B | 107.9 | C8—N2—H2A | 106.6 |
C9—C8—H8A | 109.2 | C8—N2—Pt1 | 111.67 (19) |
C9—C8—H8B | 109.2 | C12—N2—H2A | 106.6 |
N2—C8—H8A | 109.2 | C12—N2—Pt1 | 113.7 (2) |
N2—C8—H8B | 109.2 | Pt1—N2—H2A | 106.6 |
N2—C8—C9 | 112.0 (3) | C5—O1—C7 | 116.7 (3) |
C8—C9—H9A | 109.3 | N1—Pt1—N2 | 91.00 (11) |
C8—C9—H9B | 109.3 | N1—Pt1—Cl1 | 88.07 (8) |
C8—C9—C10 | 111.7 (3) | N1—Pt1—Cl2 | 176.25 (8) |
H9A—C9—H9B | 107.9 | N2—Pt1—Cl1 | 178.74 (8) |
C10—C9—H9A | 109.3 | N2—Pt1—Cl2 | 90.78 (8) |
C10—C9—H9B | 109.3 | Cl2—Pt1—Cl1 | 90.19 (3) |
C9—C10—H10A | 109.6 | ||
C1—C2—C3—C4 | 0.3 (5) | C8—N2—Pt1—N1 | −103.2 (2) |
C1—N1—Pt1—N2 | 82.6 (2) | C8—N2—Pt1—Cl2 | 73.5 (2) |
C1—N1—Pt1—Cl1 | −98.3 (2) | C9—C8—N2—C12 | −54.7 (4) |
C2—C1—C6—C5 | 0.6 (5) | C9—C8—N2—Pt1 | 177.1 (2) |
C2—C1—N1—Pt1 | 72.6 (3) | C9—C10—C11—C12 | 54.6 (4) |
C2—C3—C4—C5 | −0.5 (5) | C10—C11—C12—N2 | −54.7 (4) |
C3—C4—C5—C6 | 0.7 (5) | C11—C12—N2—C8 | 54.3 (4) |
C3—C4—C5—O1 | −179.1 (3) | C11—C12—N2—Pt1 | −178.5 (2) |
C4—C5—C6—C1 | −0.8 (5) | C12—N2—Pt1—N1 | 129.8 (2) |
C4—C5—O1—C7 | −176.4 (3) | C12—N2—Pt1—Cl2 | −53.5 (2) |
C6—C1—C2—C3 | −0.4 (5) | N1—C1—C2—C3 | −178.3 (3) |
C6—C1—N1—Pt1 | −105.3 (3) | N1—C1—C6—C5 | 178.5 (3) |
C6—C5—O1—C7 | 3.8 (5) | N2—C8—C9—C10 | 55.6 (4) |
C8—C9—C10—C11 | −55.0 (4) | O1—C5—C6—C1 | 179.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Cl1i | 0.92 | 2.79 | 3.312 (3) | 117 |
N2—H2A···Cl2ii | 0.93 | 2.49 | 3.365 (3) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z. |
[PtCl2(C5H11N)(C9H7N)] | F(000) = 912 |
Mr = 480.29 | Dx = 2.128 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.8920 (19) Å | Cell parameters from 12819 reflections |
b = 11.3011 (8) Å | θ = 3.3–30.0° |
c = 13.199 (3) Å | µ = 9.70 mm−1 |
β = 112.68 (2)° | T = 100 K |
V = 1499.0 (4) Å3 | Block, yellow |
Z = 4 | 0.35 × 0.35 × 0.2 mm |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 3072 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2779 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.076 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.8° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −14→14 |
Tmin = 0.304, Tmax = 1.000 | l = −16→16 |
30516 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0231P)2 + 6.243P] where P = (Fo2 + 2Fc2)/3 |
3072 reflections | (Δ/σ)max = 0.001 |
172 parameters | Δρmax = 2.14 e Å−3 |
0 restraints | Δρmin = −2.09 e Å−3 |
[PtCl2(C5H11N)(C9H7N)] | V = 1499.0 (4) Å3 |
Mr = 480.29 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.8920 (19) Å | µ = 9.70 mm−1 |
