Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In N,N,N′,N′-tetra­ethyl-N′′-(4-fluoro­benzo­yl)phospho­ric tri­amide, C15H25FN3O2P, (I), and N-(2,6-di­fluoro­benzo­yl)-N′,N′′-bis­(4-methyl­piperidin-1-yl)phospho­ric tri­amide, C19H28F2N3O2P, (II), the C—N—C angle at each tertiary N atom is significantly smaller than the two P—N—C angles. For the other new structure, N,N′-di­cyclo­hexyl-N′′-(2-fluoro­benzo­yl)-N,N′-dimethylphospho­ric tri­amide, C21H33FN3O2P, (III), one C—N—C angle [117.08 (12)°] has a greater value than the related P—N—C angle [115.59 (9)°] at the same N atom. Furthermore, for most of the analogous structures with a [C(=O)NH]P(=O)[N(C)(C)]2 skeleton deposited in the Cambridge Structural Database [CSD; Allen (2002). Acta Cryst. B58, 380–388], the C—N—C angle is significantly smaller than the two P—N—C angles; exceptions were found for four structures with the N-methyl­cyclo­hexyl­amide substituent, similar to (III), one structure with the seven-membered cyclic amide azepan-1-yl substituent and one structure with an N-methyl­benzyl­amide substituent. The asymmetric units of (I), (II) and (III) contain one mol­ecule, and in the crystal structures, adjacent mol­ecules are linked via pairs of N—H...O=P hydrogen bonds to form dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614020488/uk3104sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020488/uk3104Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020488/uk3104IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020488/uk3104IIIsup4.hkl
Contains datablock III

CCDC references: 895556; 895553; 895557

Introduction top

The P—N bond and the geometry at the N atom in phospho­ric tri­amides are salient structural features for this family of compounds. The theoretical concepts of bond order are difficult to study in P—N bonds because of the complex characteristics of d orbitals. In 1973, Norman and Arthur Camerman reported their studies of the π-bond character of the P—N bond in phospho­ric tri­amides by a comparison with P—N single-bond compounds and they attributed 30% of the π-bond character to a P—N distance of 1.66 Å (Camerman & Camerman, 1973). Moreover, an analysis of the bond-angle sums at the two tertiary N atoms in phospho­ric tri­amides containing a C( O)NHP(O)[N(C)(C)]2 skeleton (Pourayoubi et al., 2012), it was found that, in a compound with a considerable Δ SUM (= SUM1 - SUM2) value [where SUM1 and SUM2 are the bond-angle sums at the two tertiary N atoms], the more pyramidal N atom is oriented so that the position of the lone electron pair (LEP) is anti with respect to the PO group.

Here, we explore the structures of three new phospho­ric tri­amides with a [C(O)NH]P(O)[N(C)(C)]2 skeleton: 4-F—C6H4C(O)NHP( O)[N(C2H5)2]2, (I), 2,6-F2—C6H3C(O)NHP( O)[NC5H9(4-CH3)]2, (II), and 2-F—C6H4C(O)NHP( O)[N(CH3)(C6H11)]2, (III). The NRR' group attached to the P O group is named an amide group. The amide group is obtained by the loss of one H+ cation from the initial NHRR' amine used in the reaction, so that, in the synthesis of the phospho­ramide, the Cl- substituent in the related initial phospho­rus-chlorine compound is replaced by the [NRR']- amide group.

The C—N—C and two P—N—C bond angles at the N atoms are examined in these three new structures and compared with analogous structures deposited in the Cambridge Structural Database (CSD, Version 5.35, Feb 2014 update; Allen, 2002); for each example, the CSD refcode is given in capitals followed by the primary reference).

Experimental top

Synthesis and crystallization top

The three starting materials 4-F—C6H4C(O)NHP(O)Cl2, 2,6-F2—C6H3C(O)NHP(O)Cl2 and 2-F—C6H4C(O)NHP( O)Cl2 were synthesized according to the literature methods reported by Tarahhomi et al. (2011), Pourayoubi, Tarahhomi, Saneei et al. (2011) and Pourayoubi et al. (2011a), respectively.

For the preparation of (I), a solution of di­ethyl­amine (4 mmol) in dry CH3CN (5 ml) was added to a solution of 4-F—C6H4C(O)NHP(O)Cl2 (1 mmol) in the same solvent (20 ml) and stirred at 273 K. After stirring for 4 h, the solvent was evaporated and the solid obtained was washed with distilled water. IR (KBr, ν, cm-1): 3096, 2975, 2875, 1668, 1601, 1457, 1380, 1274, 1221, 1106, 1024, 952, 846, 793, 756.

Compounds (II) and (III) were obtained in a similar procedure to (I) by using the relevant amine and initial phospho­rous-chlorine compound: 4-methyl­piperidine and 2,6-F2—C6H3C(O)NHP(O)Cl2 for (II), and N-methyl­cyclo­hexyl­amine and 2-F—C6H4C(O)NHP(O)Cl2 for (III). IR (KBr, ν, cm-1) for (II): 3069, 2934, 2873, 1690, 1609, 1457, 1372, 1277, 1192, 1063, 939, 802, 726; for (III): 3053, 2922, 2863, 1690, 1604, 1457, 1272, 1243, 1172, 996, 868, 840, 745.

Colourless single crystals were formed from solutions of (I), (II) and (III), separately, in CH3OH/di­methyl­formamide (5:1 v/v) after slow evaporation at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. Atom H1N was found from a Fourier difference map and allowed to refine isotropically, with N—H = 0.87 (2) Å for (I) and (II) or 0.87 (1) Å for (III), and with Uiso(H) = 1.2Ueq(N). All [Other?] H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 (CH, Ar), 0.99 (CH2) or 0.98 Å (CH3) for all compounds and 1.00 Å (CH) for the cyclo­hexyl groups in (III), and with Uiso(H) = 1.2Ueq(C) (CH, CH2) or 1.5Ueq(C) (CH3). In (III), the C1–C6 phenyl ring and attached F atom were disordered over two positions and refined using a two-part disorder model with an occupancy of 0.6439/0.3561. The C1B—C7 distance was restrained to 1.50 (1) Å.

Results and discussion top

The molecular structures of (I)–(III) are shown in Figs. 1–3, respectively. The asymmetric unit of all three structures contains one molecule. The P atom exhibits a distorted tetra­hedral environment, which is reflected in the bond lengths and angles in the [N]P(O)[N]2 fragment (Tables 2, 4 and 6). The characteristic bond lengths and angles are within the expected values (Tarahhomi et al., 2013). As expected, in each molecule the P—NCP bond is longer than the other two P—N bonds [the N-atom separator of the phospho­ryl and carbonyl groups is designated as NCP] and the O—P—NCP angle is reduced compared with the other two O—P—N angles (Tables 2, 4 and 6). For example, in (III), P—NCP = 1.6856 (11) Å and P—N = 1.6353 (11) and 1.6371 (12) Å; O—P—NCP = 105.47 (5)° and O—P—N = 110.71 (5) and 117.00 (6)°. In all three structures, the anti orientation of PO with respect to CO is reflected in the O—P—N—C torsion angles: -164.80 (11)° in (I), -162.48 (12)° in (II) and 166.02 (12)° in (III).

In the crystal structures of (I)–(III), adjacent molecules are linked via pairs of N—H···OP hydrogen bonds to form dimers (Tables 3, 5 and 7). For example, part of the crystal structure of (I) is shown in Fig. 4.

In (I) and (II), with a [C(O)NH]P(O)[N(C)(C)]2 skeleton, the C—N—C angles are significantly smaller than two related P—N—C angles. In contrast, for (III), having the N-methyl­cyclo­hexyl­amide fragments, the C—N—C angle at one of the tertiary N atoms is larger than one of the P—N—C angles at the same N atom.

The C—N—C, P—N—C and P—N—C bond angles at the tertiary N atoms in phospho­ric tri­amides with a [C(O)NH]P(O)[N(C)(C)]2 skeleton found in the CSD were also examined. Compounds with disorder in the N or surrounding atoms were excluded from consideration. Compounds with three- and four-membered cyclic amide substituents were not included, as ring strain has an effect on the surrounding angles at the tertiary N atoms and naturally reduces the C—N—C angles. Four structures with unusual bond angles were also excluded.