b = 11.3011 (8) Å | T = 100 K |
c = 13.199 (3) Å | 0.35 × 0.35 × 0.2 mm |
β = 112.68 (2)° |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 3072 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2779 reflections with I > 2σ(I) |
Tmin = 0.304, Tmax = 1.000 | Rint = 0.076 |
30516 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.07 | Δρmax = 2.14 e Å−3 |
3072 reflections | Δρmin = −2.09 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. X-ray diffraction data were collected on an Agilent SuperNova diffractometer using mirror-monochromated Mo Kα radiation (λ = 0.71073 Å). Using OLEX2 (Dolomanov et al., 2009) the structures were solved by direct methods using SHELXS (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using OLEX2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5797 (4) | 0.5091 (4) | 0.2663 (4) | 0.0186 (10) | |
H1A | 0.5345 | 0.5561 | 0.1987 | 0.022* | |
H1B | 0.5227 | 0.4401 | 0.2640 | 0.022* | |
C2 | 0.5947 (5) | 0.5842 (4) | 0.3650 (4) | 0.0190 (10) | |
H2A | 0.5055 | 0.6064 | 0.3620 | 0.023* | |
H2B | 0.6428 | 0.6579 | 0.3628 | 0.023* | |
C3 | 0.6700 (5) | 0.5195 (5) | 0.4719 (4) | 0.0227 (10) | |
H3A | 0.6840 | 0.5730 | 0.5347 | 0.027* | |
H3B | 0.6174 | 0.4507 | 0.4786 | 0.027* | |
C4 | 0.8030 (4) | 0.4780 (4) | 0.4739 (4) | 0.0196 (10) | |
H4A | 0.8486 | 0.4311 | 0.5415 | 0.024* | |
H4B | 0.8590 | 0.5477 | 0.4764 | 0.024* | |
C5 | 0.7890 (5) | 0.4026 (5) | 0.3741 (4) | 0.0178 (9) | |
H5A | 0.8786 | 0.3825 | 0.3767 | 0.021* | |
H5B | 0.7430 | 0.3278 | 0.3768 | 0.021* | |
C6 | 0.6942 (5) | 0.5850 (4) | 0.0008 (4) | 0.0160 (9) | |
H6 | 0.6001 | 0.5786 | −0.0246 | 0.019* | |
C7 | 0.7480 (5) | 0.6747 (4) | −0.0421 (4) | 0.0226 (10) | |
H7 | 0.6917 | 0.7266 | −0.0969 | 0.027* | |
C8 | 0.8842 (5) | 0.6866 (4) | −0.0034 (5) | 0.0256 (11) | |
H8 | 0.9227 | 0.7470 | −0.0317 | 0.031* | |
C9 | 0.9654 (5) | 0.6099 (4) | 0.0772 (4) | 0.0212 (11) | |
C10 | 1.1065 (5) | 0.6171 (5) | 0.1218 (5) | 0.0286 (13) | |
H10 | 1.1488 | 0.6779 | 0.0974 | 0.034* | |
C11 | 1.1816 (5) | 0.5394 (6) | 0.1983 (5) | 0.0354 (15) | |
H11 | 1.2758 | 0.5464 | 0.2277 | 0.043* | |
C12 | 1.1207 (5) | 0.4480 (5) | 0.2346 (4) | 0.0284 (12) | |
H12 | 1.1748 | 0.3936 | 0.2881 | 0.034* | |
C13 | 0.9851 (4) | 0.4358 (5) | 0.1944 (4) | 0.0205 (10) | |
H13 | 0.9454 | 0.3733 | 0.2191 | 0.025* | |
C14 | 0.9054 (4) | 0.5175 (4) | 0.1159 (4) | 0.0169 (9) | |
Cl1 | 0.58542 (10) | 0.21935 (10) | 0.18339 (9) | 0.0174 (2) | |
Cl2 | 0.62666 (10) | 0.28692 (10) | −0.04494 (9) | 0.0166 (2) | |