Fig. 5 shows the values of the C—N—C and two P—N—C angles at the two tertiary N atoms for 84 phospho­ric tri­amides with a [C(O)NH]P( O)[N(C)(C)]2 skeleton; the bond angles vary in the range 107.9–129.2°. The hits related to the C—N—C angles are distinguished from the P—N—C angles as red squares [Circles?]. The data clearly show that, for most of the studied structures, the C—N—C angles are significantly smaller than the P—N—C angles at the same N atom. This can be attributed to the different natures of P—N and C—N bonds and the differing structural hindrance of the substituted groups on the N atoms (and also on the P atom). Thus, partial multiple-bond character is found in the P—N bond, due to a resonance inter­action with the PO group (Goldwhite, 1981). This leads to an increase in the repulsion between P—N and C—N bonds compared with C—N and C—N bonds. Moreover, in the P—N bond, the P atom is connected to three other groups, while apart from the P atom two other groups are attached to the N atom. Therefore the atomic volume of the P atom and the steric hindrance around it are also important, which may not be easily predicted. It is noted that the N-atom hybridization changes from almost sp3 in amine (R1R2NH) to almost sp2 in the related phospho­ramide [with an R1R2NP(O) fragment].

Six structures were observed with a C—N—C angle slightly larger than the P—N—C angles, at least for one of two tertiary N atoms: entry 3 in Fig. 5 [2,4-Cl2—C6H3C(O)NHP(O)[NC6H12]2, LUPGAF; Gholivand et al., 2010], entry 5 [2,6-F2—C6H3C(O)NHP( O)[N(CH3)(C6H11)]2, YAJGUN; Pourayoubi et al., 2011b], entry 7 [3-F—C6H4C(O)NHP( O)[N(CH3)(C6H11)]2, YAHGOF; Pourayoubi, Shoghpour, Bruno & Amiri Rudbari, 2011], entry 26 [4-NO2—C6H4C(O)NHPδb O)[N(CH3)(C6H11)]2, YUPVAH; Sabbaghi et al., 2010], entry 31 [C6H5C(O)NHP( O)[N(CH3)(C6H11)]2, SEYPES; Gholivand & Shariatinia, 2007] and entry 67 [C6H5CH2C(O)NHP(O)[N(CH3)(CH2C6H5)]2, OCAYIC; Pourayoubi, Shoghpour, Torre-Fernández & García-Granda, 2011].

Inter­estingly, most of these structures contain the N-methyl­cyclo­hexyl­amide substituent similar to (III), except for entry 3 (LUPGAF), where the structure contains a seven-membered cyclic amide substituent, and entry 67 (OCAYIC), where the structure contains an N-methyl­benzyl­amide substituent. These exceptions can be attributed to an increase in steric congestion between the substituent groups located on the N atoms, for example methyl/cyclo­hexyl groups in entry 5 and (III).

Related literature top

For related literature, see: Allen (2002); Camerman & Camerman (1973); Gholivand & Shariatinia (2007); Gholivand et al. (2010); Goldwhite (1981); Pourayoubi et al. (2011a, 2011b, 2012); Pourayoubi, Shoghpour, Bruno & Amiri Rudbari (2011); Pourayoubi, Shoghpour, Torre-Fernández & García-Granda (2011); Pourayoubi, Tarahhomi, Saneei, Rheingold & Golen (2011); Sabbaghi et al. (2010); Tarahhomi et al. (2011, 2013).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005) for (I); SHELXTL (Sheldrick, 2008) for (II), (III). For all compounds, software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity, except for atom H1N, which is shown as a small sphere of arbitrary radius. Disordered atoms are labelled with the suffices A and B. [Dashed lines indicate the minor occupancy component?]
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the N—HOP hydrogen bonds (dotted lines).
[Figure 5] Fig. 5. The values of C—N—C and P—N—C bond angles at the two tertiary N atoms from 84 hits with a [C(O)NH]P(O)[N(C)(C)]2 skeleton. Red squares denote the C—N—C bond angles. [No red squares visible - they are all circles. Please clarify.]
(I) N,N,N',N'-tetraethyl-N''-(4-fluorobenzoyl)phosphoric triamide top
Crystal data top
C15H25FN3O2PZ = 2
Mr = 329.35F(000) = 352
Triclinic, P1Dx = 1.317 Mg m3
a = 8.8477 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7545 (6) ÅCell parameters from 9991 reflections
c = 10.0198 (7) Åθ = 2.4–26.4°
α = 79.993 (2)°µ = 0.19 mm1
β = 77.973 (2)°T = 90 K
γ = 83.658 (2)°Block, colourless
V = 830.43 (10) Å30.20 × 0.20 × 0.12 mm
Data collection top
Bruker D8 Quest CMOS area-detector
diffractometer
3036 independent reflections
Radiation source: fine-focus sealed tube2773 reflections with I > 2σ(I)
Doubly curved mirror monochromatorRint = 0.049
φ and ω scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.964, Tmax = 0.978k = 1111
16977 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.4677P]
where P = (Fo2 + 2Fc2)/3
3036 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
C15H25FN3O2Pγ = 83.658 (2)°
Mr = 329.35V = 830.43 (10) Å3
Triclinic, P1Z = 2
a = 8.8477 (6) ÅMo Kα radiation
b = 9.7545 (6) ŵ = 0.19 mm1
c = 10.0198 (7) ÅT = 90 K
α = 79.993 (2)°0.20 × 0.20 × 0.12 mm
β = 77.973 (2)°
Data collection top
Bruker D8 Quest CMOS area-detector
diffractometer
3036 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2773 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.978Rint = 0.049
16977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.34 e Å3
3036 reflectionsΔρmin = 0.37 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.33324 (4)0.02186 (3)0.34653 (3)0.01179 (12)
F10.95876 (10)0.59701 (9)0.20166 (9)0.0242 (2)
O10.41953 (11)0.26842 (10)0.12140 (10)0.0182 (2)
O20.32711 (10)0.05119 (10)0.49006 (9)0.0148 (2)
N10.47013 (13)0.13710 (12)0.32044 (12)0.0129 (2)
H1N0.5313 (17)0.1195 (17)0.3780 (15)0.015*
N20.16274 (13)0.09852 (12)0.32886 (11)0.0134 (3)
N60.38792 (13)0.07024 (12)0.22089 (12)0.0144 (3)
C10.66466 (16)0.35279 (14)0.33794 (14)0.0162 (3)
H1A0.62090.29950.42320.019*
C20.77961 (16)0.44066 (15)0.33328 (15)0.0180 (3)
H2A0.81420.44960.41480.022*
C30.84207 (16)0.51451 (14)0.20736 (16)0.0174 (3)
C40.79169 (17)0.50976 (15)0.08756 (15)0.0199 (3)
H4A0.83520.56410.00280.024*
C50.67544 (16)0.42328 (15)0.09420 (14)0.0168 (3)
H5A0.63760.41910.01310.020*
C60.61338 (15)0.34253 (14)0.21805 (14)0.0135 (3)
C70.49251 (15)0.24755 (14)0.21520 (14)0.0135 (3)
C80.11485 (16)0.15042 (15)0.19562 (14)0.0168 (3)
H8A0.19930.12550.12000.020*
H8B0.09890.25350.18410.020*
C90.03327 (17)0.09156 (17)0.18336 (16)0.0217 (3)
H9A0.06510.13650.09710.033*
H9B0.11550.10960.26190.033*
H9C0.01460.00930.18320.033*
C100.07037 (16)0.16120 (14)0.44727 (14)0.0158 (3)
H10A0.07990.09700.53370.019*
H10B0.04010.17120.43940.019*
C110.11976 (17)0.30341 (16)0.45679 (16)0.0210 (3)
H11A0.04750.34370.53080.032*
H11B0.11900.36550.36880.032*
H11C0.22450.29250.47700.032*
C120.55196 (16)0.08724 (15)0.15168 (14)0.0173 (3)
H12A0.58760.00620.11050.021*
H12B0.55880.14110.07520.021*
C130.66150 (17)0.16023 (16)0.24512 (17)0.0225 (3)
H13A0.76610.17230.19010.034*
H13B0.62560.25180.28900.034*
H13C0.66330.10350.31640.034*
C140.28695 (16)0.17513 (15)0.20629 (15)0.0179 (3)
H14A0.28140.16680.10750.021*
H14B0.18110.15310.25740.021*
C150.33795 (18)0.32526 (15)0.25750 (16)0.0220 (3)
H15A0.26240.38700.24700.033*
H15B0.34470.33510.35510.033*
H15C0.43980.35070.20340.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01254 (19)0.01165 (19)0.0112 (2)0.00223 (13)0.00314 (13)0.00005 (13)
F10.0198 (4)0.0217 (5)0.0327 (5)0.0103 (4)0.0046 (4)0.0034 (4)
O10.0215 (5)0.0190 (5)0.0152 (5)0.0050 (4)0.0077 (4)0.0014 (4)
O20.0155 (5)0.0150 (5)0.0139 (5)0.0029 (4)0.0047 (4)0.0009 (4)
N10.0138 (6)0.0133 (6)0.0124 (6)0.0030 (4)0.0055 (4)0.0007 (5)
N20.0139 (6)0.0148 (6)0.0112 (6)0.0007 (4)0.0028 (4)0.0012 (4)
N60.0137 (6)0.0146 (6)0.0158 (6)0.0029 (4)0.0026 (4)0.0034 (5)
C10.0197 (7)0.0126 (7)0.0159 (7)0.0016 (5)0.0042 (6)0.0004 (5)
C20.0216 (7)0.0146 (7)0.0198 (7)0.0006 (6)0.0089 (6)0.0025 (6)
C30.0130 (7)0.0120 (7)0.0274 (8)0.0022 (5)0.0035 (6)0.0033 (6)
C40.0207 (7)0.0174 (7)0.0189 (7)0.0049 (6)0.0011 (6)0.0005 (6)
C50.0188 (7)0.0166 (7)0.0148 (7)0.0010 (5)0.0041 (5)0.0015 (5)
C60.0139 (6)0.0103 (6)0.0153 (7)0.0011 (5)0.0021 (5)0.0015 (5)
C70.0148 (6)0.0128 (7)0.0126 (7)0.0004 (5)0.0020 (5)0.0026 (5)
C80.0164 (7)0.0199 (7)0.0131 (7)0.0006 (5)0.0047 (5)0.0015 (5)
C90.0182 (7)0.0281 (8)0.0205 (8)0.0007 (6)0.0082 (6)0.0037 (6)
C100.0159 (7)0.0169 (7)0.0139 (7)0.0005 (5)0.0015 (5)0.0027 (5)
C110.0210 (7)0.0197 (8)0.0244 (8)0.0004 (6)0.0065 (6)0.0075 (6)
C120.0163 (7)0.0184 (7)0.0165 (7)0.0022 (5)0.0007 (5)0.0047 (6)
C130.0174 (7)0.0209 (8)0.0310 (8)0.0014 (6)0.0071 (6)0.0078 (6)
C140.0182 (7)0.0186 (7)0.0194 (7)0.0038 (6)0.0054 (6)0.0065 (6)
C150.0294 (8)0.0179 (7)0.0204 (7)0.0067 (6)0.0063 (6)0.0028 (6)
Geometric parameters (Å, º) top
P1—O21.4828 (10)C8—H8A0.9900
P1—N61.6337 (12)C8—H8B0.9900
P1—N21.6378 (11)C9—H9A0.9800
P1—N11.6928 (11)C9—H9B0.9800
F1—C31.3637 (15)C9—H9C0.9800
O1—C71.2244 (17)C10—C111.524 (2)
N1—C71.3702 (18)C10—H10A0.9900
N1—H1N0.854 (13)C10—H10B0.9900
N2—C81.4736 (17)C11—H11A0.9800
N2—C101.4788 (17)C11—H11B0.9800
N6—C141.4747 (17)C11—H11C0.9800
N6—C121.4773 (17)C12—C131.522 (2)
C1—C21.389 (2)C12—H12A0.9900
C1—C61.392 (2)C12—H12B0.9900
C1—H1A0.9500C13—H13A0.9800
C2—C31.378 (2)C13—H13B0.9800
C2—H2A0.9500C13—H13C0.9800
C3—C41.374 (2)C14—C151.517 (2)
C4—C51.385 (2)C14—H14A0.9900
C4—H4A0.9500C14—H14B0.9900
C5—C61.3906 (19)C15—H15A0.9800
C5—H5A0.9500C15—H15B0.9800
C6—C71.4979 (18)C15—H15C0.9800
C8—C91.5233 (19)
O2—P1—N6118.04 (6)C8—C9—H9A109.5