N1 | 0.7119 (3) | 0.4659 (3) | 0.2681 (3) | 0.0128 (7) | |
H1 | 0.7608 | 0.5329 | 0.2668 | 0.015* | |
N2 | 0.7684 (4) | 0.5081 (3) | 0.0756 (3) | 0.0150 (8) | |
Pt1 | 0.679720 (15) | 0.374755 (15) | 0.125207 (13) | 0.01080 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.015 (2) | 0.023 (3) | 0.017 (2) | 0.0043 (19) | 0.0053 (18) | 0.001 (2) |
C2 | 0.019 (2) | 0.009 (2) | 0.025 (3) | −0.0012 (18) | 0.0049 (19) | −0.007 (2) |
C3 | 0.028 (3) | 0.021 (3) | 0.018 (2) | −0.003 (2) | 0.009 (2) | −0.003 (2) |
C4 | 0.020 (2) | 0.018 (2) | 0.014 (2) | −0.0017 (19) | −0.0015 (18) | −0.0008 (19) |
C5 | 0.020 (2) | 0.020 (2) | 0.011 (2) | −0.001 (2) | 0.0039 (17) | 0.0043 (19) |
C6 | 0.021 (2) | 0.015 (2) | 0.015 (2) | 0.0020 (19) | 0.0095 (18) | −0.0008 (19) |
C7 | 0.034 (3) | 0.012 (2) | 0.029 (3) | 0.001 (2) | 0.020 (2) | 0.001 (2) |
C8 | 0.041 (3) | 0.013 (2) | 0.035 (3) | −0.008 (2) | 0.028 (2) | −0.009 (2) |
C9 | 0.023 (2) | 0.024 (3) | 0.024 (3) | −0.007 (2) | 0.016 (2) | −0.011 (2) |
C10 | 0.030 (3) | 0.031 (3) | 0.034 (3) | −0.015 (2) | 0.022 (3) | −0.022 (2) |
C11 | 0.018 (2) | 0.054 (4) | 0.037 (3) | −0.013 (3) | 0.014 (2) | −0.029 (3) |
C12 | 0.016 (2) | 0.046 (4) | 0.020 (3) | 0.001 (2) | 0.003 (2) | −0.010 (2) |
C13 | 0.015 (2) | 0.029 (3) | 0.016 (2) | 0.000 (2) | 0.0052 (18) | −0.003 (2) |
C14 | 0.014 (2) | 0.020 (2) | 0.018 (2) | −0.0049 (18) | 0.0077 (18) | −0.011 (2) |
Cl1 | 0.0213 (5) | 0.0139 (5) | 0.0194 (5) | −0.0038 (4) | 0.0104 (4) | 0.0008 (4) |
Cl2 | 0.0193 (5) | 0.0161 (5) | 0.0134 (5) | −0.0015 (4) | 0.0052 (4) | −0.0014 (4) |
N1 | 0.0122 (17) | 0.0103 (18) | 0.0154 (18) | −0.0001 (14) | 0.0048 (14) | 0.0012 (15) |
N2 | 0.0147 (17) | 0.0141 (19) | 0.0153 (18) | −0.0013 (15) | 0.0049 (15) | −0.0027 (16) |
Pt1 | 0.01041 (10) | 0.01048 (11) | 0.01166 (11) | −0.00040 (6) | 0.00443 (7) | 0.00026 (6) |
C1—H1A | 0.9900 | C7—C8 | 1.376 (7) |
C1—H1B | 0.9900 | C8—H8 | 0.9500 |
C1—C2 | 1.510 (6) | C8—C9 | 1.393 (8) |
C1—N1 | 1.512 (5) | C9—C10 | 1.421 (7) |
C2—H2A | 0.9900 | C9—C14 | 1.426 (7) |
C2—H2B | 0.9900 | C10—H10 | 0.9500 |
C2—C3 | 1.518 (7) | C10—C11 | 1.350 (9) |
C3—H3A | 0.9900 | C11—H11 | 0.9500 |
C3—H3B | 0.9900 | C11—C12 | 1.408 (8) |
C3—C4 | 1.512 (7) | C12—H12 | 0.9500 |
C4—H4A | 0.9900 | C12—C13 | 1.371 (6) |
C4—H4B | 0.9900 | C13—H13 | 0.9500 |
C4—C5 | 1.526 (7) | C13—C14 | 1.409 (7) |
C5—H5A | 0.9900 | C14—N2 | 1.381 (5) |
C5—H5B | 0.9900 | Cl1—Pt1 | 2.3102 (11) |
C5—N1 | 1.506 (6) | Cl2—Pt1 | 2.3155 (12) |