O2—P1—N2110.05 (6)C8—C9—H9B109.5
N6—P1—N2106.21 (6)H9A—C9—H9B109.5
O2—P1—N1105.37 (6)C8—C9—H9C109.5
N6—P1—N1104.75 (6)H9A—C9—H9C109.5
N2—P1—N1112.45 (6)H9B—C9—H9C109.5
C7—N1—P1126.01 (10)N2—C10—C11113.44 (11)
C7—N1—H1N119.7 (11)N2—C10—H10A108.9
P1—N1—H1N114.2 (11)C11—C10—H10A108.9
C8—N2—C10114.89 (11)N2—C10—H10B108.9
C8—N2—P1124.90 (9)C11—C10—H10B108.9
C10—N2—P1117.09 (9)H10A—C10—H10B107.7
C14—N6—C12116.17 (11)C10—C11—H11A109.5
C14—N6—P1119.09 (9)C10—C11—H11B109.5
C12—N6—P1121.62 (9)H11A—C11—H11B109.5
C2—C1—C6120.22 (13)C10—C11—H11C109.5
C2—C1—H1A119.9H11A—C11—H11C109.5
C6—C1—H1A119.9H11B—C11—H11C109.5
C3—C2—C1118.23 (13)N6—C12—C13114.86 (12)
C3—C2—H2A120.9N6—C12—H12A108.6
C1—C2—H2A120.9C13—C12—H12A108.6
F1—C3—C4118.50 (13)N6—C12—H12B108.6
F1—C3—C2118.35 (13)C13—C12—H12B108.6
C4—C3—C2123.15 (13)H12A—C12—H12B107.5
C3—C4—C5117.92 (13)C12—C13—H13A109.5
C3—C4—H4A121.0C12—C13—H13B109.5
C5—C4—H4A121.0H13A—C13—H13B109.5
C4—C5—C6120.86 (13)C12—C13—H13C109.5
C4—C5—H5A119.6H13A—C13—H13C109.5
C6—C5—H5A119.6H13B—C13—H13C109.5
C1—C6—C5119.54 (13)N6—C14—C15115.14 (12)
C1—C6—C7122.97 (12)N6—C14—H14A108.5
C5—C6—C7117.50 (12)C15—C14—H14A108.5
O1—C7—N1122.44 (12)N6—C14—H14B108.5
O1—C7—C6120.63 (12)C15—C14—H14B108.5
N1—C7—C6116.92 (12)H14A—C14—H14B107.5
N2—C8—C9113.08 (11)C14—C15—H15A109.5
N2—C8—H8A109.0C14—C15—H15B109.5
C9—C8—H8A109.0H15A—C15—H15B109.5
N2—C8—H8B109.0C14—C15—H15C109.5
C9—C8—H8B109.0H15A—C15—H15C109.5
H8A—C8—H8B107.8H15B—C15—H15C109.5
O2—P1—N1—C7164.80 (11)C3—C4—C5—C60.8 (2)
N6—P1—N1—C770.00 (12)C2—C1—C6—C51.5 (2)
N2—P1—N1—C744.91 (13)C2—C1—C6—C7178.60 (12)
O2—P1—N2—C8164.07 (10)C4—C5—C6—C12.5 (2)
N6—P1—N2—C835.22 (12)C4—C5—C6—C7177.62 (12)
N1—P1—N2—C878.79 (12)P1—N1—C7—O15.2 (2)
O2—P1—N2—C1036.95 (11)P1—N1—C7—C6175.61 (9)
N6—P1—N2—C10165.79 (9)C1—C6—C7—O1159.21 (13)
N1—P1—N2—C1080.19 (10)C5—C6—C7—O120.70 (19)
O2—P1—N6—C1467.71 (11)C1—C6—C7—N121.62 (19)
N2—P1—N6—C1456.30 (11)C5—C6—C7—N1158.46 (12)
N1—P1—N6—C14175.49 (10)C10—N2—C8—C975.37 (15)
O2—P1—N6—C1291.54 (11)P1—N2—C8—C9125.24 (12)
N2—P1—N6—C12144.45 (11)C8—N2—C10—C1181.32 (14)
N1—P1—N6—C1225.26 (12)P1—N2—C10—C1179.76 (13)
C6—C1—C2—C31.1 (2)C14—N6—C12—C1397.85 (14)
C1—C2—C3—F1177.70 (12)P1—N6—C12—C1361.98 (15)
C1—C2—C3—C42.8 (2)C12—N6—C14—C1557.79 (16)
F1—C3—C4—C5178.64 (12)P1—N6—C14—C15102.57 (13)
C2—C3—C4—C51.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (1)1.99 (1)2.8390 (15)172 (2)
Symmetry code: (i) x+1, y, z+1.
(II) N-(2,6-difluorobenzoyl)-N',N''-bis(4-methylpiperidin-1-yl)phosphoric triamide top
Crystal data top
C19H28F2N3O2PZ = 2
Mr = 399.41F(000) = 424
Triclinic, P1Dx = 1.315 Mg m3
a = 9.6501 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0580 (13) ÅCell parameters from 4849 reflections
c = 10.9947 (15) Åθ = 2.6–26.4°
α = 75.392 (3)°µ = 0.17 mm1
β = 77.744 (4)°T = 90 K
γ = 88.084 (4)°Block, colourless
V = 1008.9 (2) Å30.25 × 0.22 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3952 independent reflections
Radiation source: fine-focus sealed tube3370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1112
Tmin = 0.958, Tmax = 0.983k = 912
9054 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.4226P]
where P = (Fo2 + 2Fc2)/3
3952 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C19H28F2N3O2Pγ = 88.084 (4)°
Mr = 399.41V = 1008.9 (2) Å3
Triclinic, P1Z = 2
a = 9.6501 (12) ÅMo Kα radiation
b = 10.0580 (13) ŵ = 0.17 mm1
c = 10.9947 (15) ÅT = 90 K
α = 75.392 (3)°0.25 × 0.22 × 0.10 mm
β = 77.744 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3952 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3370 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.983Rint = 0.022
9054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
3952 reflectionsΔρmin = 0.36 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.51614 (4)0.38074 (4)0.69930 (3)0.01150 (10)
F10.44221 (10)0.85378 (9)0.75579 (9)0.0280 (2)
F20.85888 (10)0.70839 (10)0.52388 (9)0.0274 (2)
O10.62555 (12)0.59114 (11)0.82726 (10)0.0221 (3)
O20.52053 (11)0.33666 (10)0.57979 (9)0.0147 (2)
N10.56551 (13)0.54963 (12)0.64944 (12)0.0128 (3)
H1N0.5505 (17)0.5919 (16)0.5760 (14)0.015*
N20.35810 (12)0.35880 (12)0.79196 (12)0.0140 (3)
N30.62586 (12)0.30814 (12)0.78784 (11)0.0143 (3)
C10.56440 (17)0.88440 (16)0.66585 (15)0.0195 (3)
C20.5968 (2)1.01962 (16)0.60307 (16)0.0261 (4)
H2B0.53571.09090.62230.031*
C30.7214 (2)1.04863 (17)0.51091 (16)0.0293 (4)
H3A0.74601.14140.46610.035*
C40.81098 (19)0.94496 (18)0.48282 (16)0.0281 (4)
H4A0.89680.96530.41990.034*
C50.77203 (17)0.81166 (16)0.54872 (15)0.0208 (3)
C60.64865 (16)0.77592 (15)0.64142 (14)0.0159 (3)
C70.61155 (15)0.62938 (15)0.71690 (14)0.0145 (3)
C80.32035 (16)0.41758 (16)0.90464 (14)0.0177 (3)
H8A0.40820.43950.92930.021*
H8B0.26470.34850.97800.021*
C90.23452 (16)0.54700 (16)0.87722 (15)0.0192 (3)
H9A0.29620.62130.81490.023*
H9B0.20190.57660.95780.023*
C100.10571 (16)0.52607 (15)0.82302 (15)0.0183 (3)
H10A0.04140.45570.88990.022*
C110.15441 (16)0.46872 (15)0.70523 (15)0.0175 (3)
H11A0.07090.45010.67250.021*
H11B0.21640.53740.63640.021*
C120.23517 (15)0.33648 (15)0.73969 (15)0.0168 (3)
H12A0.17080.26590.80410.020*
H12B0.26790.30180.66190.020*
C130.02303 (18)0.65775 (17)0.79406 (17)0.0264 (4)
H13A0.00380.69170.87170.040*
H13B0.06260.63910.76610.040*
H13C0.08230.72730.72570.040*
C140.77889 (15)0.33638 (15)0.74004 (15)0.0179 (3)
H14A0.81370.38920.79270.021*
H14B0.79660.39260.65000.021*
C150.85850 (16)0.20273 (15)0.74646 (15)0.0176 (3)
H15A0.96160.22350.71840.021*
H15B0.83060.15490.68660.021*
C160.82804 (16)0.10832 (15)0.88181 (15)0.0186 (3)
H16A0.86550.15400.93950.022*
C170.66810 (16)0.08714 (15)0.93067 (15)0.0193 (3)
H17A0.63140.03240.88060.023*
H17B0.64870.03421.02180.023*
C180.58979 (16)0.22228 (15)0.91992 (14)0.0158 (3)
H18A0.48620.20340.94510.019*
H18B0.61600.27180.97930.019*
C190.90183 (19)0.02812 (17)0.88444 (18)0.0289 (4)
H19A1.00440.01160.85430.043*
H19B0.86650.07430.82810.043*
H19C0.88210.08630.97250.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01361 (19)0.01000 (18)0.01153 (19)0.00098 (14)0.00459 (14)0.00237 (14)
F10.0304 (5)0.0215 (5)0.0296 (6)0.0040 (4)0.0005 (4)0.0081 (4)
F20.0252 (5)0.0301 (5)0.0259 (5)0.0012 (4)0.0002 (4)0.0100 (4)
O10.0341 (7)0.0197 (6)0.0148 (6)0.0017 (5)0.0099 (5)0.0041 (4)
O20.0204 (5)0.0108 (5)0.0145 (5)0.0021 (4)0.0063 (4)0.0039 (4)
N10.0184 (6)0.0104 (6)0.0105 (6)0.0013 (5)0.0069 (5)0.0011 (5)
N20.0129 (6)0.0166 (6)0.0149 (6)0.0009 (5)0.0058 (5)0.0063 (5)
N30.0128 (6)0.0154 (6)0.0128 (6)0.0003 (5)0.0041 (5)0.0012 (5)
C10.0262 (8)0.0174 (8)0.0167 (8)0.0018 (6)0.0065 (6)0.0058 (6)
C20.0418 (10)0.0147 (8)0.0272 (9)0.0013 (7)0.0163 (8)0.0078 (7)
C30.0495 (11)0.0164 (8)0.0238 (9)0.0130 (8)0.0153 (8)0.0001 (7)
C40.0329 (10)0.0289 (9)0.0215 (9)0.0141 (8)0.0034 (7)0.0043 (7)
C50.0250 (8)0.0215 (8)0.0190 (8)0.0021 (7)0.0065 (6)0.0088 (6)
C60.0234 (8)0.0141 (7)0.0134 (7)0.0017 (6)0.0088 (6)0.0046 (6)
C70.0155 (7)0.0139 (7)0.0151 (8)0.0009 (6)0.0040 (6)0.0048 (6)
C80.0150 (7)0.0253 (8)0.0139 (7)0.0002 (6)0.0024 (6)0.0077 (6)
C90.0170 (8)0.0216 (8)0.0208 (8)0.0007 (6)0.0007 (6)0.0108 (6)
C100.0148 (7)0.0177 (7)0.0206 (8)0.0002 (6)0.0024 (6)0.0026 (6)
C110.0137 (7)0.0189 (8)0.0201 (8)0.0001 (6)0.0068 (6)0.0026 (6)
C120.0142 (7)0.0180 (7)0.0199 (8)0.0022 (6)0.0065 (6)0.0052 (6)
C130.0217 (8)0.0221 (8)0.0327 (10)0.0050 (7)0.0031 (7)0.0049 (7)
C140.0138 (7)0.0156 (7)0.0214 (8)0.0011 (6)0.0047 (6)0.0014 (6)
C150.0142 (7)0.0188 (8)0.0206 (8)0.0012 (6)0.0056 (6)0.0046 (6)
C160.0206 (8)0.0160 (7)0.0217 (8)0.0038 (6)0.0107 (6)0.0043 (6)
C170.0218 (8)0.0162 (7)0.0177 (8)0.0008 (6)0.0060 (6)0.0014 (6)
C180.0184 (7)0.0166 (7)0.0114 (7)0.0001 (6)0.0051 (6)0.0000 (6)
C190.0282 (9)0.0197 (8)0.0373 (10)0.0076 (7)0.0091 (8)0.0037 (7)
Geometric parameters (Å, º) top
P1—O21.4812 (10)C10—C131.522 (2)
P1—N31.6215 (12)C10—C111.527 (2)
P1—N21.6315 (12)C10—H10A1.0000
P1—N11.6989 (12)C11—C121.524 (2)
F1—C11.3560 (18)C11—H11A0.9900
F2—C51.3578 (18)C11—H11B0.9900
O1—C71.2121 (18)C12—H12A0.9900
N1—C71.3619 (18)C12—H12B0.9900
N1—H1N0.852 (13)C13—H13A0.9800
N2—C121.4699 (18)C13—H13B0.9800
N2—C81.4766 (18)C13—H13C0.9800
N3—C181.4659 (18)C14—C151.519 (2)
N3—C141.4700 (18)C14—H14A0.9900
C1—C21.374 (2)C14—H14B0.9900
C1—C61.386 (2)C15—C161.524 (2)
C2—C31.384 (3)C15—H15A0.9900
C2—H2B0.9500C15—H15B0.9900
C3—C41.385 (3)C16—C191.521 (2)
C3—H3A0.9500C16—C171.526 (2)
C4—C51.375 (2)C16—H16A1.0000
C4—H4A0.9500C17—C181.523 (2)
C5—C61.384 (2)C17—H17A0.9900
C6—C71.510 (2)C17—H17B0.9900
C8—C91.519 (2)C18—H18A0.9900
C8—H8A0.9900C18—H18B0.9900
C8—H8B0.9900C19—H19A0.9800
C9—C101.530 (2)C19—H19B0.9800
C9—H9A0.9900C19—H19C0.9800
C9—H9B0.9900
O2—P1—N3116.74 (6)C12—C11—C10110.37 (12)
O2—P1—N2111.60 (6)C12—C11—H11A109.6
N3—P1—N2106.71 (6)C10—C11—H11A109.6
O2—P1—N1105.13 (6)C12—C11—H11B109.6
N3—P1—N1105.32 (6)C10—C11—H11B109.6
N2—P1—N1111.20 (6)H11A—C11—H11B108.1
C7—N1—P1128.36 (10)N2—C12—C11111.36 (12)
C7—N1—H1N115.7 (11)N2—C12—H12A109.4
P1—N1—H1N115.6 (11)C11—C12—H12A109.4
C12—N2—C8113.25 (11)N2—C12—H12B109.4
C12—N2—P1119.95 (10)C11—C12—H12B109.4
C8—N2—P1121.62 (10)H12A—C12—H12B108.0
C18—N3—C14113.40 (11)C10—C13—H13A109.5
C18—N3—P1126.95 (10)C10—C13—H13B109.5
C14—N3—P1119.46 (10)H13A—C13—H13B109.5
F1—C1—C2118.75 (14)C10—C13—H13C109.5
F1—C1—C6117.48 (14)H13A—C13—H13C109.5
C2—C1—C6123.76 (15)H13B—C13—H13C109.5
C1—C2—C3117.86 (16)N3—C14—C15110.33 (12)
C1—C2—H2B121.1N3—C14—H14A109.6
C3—C2—H2B121.1C15—C14—H14A109.6
C2—C3—C4121.22 (16)N3—C14—H14B109.6
C2—C3—H3A119.4C15—C14—H14B109.6
C4—C3—H3A119.4H14A—C14—H14B108.1
C5—C4—C3118.02 (16)C14—C15—C16111.84 (12)
C5—C4—H4A121.0C14—C15—H15A109.2
C3—C4—H4A121.0C16—C15—H15A109.2
F2—C5—C4119.11 (15)C14—C15—H15B109.2
F2—C5—C6117.36 (14)C16—C15—H15B109.2
C4—C5—C6123.53 (15)H15A—C15—H15B107.9
C5—C6—C1115.60 (14)C19—C16—C15110.95 (13)
C5—C6—C7122.53 (13)C19—C16—C17111.25 (13)
C1—C6—C7121.78 (14)C15—C16—C17109.51 (12)
O1—C7—N1125.50 (13)C19—C16—H16A108.3
O1—C7—C6120.29 (12)C15—C16—H16A108.3
N1—C7—C6114.20 (12)C17—C16—H16A108.3
N2—C8—C9111.80 (12)C18—C17—C16112.56 (12)
N2—C8—H8A109.3C18—C17—H17A109.1
C9—C8—H8A109.3C16—C17—H17A109.1
N2—C8—H8B109.3C18—C17—H17B109.1
C9—C8—H8B109.3C16—C17—H17B109.1
H8A—C8—H8B107.9H17A—C17—H17B107.8
C8—C9—C10112.57 (12)N3—C18—C17110.36 (12)
C8—C9—H9A109.1N3—C18—H18A109.6
C10—C9—H9A109.1C17—C18—H18A109.6
C8—C9—H9B109.1N3—C18—H18B109.6
C10—C9—H9B109.1C17—C18—H18B109.6
H9A—C9—H9B107.8H18A—C18—H18B108.1
C13—C10—C11112.49 (13)C16—C19—H19A109.5
C13—C10—C9111.58 (13)C16—C19—H19B109.5
C11—C10—C9109.18 (12)H19A—C19—H19B109.5
C13—C10—H10A107.8C16—C19—H19C109.5
C11—C10—H10A107.8H19A—C19—H19C109.5
C9—C10—H10A107.8H19B—C19—H19C109.5
O2—P1—N1—C7162.48 (12)C2—C1—C6—C7177.41 (14)
N3—P1—N1—C738.61 (14)P1—N1—C7—O10.2 (2)
N2—P1—N1—C776.60 (14)P1—N1—C7—C6179.18 (10)
O2—P1—N2—C1215.99 (13)C5—C6—C7—O1103.58 (18)
N3—P1—N2—C12144.59 (11)C1—C6—C7—O172.8 (2)
N1—P1—N2—C12101.06 (11)C5—C6—C7—N175.44 (18)
O2—P1—N2—C8168.81 (11)C1—C6—C7—N1108.16 (16)
N3—P1—N2—C862.58 (13)C12—N2—C8—C952.83 (16)
N1—P1—N2—C851.77 (13)P1—N2—C8—C9101.65 (13)
O2—P1—N3—C18117.48 (12)N2—C8—C9—C1052.12 (17)
N2—P1—N3—C188.08 (13)C8—C9—C10—C13178.96 (13)
N1—P1—N3—C18126.35 (12)C8—C9—C10—C1153.99 (17)
O2—P1—N3—C1467.96 (12)C13—C10—C11—C12179.43 (12)
N2—P1—N3—C14166.49 (11)C9—C10—C11—C1256.13 (16)
N1—P1—N3—C1448.21 (12)C8—N2—C12—C1156.01 (16)
F1—C1—C2—C3179.49 (14)P1—N2—C12—C1198.95 (13)
C6—C1—C2—C30.5 (2)C10—C11—C12—N257.73 (16)
C1—C2—C3—C40.1 (2)C18—N3—C14—C1557.82 (16)
C2—C3—C4—C50.4 (3)P1—N3—C14—C15126.92 (11)
C3—C4—C5—F2179.27 (14)N3—C14—C15—C1655.89 (16)
C3—C4—C5—C60.1 (2)C14—C15—C16—C19176.66 (13)
F2—C5—C6—C1178.70 (13)C14—C15—C16—C1753.47 (16)
C4—C5—C6—C10.4 (2)C19—C16—C17—C18175.72 (13)
F2—C5—C6—C72.1 (2)C15—C16—C17—C1852.71 (16)
C4—C5—C6—C7177.05 (14)C14—N3—C18—C1756.67 (16)
F1—C1—C6—C5179.78 (13)P1—N3—C18—C17128.49 (12)
C2—C1—C6—C50.8 (2)C16—C17—C18—N354.07 (17)
F1—C1—C6—C73.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (1)1.94 (1)2.7786 (16)168 (2)
Symmetry code: (i) x+1, y+1, z+1.
(III) N,N'-dicyclohexyl-N''-(2-fluorobenzoyl)-N,N'-dimethylphosphoric triamide top
Crystal data top
C21H33FN3O2PZ = 2
Mr = 409.47F(000) = 440
Triclinic, P1Dx = 1.228 Mg m3
a = 10.3245 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.5131 (2) ÅCell parameters from 8116 reflections
c = 11.3253 (2) Åθ = 4.3–68.2°
α = 67.915 (1)°µ = 1.34 mm1
β = 77.902 (1)°T = 90 K
γ = 79.978 (1)°Block, colourless
V = 1107.61 (4) Å30.15 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3824 independent reflections
Radiation source: fine-focus sealed tube3710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 68.2°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.824, Tmax = 0.878k = 1112
10794 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.4562P]
where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.43 e Å3
Crystal data top
C21H33FN3O2Pγ = 79.978 (1)°
Mr = 409.47V = 1107.61 (4) Å3
Triclinic, P1Z = 2
a = 10.3245 (2) ÅCu Kα radiation
b = 10.5131 (2) ŵ = 1.34 mm1
c = 11.3253 (2) ÅT = 90 K
α = 67.915 (1)°0.15 × 0.15 × 0.10 mm
β = 77.902 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3824 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3710 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.878Rint = 0.024
10794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
3824 reflectionsΔρmin = 0.43 e Å3
292 parameters
Special details top