C6—H6 | 0.9500 | N1—H1 | 0.9300 |
C6—C7 | 1.396 (7) | N1—Pt1 | 2.057 (4) |
C6—N2 | 1.330 (6) | N2—Pt1 | 2.029 (4) |
C7—H7 | 0.9500 | ||
H1A—C1—H1B | 107.8 | C7—C8—H8 | 120.0 |
C2—C1—H1A | 109.1 | C7—C8—C9 | 119.9 (5) |
C2—C1—H1B | 109.1 | C9—C8—H8 | 120.0 |
C2—C1—N1 | 112.5 (4) | C8—C9—C10 | 123.2 (5) |
N1—C1—H1A | 109.1 | C8—C9—C14 | 119.0 (4) |
N1—C1—H1B | 109.1 | C10—C9—C14 | 117.8 (5) |
C1—C2—H2A | 109.3 | C9—C10—H10 | 119.4 |
C1—C2—H2B | 109.3 | C11—C10—C9 | 121.3 (5) |
C1—C2—C3 | 111.8 (4) | C11—C10—H10 | 119.4 |
H2A—C2—H2B | 107.9 | C10—C11—H11 | 119.9 |
C3—C2—H2A | 109.3 | C10—C11—C12 | 120.2 (5) |
C3—C2—H2B | 109.3 | C12—C11—H11 | 119.9 |
C2—C3—H3A | 109.7 | C11—C12—H12 | 119.3 |
C2—C3—H3B | 109.7 | C13—C12—C11 | 121.4 (5) |
H3A—C3—H3B | 108.2 | C13—C12—H12 | 119.3 |
C4—C3—C2 | 109.7 (4) | C12—C13—H13 | 120.5 |
C4—C3—H3A | 109.7 | C12—C13—C14 | 119.1 (5) |
C4—C3—H3B | 109.7 | C14—C13—H13 | 120.5 |
C3—C4—H4A | 109.1 | C13—C14—C9 | 120.4 (4) |
C3—C4—H4B | 109.1 | N2—C14—C9 | 119.7 (4) |
C3—C4—C5 | 112.4 (4) | N2—C14—C13 | 120.0 (4) |
H4A—C4—H4B | 107.9 | C1—N1—H1 | 106.6 |
C5—C4—H4A | 109.1 | C1—N1—Pt1 | 108.8 (3) |
C5—C4—H4B | 109.1 | C5—N1—C1 | 110.8 (3) |
C4—C5—H5A | 109.3 | C5—N1—H1 | 106.6 |
C4—C5—H5B | 109.3 | C5—N1—Pt1 | 116.8 (3) |
H5A—C5—H5B | 107.9 | Pt1—N1—H1 | 106.6 |
N1—C5—C4 | 111.8 (4) | C6—N2—C14 | 119.5 (4) |
N1—C5—H5A | 109.3 | C6—N2—Pt1 | 119.7 (3) |
N1—C5—H5B | 109.3 | C14—N2—Pt1 | 120.7 (3) |
C7—C6—H6 | 118.5 | Cl1—Pt1—Cl2 | 91.14 (4) |
N2—C6—H6 | 118.5 | N1—Pt1—Cl1 | 90.92 (11) |
N2—C6—C7 | 123.1 (4) | N1—Pt1—Cl2 | 173.98 (10) |
C6—C7—H7 | 120.6 | N2—Pt1—Cl1 | 178.04 (11) |
C8—C7—C6 | 118.8 (5) | N2—Pt1—Cl2 | 88.70 (11) |
C8—C7—H7 | 120.6 | N2—Pt1—N1 | 89.43 (15) |
C1—C2—C3—C4 | 55.2 (5) | C8—C9—C14—C13 | 177.6 (4) |
C1—N1—Pt1—Cl1 | −71.7 (3) | C8—C9—C14—N2 | −2.2 (7) |
C1—N1—Pt1—N2 | 110.2 (3) | C9—C10—C11—C12 | 0.7 (8) |
C2—C1—N1—C5 | 54.1 (5) | C9—C14—N2—C6 | 0.4 (6) |
C2—C1—N1—Pt1 | −176.2 (3) | C9—C14—N2—Pt1 | 178.1 (3) |
C2—C3—C4—C5 | −54.9 (5) | C10—C9—C14—C13 | −1.0 (7) |
C3—C4—C5—N1 | 54.9 (5) | C10—C9—C14—N2 | 179.2 (4) |
C4—C5—N1—C1 | −53.1 (5) | C10—C11—C12—C13 | −0.4 (8) |
C4—C5—N1—Pt1 | −178.5 (3) | C11—C12—C13—C14 | −0.6 (7) |
C5—N1—Pt1—Cl1 | 54.6 (3) | C12—C13—C14—C9 | 1.3 (7) |
C5—N1—Pt1—N2 | −123.5 (3) | C12—C13—C14—N2 | −178.9 (4) |
C6—C7—C8—C9 | −0.1 (7) | C13—C14—N2—C6 | −179.4 (4) |
C6—N2—Pt1—Cl2 | 71.1 (3) | C13—C14—N2—Pt1 | −1.7 (6) |
C6—N2—Pt1—N1 | −103.2 (3) | C14—C9—C10—C11 | 0.0 (7) |