Experimental. Colorless crystal of AT18 was mounted on a Cryoloop with Paratone-N oil and data collected on at 90 K using a Bruker APEXII CCD detector and Cu K alpha radiation generated from a rotating anode. Data corrected for absorption with SADABS and structure solved by direct methods. Phenyl ring C1–C6 and fluorine atom were disordered over two positions and refined using a two-part disorder model with occupancy of 64.39/35.61. Distance between carbon atom C1B—C7 restained to 1.50(0.01) angstroms. All non-hydrogen atoms were refined anisotropically by full matrix least squares on F2. Hydrogen atom H1N was found from a Fourier difference map and was allowed to refine isotropically with a distance of 0.87(0.01) angstroms with 1.20Ueq of parent N atom. All other hydrogen atoms were placed in calculated positions with C—H distances of 0.950 for CH(aromatic), 1.000 for CH, 0.990 for CH2, 0.980 for CH3 with Ueq values of 1.20 and 1.50 of parent C atoms.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.42479 (3)0.43096 (3)0.20706 (3)0.01861 (12)
O10.65592 (10)0.41228 (13)0.34616 (10)0.0344 (3)
O20.35132 (9)0.49988 (10)0.09619 (9)0.0228 (2)
N10.57694 (11)0.48747 (12)0.15539 (11)0.0205 (3)
H1N0.6021 (16)0.5136 (17)0.0729 (9)0.025*
N20.34610 (11)0.46790 (12)0.33325 (10)0.0204 (3)
N30.44984 (12)0.26222 (12)0.25788 (12)0.0260 (3)
C70.67042 (13)0.47474 (16)0.23001 (13)0.0243 (3)
F1A0.93376 (15)0.3704 (2)0.27751 (16)0.0495 (6)0.644 (4)
C1A0.7894 (4)0.5529 (7)0.1528 (6)0.0239 (13)0.644 (4)
C2A0.9190 (3)0.4988 (5)0.1831 (4)0.0288 (8)0.644 (4)
C3A1.0324 (2)0.5616 (6)0.1187 (4)0.0313 (7)0.644 (4)
H3A1.11710.52050.14240.038*0.644 (4)
C4A1.0197 (3)0.6860 (5)0.0188 (4)0.0378 (8)0.644 (4)
H4A1.09660.73170.02710.045*0.644 (4)
C5A0.8955 (4)0.7452 (4)0.0155 (4)0.0360 (7)0.644 (4)
H5A0.88690.83110.08420.043*0.644 (4)
C6A0.7862 (6)0.6782 (6)0.0508 (6)0.0283 (12)0.644 (4)
H6A0.70230.71990.02550.034*0.644 (4)
F1B0.6933 (3)0.7324 (3)0.0201 (3)0.0346 (9)0.356 (4)
C1B0.8032 (9)0.5289 (12)0.1680 (11)0.023 (3)*0.356 (4)
C2B0.8019 (15)0.6499 (14)0.0701 (14)0.032 (3)*0.356 (4)
C3B0.9283 (9)0.7065 (7)0.0119 (6)0.0302 (17)*0.356 (4)
H3B0.93360.79300.05690.036*0.356 (4)
C4B1.0385 (7)0.6309 (8)0.0598 (8)0.0260 (16)*0.356 (4)
H4B1.12230.66540.02160.031*0.356 (4)
C5B1.0349 (6)0.5069 (6)0.1606 (6)0.0258 (15)*0.356 (4)
H5B1.11420.45710.19190.031*0.356 (4)
C6B0.9124 (7)0.4562 (7)0.2155 (7)0.0217 (18)*0.356 (4)
H6B0.90620.37100.28580.026*0.356 (4)
C80.27088 (13)0.60618 (14)0.31331 (13)0.0212 (3)
H8A0.24910.64330.22370.025*
C90.35276 (15)0.70709 (16)0.32442 (15)0.0300 (3)
H9A0.43460.71670.25940.036*
H9B0.37960.67090.41100.036*
C100.2724 (2)0.84849 (18)0.30331 (18)0.0447 (5)
H10A0.32530.91080.31630.054*
H10B0.25440.88910.21330.054*
C110.1409 (2)0.83783 (18)0.39551 (18)0.0455 (5)
H11A0.15870.80660.48520.055*
H11B0.08930.93000.37600.055*
C120.06011 (17)0.73717 (18)0.38358 (18)0.0393 (4)
H12A0.03510.77290.29630.047*
H12B0.02280.72860.44720.047*
C130.13923 (14)0.59522 (16)0.40678 (15)0.0274 (3)
H13A0.08600.53250.39480.033*
H13B0.15750.55570.49670.033*
C140.36563 (14)0.38265 (16)0.46596 (13)0.0268 (3)
H14A0.39090.43970.50710.040*
H14B0.43640.30760.46470.040*
H14C0.28260.34380.51470.040*
C150.57431 (14)0.18274 (15)0.22067 (14)0.0269 (3)
H15A0.64290.24930.17780.032*
C160.62556 (17)0.07397 (18)0.34002 (15)0.0364 (4)
H16A0.55920.00710.38670.044*
H16B0.63780.11920.39880.044*
C170.75812 (19)0.00234 (19)0.30104 (17)0.0434 (4)
H17A0.82630.06350.26050.052*
H17B0.78840.07430.37900.052*
C180.7439 (2)0.06916 (19)0.20670 (17)0.0443 (5)
H18A0.68120.14050.24960.053*
H18B0.83140.11500.18050.053*
C190.69255 (17)0.03868 (17)0.08707 (16)0.0364 (4)
H19A0.67890.00780.02980.044*
H19B0.76010.10390.03900.044*
C200.56113 (16)0.11894 (16)0.12340 (15)0.0315 (3)
H20A0.53470.19290.04470.038*
H20B0.49040.05590.16090.038*
C210.32908 (15)0.18998 (16)0.30808 (15)0.0309 (3)
H21A0.34700.10310.37860.046*
H21B0.30290.17040.23880.046*
H21C0.25680.24830.34030.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01483 (18)0.0215 (2)0.02007 (19)0.00204 (13)0.00211 (13)0.00817 (14)
O10.0238 (5)0.0568 (7)0.0235 (5)0.0006 (5)0.0065 (4)0.0160 (5)
O20.0162 (5)0.0314 (5)0.0229 (5)0.0026 (4)0.0020 (4)0.0124 (4)
N10.0166 (5)0.0267 (6)0.0189 (5)0.0031 (4)0.0023 (4)0.0088 (5)
N20.0191 (5)0.0209 (6)0.0197 (6)0.0001 (4)0.0032 (4)0.0064 (4)
N30.0210 (6)0.0222 (6)0.0328 (7)0.0019 (5)0.0019 (5)0.0109 (5)
C70.0173 (6)0.0335 (8)0.0267 (7)0.0017 (6)0.0052 (5)0.0167 (6)
F1A0.0250 (8)0.0795 (15)0.0417 (10)0.0101 (8)0.0117 (6)0.0223 (10)
C1A0.0099 (15)0.042 (3)0.031 (3)0.0050 (17)0.0085 (14)0.026 (2)
C2A0.0194 (15)0.041 (2)0.0303 (18)0.0020 (15)0.0071 (12)0.0168 (17)
C3A0.0162 (13)0.049 (2)0.0371 (19)0.0017 (13)0.0069 (12)0.024 (2)
C4A0.0237 (17)0.056 (2)0.045 (2)0.0200 (16)0.0094 (14)0.031 (2)
C5A0.0313 (19)0.0385 (18)0.0416 (17)0.0121 (15)0.0025 (15)0.0184 (16)
C6A0.028 (3)0.028 (3)0.031 (3)0.009 (2)0.0014 (19)0.013 (2)
F1B0.0277 (17)0.0334 (15)0.0424 (16)0.0083 (12)0.0069 (11)0.0099 (12)
C80.0205 (7)0.0213 (7)0.0219 (6)0.0002 (5)0.0041 (5)0.0083 (5)
C90.0314 (8)0.0298 (8)0.0312 (8)0.0100 (6)0.0016 (6)0.0140 (6)
C100.0621 (12)0.0252 (8)0.0460 (10)0.0108 (8)0.0059 (9)0.0164 (7)
C110.0579 (12)0.0293 (9)0.0454 (10)0.0058 (8)0.0019 (8)0.0185 (8)
C120.0310 (8)0.0384 (9)0.0441 (9)0.0105 (7)0.0027 (7)0.0174 (7)
C130.0204 (7)0.0287 (8)0.0332 (8)0.0004 (6)0.0016 (6)0.0134 (6)
C140.0257 (7)0.0300 (8)0.0198 (7)0.0024 (6)0.0028 (5)0.0059 (6)
C150.0245 (7)0.0248 (7)0.0284 (7)0.0018 (6)0.0004 (6)0.0106 (6)
C160.0403 (9)0.0360 (9)0.0282 (8)0.0088 (7)0.0046 (7)0.0120 (7)
C170.0446 (10)0.0419 (10)0.0358 (9)0.0176 (8)0.0100 (7)0.0126 (7)
C180.0499 (11)0.0341 (9)0.0405 (9)0.0145 (8)0.0027 (8)0.0143 (7)
C190.0421 (9)0.0317 (8)0.0327 (8)0.0038 (7)0.0005 (7)0.0151 (7)
C200.0347 (8)0.0280 (8)0.0299 (8)0.0008 (6)0.0019 (6)0.0115 (6)
C210.0282 (8)0.0247 (7)0.0371 (8)0.0055 (6)0.0038 (6)0.0114 (6)
Geometric parameters (Å, º) top
P1—O21.4836 (10)C9—C101.531 (2)
P1—N21.6353 (11)C9—H9A0.9900
P1—N31.6371 (12)C9—H9B0.9900
P1—N11.6856 (11)C10—C111.521 (3)
O1—C71.2190 (18)C10—H10A0.9900
N1—C71.3694 (17)C10—H10B0.9900
N1—H1N0.863 (9)C11—C121.516 (3)
N2—C141.4677 (17)C11—H11A0.9900
N2—C81.4836 (17)C11—H11B0.9900
N3—C211.4705 (18)C12—C131.528 (2)
N3—C151.4803 (17)C12—H12A0.9900
C7—C1B1.505 (8)C12—H12B0.9900
C7—C1A1.520 (5)C13—H13A0.9900
F1A—C2A1.379 (5)C13—H13B0.9900
C1A—C6A1.388 (10)C14—H14A0.9800
C1A—C2A1.419 (6)C14—H14B0.9800
C2A—C3A1.374 (5)C14—H14C0.9800
C3A—C4A1.377 (5)C15—C201.527 (2)
C3A—H3A0.9500C15—C161.530 (2)
C4A—C5A1.391 (5)C15—H15A1.0000
C4A—H4A0.9500C16—C171.530 (2)
C5A—C6A1.362 (7)C16—H16A0.9900
C5A—H5A0.9500C16—H16B0.9900
C6A—H6A0.9500C17—C181.524 (3)
F1B—C2B1.375 (12)C17—H17A0.9900
C1B—C2B1.337 (17)C17—H17B0.9900
C1B—C6B1.338 (14)C18—C191.529 (2)
C2B—C3B1.451 (19)C18—H18A0.9900
C3B—C4B1.357 (9)C18—H18B0.9900
C3B—H3B0.9500C19—C201.533 (2)
C4B—C5B1.372 (8)C19—H19A0.9900
C4B—H4B0.9500C19—H19B0.9900
C5B—C6B1.387 (9)C20—H20A0.9900
C5B—H5B0.9500C20—H20B0.9900
C6B—H6B0.9500C21—H21A0.9800
C8—C91.521 (2)C21—H21B0.9800
C8—C131.5300 (19)C21—H21C0.9800
C8—H8A1.0000
O2—P1—N2110.71 (5)C9—C10—H10A109.3
O2—P1—N3117.00 (6)C11—C10—H10B109.3
N2—P1—N3105.12 (6)C9—C10—H10B109.3
O2—P1—N1105.47 (5)H10A—C10—H10B108.0
N2—P1—N1112.52 (6)C12—C11—C10110.89 (15)
N3—P1—N1106.11 (6)C12—C11—H11A109.5
C7—N1—P1126.82 (10)C10—C11—H11A109.5
C7—N1—H1N117.4 (11)C12—C11—H11B109.5
P1—N1—H1N114.9 (11)C10—C11—H11B109.5
C14—N2—C8116.85 (11)H11A—C11—H11B108.0
C14—N2—P1123.33 (9)C11—C12—C13111.01 (14)
C8—N2—P1118.80 (9)C11—C12—H12A109.4
C21—N3—C15117.08 (12)C13—C12—H12A109.4
C21—N3—P1115.59 (9)C11—C12—H12B109.4
C15—N3—P1124.43 (10)C13—C12—H12B109.4
O1—C7—N1123.16 (13)H12A—C12—H12B108.0
O1—C7—C1B116.5 (5)C12—C13—C8110.61 (13)
N1—C7—C1B120.1 (5)C12—C13—H13A109.5
O1—C7—C1A124.4 (3)C8—C13—H13A109.5
N1—C7—C1A112.3 (3)C12—C13—H13B109.5
C1B—C7—C1A10.7 (6)C8—C13—H13B109.5
C6A—C1A—C2A113.6 (4)H13A—C13—H13B108.1
C6A—C1A—C7126.3 (4)N2—C14—H14A109.5
C2A—C1A—C7120.1 (5)N2—C14—H14B109.5
C3A—C2A—F1A117.5 (3)H14A—C14—H14B109.5
C3A—C2A—C1A124.3 (4)N2—C14—H14C109.5
F1A—C2A—C1A118.0 (4)H14A—C14—H14C109.5
C2A—C3A—C4A118.0 (3)H14B—C14—H14C109.5
C2A—C3A—H3A121.0N3—C15—C20113.11 (12)
C4A—C3A—H3A121.0N3—C15—C16110.87 (12)
C3A—C4A—C5A120.6 (3)C20—C15—C16111.50 (13)
C3A—C4A—H4A119.7N3—C15—H15A107.0
C5A—C4A—H4A119.7C20—C15—H15A107.0
C6A—C5A—C4A119.1 (5)C16—C15—H15A107.0
C6A—C5A—H5A120.5C15—C16—C17110.48 (13)
C4A—C5A—H5A120.5C15—C16—H16A109.6
C5A—C6A—C1A124.4 (6)C17—C16—H16A109.6
C5A—C6A—H6A117.8C15—C16—H16B109.6
C1A—C6A—H6A117.8C17—C16—H16B109.6
C2B—C1B—C6B124.7 (9)H16A—C16—H16B108.1
C2B—C1B—C7116.5 (11)C18—C17—C16110.94 (15)
C6B—C1B—C7118.8 (8)C18—C17—H17A109.5
C1B—C2B—F1B127.8 (13)C16—C17—H17A109.5
C1B—C2B—C3B117.4 (11)C18—C17—H17B109.5
F1B—C2B—C3B114.7 (11)C16—C17—H17B109.5
C4B—C3B—C2B117.2 (8)H17A—C17—H17B108.0
C4B—C3B—H3B121.4C17—C18—C19110.80 (14)
C2B—C3B—H3B121.4C17—C18—H18A109.5
C3B—C4B—C5B123.3 (7)C19—C18—H18A109.5
C3B—C4B—H4B118.4C17—C18—H18B109.5
C5B—C4B—H4B118.4C19—C18—H18B109.5
C4B—C5B—C6B118.2 (7)H18A—C18—H18B108.1
C4B—C5B—H5B120.9C18—C19—C20111.47 (13)
C6B—C5B—H5B120.9C18—C19—H19A109.3
C1B—C6B—C5B119.1 (7)C20—C19—H19A109.3
C1B—C6B—H6B120.4C18—C19—H19B109.3
C5B—C6B—H6B120.4C20—C19—H19B109.3
N2—C8—C9112.02 (11)H19A—C19—H19B108.0
N2—C8—C13110.67 (11)C15—C20—C19111.23 (13)
C9—C8—C13111.09 (12)C15—C20—H20A109.4
N2—C8—H8A107.6C19—C20—H20A109.4
C9—C8—H8A107.6C15—C20—H20B109.4
C13—C8—H8A107.6C19—C20—H20B109.4
C8—C9—C10110.66 (14)H20A—C20—H20B108.0
C8—C9—H9A109.5N3—C21—H21A109.5
C10—C9—H9A109.5N3—C21—H21B109.5
C8—C9—H9B109.5H21A—C21—H21B109.5
C10—C9—H9B109.5N3—C21—H21C109.5
H9A—C9—H9B108.1H21A—C21—H21C109.5
C11—C10—C9111.55 (14)H21B—C21—H21C109.5
C11—C10—H10A109.3
O2—P1—N1—C7166.02 (12)O1—C7—C1B—C6B33.6 (12)
N2—P1—N1—C745.22 (14)N1—C7—C1B—C6B141.5 (8)
N3—P1—N1—C769.21 (13)C1A—C7—C1B—C6B174 (5)