C7—C6—N2—C14 | 1.6 (7) | C14—N2—Pt1—Cl2 | −106.6 (3) |
C7—C6—N2—Pt1 | −176.1 (4) | C14—N2—Pt1—N1 | 79.1 (3) |
C7—C8—C9—C10 | −179.5 (5) | N1—C1—C2—C3 | −55.8 (5) |
C7—C8—C9—C14 | 2.0 (7) | N2—C6—C7—C8 | −1.8 (7) |
C8—C9—C10—C11 | −178.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1i | 0.93 | 2.61 | 3.521 (3) | 166 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
Experimental details
(II) | (III) | |
Crystal data | ||
Chemical formula | [PtCl2(C5H11N)(C7H9NO)] | [PtCl2(C5H11N)(C9H7N)] |
Mr | 474.29 | 480.29 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/n |
Temperature (K) | 100 | 100 |
a, b, c (Å) | 6.3800 (4), 9.9376 (9), 12.7899 (8) | 10.8920 (19), 11.3011 (8), 13.199 (3) |
α, β, γ (°) | 108.733 (7), 91.463 (5), 106.893 (7) | 90, 112.68 (2), 90 |
V (Å3) | 728.46 (9) | 1499.0 (4) |
Z | 2 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 9.99 | 9.70 |
Crystal size (mm) | 0.35 × 0.15 × 0.1 | 0.35 × 0.35 × 0.2 |
Data collection | ||
Diffractometer | Agilent SuperNova (single source at offset, Eos detector) diffractometer | Agilent SuperNova (single source at offset, Eos detector) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.493, 1.000 | 0.304, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5750, 2911, 2762 | 30516, 3072, 2779 |
Rint | 0.027 | 0.076 |
(sin θ/λ)max (Å−1) | 0.625 | 0.625 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.038, 1.05 | 0.025, 0.061, 1.07 |
No. of reflections | 2911 | 3072 |
No. of parameters | 164 | 172 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.07, −1.08 | 2.14, −2.09 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1i | 0.93 | 2.61 | 3.521 (3) | 166 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Cl1i | 0.92 | 2.79 | 3.312 (3) | 117 |
N2—H2A···Cl2ii | 0.93 | 2.49 | 3.365 (3) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z. |
(I) | (II) | (III) | |
Pt1—N1 | 2.057 (3) | 2.063 (3) | 2.057 (4) |
Pt1—N2 | 2.045 (3) | 2.074 (3) | 2.029 (4) |
Pt1—Cl1 | 2.3097 (8) | 2.3109 (8) | 2.3102 (11) |
Pt1—Cl2 | 2.3124 (8) | 2.3020 (8) | 2.3155 (12) |
Pt2—N3 | 2.060 (3) | ||
Pt2–N4 | 2.050 (3) | ||
Pt1—Cl3 | 2.3099 (8) | ||
Pt2—Cl4 | 2.3140 (8) | ||
Cl1—Pt1—Cl2 | 89.15 (3) | 90.19 (3) | 91.14 (4) |
N1—Pt1—N2 | 90.36 (11) | 91.00 (11) | 89.43 (15) |
N1—Pt1—Cl1 | 89.88 (8) | 88.07 (8) | 90.92 (11) |
N2—Pt1—Cl2 | 90.64 (8) | 90.78 (8) | 88.70 (11) |
Cl3—Pt2—Cl4 | 89.82 (3) | ||
N3—Pt2—N4 | 90.44 (11) | ||
N3—Pt2—Cl4 | 91.44 (8) | ||
N4—Pt2—Cl3 | 88.32 (8) |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register