O2—P1—N2—C14158.40 (11)C6B—C1B—C2B—F1B177.2 (10)
N3—P1—N2—C1431.17 (13)C7—C1B—C2B—F1B1 (2)
N1—P1—N2—C1483.86 (12)C6B—C1B—C2B—C3B0 (2)
O2—P1—N2—C833.54 (12)C7—C1B—C2B—C3B177.8 (8)
N3—P1—N2—C8160.77 (10)C1B—C2B—C3B—C4B1.2 (16)
N1—P1—N2—C884.20 (11)F1B—C2B—C3B—C4B178.4 (7)
O2—P1—N3—C2162.72 (12)C2B—C3B—C4B—C5B1.3 (11)
N2—P1—N3—C2160.56 (12)C3B—C4B—C5B—C6B0.5 (10)
N1—P1—N3—C21179.97 (10)C2B—C1B—C6B—C5B0.5 (19)
O2—P1—N3—C1597.35 (12)C7—C1B—C6B—C5B178.6 (7)
N2—P1—N3—C15139.37 (12)C4B—C5B—C6B—C1B0.5 (11)
N1—P1—N3—C1519.96 (14)C14—N2—C8—C973.62 (15)
P1—N1—C7—O14.1 (2)P1—N2—C8—C995.21 (12)
P1—N1—C7—C1B178.8 (6)C14—N2—C8—C1350.95 (16)
P1—N1—C7—C1A173.0 (3)P1—N2—C8—C13140.22 (10)
O1—C7—C1A—C6A141.5 (5)N2—C8—C9—C10179.97 (12)
N1—C7—C1A—C6A35.6 (6)C13—C8—C9—C1055.69 (16)
C1B—C7—C1A—C6A174 (4)C8—C9—C10—C1155.5 (2)
O1—C7—C1A—C2A38.2 (6)C9—C10—C11—C1255.9 (2)
N1—C7—C1A—C2A144.7 (4)C10—C11—C12—C1356.5 (2)
C1B—C7—C1A—C2A6 (3)C11—C12—C13—C856.75 (18)
C6A—C1A—C2A—C3A0.5 (7)N2—C8—C13—C12178.41 (12)
C7—C1A—C2A—C3A179.8 (3)C9—C8—C13—C1256.50 (16)
C6A—C1A—C2A—F1A175.9 (4)C21—N3—C15—C2054.79 (17)
C7—C1A—C2A—F1A4.4 (6)P1—N3—C15—C20105.01 (14)
F1A—C2A—C3A—C4A176.0 (3)C21—N3—C15—C1671.31 (17)
C1A—C2A—C3A—C4A0.6 (5)P1—N3—C15—C16128.89 (13)
C2A—C3A—C4A—C5A0.2 (4)N3—C15—C16—C17176.95 (14)
C3A—C4A—C5A—C6A0.2 (5)C20—C15—C16—C1756.06 (19)
C4A—C5A—C6A—C1A0.4 (7)C15—C16—C17—C1857.3 (2)
C2A—C1A—C6A—C5A0.1 (8)C16—C17—C18—C1957.1 (2)
C7—C1A—C6A—C5A179.6 (4)C17—C18—C19—C2055.6 (2)
O1—C7—C1B—C2B144.7 (10)N3—C15—C20—C19179.58 (12)
N1—C7—C1B—C2B40.3 (14)C16—C15—C20—C1954.65 (17)
C1A—C7—C1B—C2B5 (3)C18—C19—C20—C1554.31 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (1)1.93 (1)2.7476 (14)158 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC15H25FN3O2PC19H28F2N3O2PC21H33FN3O2P
Mr329.35399.41409.47
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)909090
a, b, c (Å)8.8477 (6), 9.7545 (6), 10.0198 (7)9.6501 (12), 10.0580 (13), 10.9947 (15)10.3245 (2), 10.5131 (2), 11.3253 (2)
α, β, γ (°)79.993 (2), 77.973 (2), 83.658 (2)75.392 (3), 77.744 (4), 88.084 (4)67.915 (1), 77.902 (1), 79.978 (1)
V3)830.43 (10)1008.9 (2)1107.61 (4)
Z222
Radiation typeMo KαMo KαCu Kα
µ (mm1)0.190.171.34
Crystal size (mm)0.20 × 0.20 × 0.120.25 × 0.22 × 0.100.15 × 0.15 × 0.10
Data collection
DiffractometerBruker D8 Quest CMOS area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Multi-scan
(SADABS; Sheldrick, 2004)
Multi-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.964, 0.9780.958, 0.9830.824, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
16977, 3036, 2773 9054, 3952, 3370 10794, 3824, 3710
Rint0.0490.0220.024
(sin θ/λ)max1)0.6020.6260.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 0.99 0.034, 0.087, 1.03 0.039, 0.103, 1.04
No. of reflections303639523824
No. of parameters206249292
No. of restraints112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.370.31, 0.360.33, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) for (I) top
P1—O21.4828 (10)N1—C71.3702 (18)
P1—N61.6337 (12)N2—C81.4736 (17)
P1—N21.6378 (11)N2—C101.4788 (17)
P1—N11.6928 (11)N6—C141.4747 (17)
O1—C71.2244 (17)N6—C121.4773 (17)
O2—P1—N6118.04 (6)C8—N2—C10114.89 (11)
O2—P1—N2110.05 (6)C8—N2—P1124.90 (9)
N6—P1—N2106.21 (6)C10—N2—P1117.09 (9)
O2—P1—N1105.37 (6)C14—N6—C12116.17 (11)
N6—P1—N1104.75 (6)C14—N6—P1119.09 (9)
N2—P1—N1112.45 (6)C12—N6—P1121.62 (9)
O2—P1—N1—C7164.80 (11)N2—P1—N1—C744.91 (13)
N6—P1—N1—C770.00 (12)P1—N1—C7—O15.2 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.854 (13)1.990 (14)2.8390 (15)172.1 (15)
Symmetry code: (i) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
P1—O21.4812 (10)N1—C71.3619 (18)
P1—N31.6215 (12)N2—C121.4699 (18)
P1—N21.6315 (12)N2—C81.4766 (18)
P1—N11.6989 (12)N3—C181.4659 (18)
O1—C71.2121 (18)N3—C141.4700 (18)
O2—P1—N3116.74 (6)C12—N2—C8113.25 (11)
O2—P1—N2111.60 (6)C12—N2—P1119.95 (10)
N3—P1—N2106.71 (6)C8—N2—P1121.62 (10)
O2—P1—N1105.13 (6)C18—N3—C14113.40 (11)
N3—P1—N1105.32 (6)C18—N3—P1126.95 (10)
N2—P1—N1111.20 (6)C14—N3—P1119.46 (10)
O2—P1—N1—C7162.48 (12)N2—P1—N1—C776.60 (14)
N3—P1—N1—C738.61 (14)P1—N1—C7—O10.2 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.852 (13)1.941 (14)2.7786 (16)167.6 (16)
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (III) top
P1—O21.4836 (10)N1—C71.3694 (17)
P1—N21.6353 (11)N2—C141.4677 (17)
P1—N31.6371 (12)N2—C81.4836 (17)
P1—N11.6856 (11)N3—C211.4705 (18)
O1—C71.2190 (18)N3—C151.4803 (17)
O2—P1—N2110.71 (5)C14—N2—C8116.85 (11)
O2—P1—N3117.00 (6)C14—N2—P1123.33 (9)
N2—P1—N3105.12 (6)C8—N2—P1118.80 (9)
O2—P1—N1105.47 (5)C21—N3—C15117.08 (12)
N2—P1—N1112.52 (6)C21—N3—P1115.59 (9)
N3—P1—N1106.11 (6)C15—N3—P1124.43 (10)
O2—P1—N1—C7166.02 (12)N3—P1—N1—C769.21 (13)
N2—P1—N1—C745.22 (14)P1—N1—C7—O14.1 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.863 (9)1.927 (11)2.7476 (14)158.2 (16)
Symmetry code: (i) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds