Buy article online - an online subscription or single-article purchase is required to access this article.
After reporting the structure of a new polymorph of 1,3,5-trifluoro-2,4,6-triiodobenzene (denoted
BzF3I3), C
6F
3I
3, (I), which crystallized in the space group
P2
1/
c, we perform a comparative analysis with the already reported
P2
1/
n polymorph, (II) [Reddy
et al. (2006).
Chem. Eur. J. 12, 2222–2234]. In polymorph (II), type-II I
I halogen bonds and I
π interactions connect molecules in such a way that a three-dimensional structure is formed; however, the way in which molecules are connected in polymorph (I), through type-II I
I halogen bonds and π–π interactions, gives rise to an exfoldable lamellar structure, which looks less tightly bound than that of (II). In agreement with this structural observation, both the melting point and the melting enthalpy of (I) are lower than those of (II).
Supporting information
CCDC reference: 1564695
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009).
1,3,5-Trifluoro-2,4,6-triiodobenzene
top
Crystal data top
C6F3I3 | F(000) = 888 |
Mr = 509.76 | Dx = 3.391 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3455 (9) Å | Cell parameters from 1826 reflections |
b = 13.1854 (10) Å | θ = 4.0–25.5° |
c = 9.2185 (8) Å | µ = 9.38 mm−1 |
β = 118.466 (11)° | T = 295 K |
V = 998.61 (18) Å3 | Plates, light_brown |
Z = 4 | 0.35 × 0.30 × 0.12 mm |
Data collection top
CCD Oxford Diffraction Xcalibur, Eos, Gemini diffractometer | 1610 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.075 |
thick slices scans | θmax = 29.3°, θmin = 4.0° |
Absorption correction: multi-scan CrysAlisPro (Oxford Diffraction, 2009) | h = −12→12 |
Tmin = 0.12, Tmax = 0.42 | k = −17→17 |
7952 measured reflections | l = −11→11 |
2404 independent reflections | |
Refinement top
Refinement on F2 | 109 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.0769P)2 + 0.0712P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.165 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 1.26 e Å−3 |
2404 reflections | Δρmin = −1.89 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
F1 | 0.3706 (9) | 0.8880 (5) | 0.1550 (8) | 0.0477 (17) | |
F3 | 0.5120 (9) | 0.8418 (5) | 0.7112 (8) | 0.0454 (16) | |
F5 | 0.9181 (8) | 0.9031 (6) | 0.5590 (8) | 0.0468 (17) | |
I2 | 0.19358 (10) | 0.83570 (7) | 0.36597 (10) | 0.0513 (3) | |
I4 | 0.89656 (9) | 0.86728 (6) | 0.88692 (8) | 0.0414 (3) | |
I6 | 0.71380 (11) | 0.92451 (7) | 0.17247 (9) | 0.0504 (3) | |
C1 | 0.4848 (13) | 0.8838 (7) | 0.3127 (12) | 0.030 (2) | |
C2 | 0.4352 (13) | 0.8629 (7) | 0.4307 (13) | 0.031 (2) | |
C3 | 0.5582 (15) | 0.8611 (7) | 0.5956 (13) | 0.033 (2) | |
C4 | 0.7199 (13) | 0.8721 (7) | 0.6403 (11) | 0.029 (2) | |
C5 | 0.7587 (15) | 0.8916 (7) | 0.5171 (13) | 0.034 (2) | |
C6 | 0.6472 (15) | 0.8977 (9) | 0.3549 (13) | 0.037 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
F1 | 0.034 (4) | 0.069 (5) | 0.033 (3) | 0.000 (3) | 0.011 (3) | 0.008 (3) |
F3 | 0.046 (4) | 0.061 (4) | 0.035 (3) | 0.001 (3) | 0.024 (3) | 0.008 (3) |
F5 | 0.028 (4) | 0.078 (5) | 0.036 (3) | −0.005 (3) | 0.017 (3) | −0.002 (3) |
I2 | 0.0323 (5) | 0.0693 (6) | 0.0482 (5) | −0.0118 (4) | 0.0159 (4) | 0.0070 (4) |
I4 | 0.0357 (5) | 0.0575 (5) | 0.0285 (4) | 0.0021 (4) | 0.0133 (4) | −0.0048 (3) |
I6 | 0.0451 (6) | 0.0762 (6) | 0.0369 (5) | 0.0089 (4) | 0.0252 (4) | 0.0140 (4) |
C1 | 0.025 (6) | 0.029 (5) | 0.022 (5) | 0.006 (5) | 0.001 (4) | 0.004 (4) |
C2 | 0.024 (5) | 0.037 (5) | 0.029 (5) | −0.003 (5) | 0.009 (5) | 0.006 (4) |
C3 | 0.038 (6) | 0.036 (6) | 0.031 (5) | 0.005 (5) | 0.021 (5) | 0.003 (4) |
C4 | 0.030 (6) | 0.032 (5) | 0.021 (5) | 0.000 (5) | 0.008 (4) | 0.002 (4) |
C5 | 0.038 (6) | 0.027 (5) | 0.039 (6) | 0.001 (5) | 0.020 (5) | −0.007 (4) |
C6 | 0.038 (7) | 0.050 (6) | 0.025 (5) | −0.011 (5) | 0.017 (5) | −0.006 (4) |
Geometric parameters (Å, º) top
F1—C1 | 1.333 (11) | C1—C2 | 1.398 (14) |
F3—C3 | 1.351 (11) | C1—C6 | 1.387 (15) |
F5—C5 | 1.358 (14) | C2—C3 | 1.402 (14) |
I2—C2 | 2.074 (11) | C3—C4 | 1.371 (15) |
I4—C4 | 2.079 (10) | C4—C5 | 1.371 (14) |
I6—C6 | 2.083 (10) | C5—C6 | 1.358 (15) |
| | | |
F1—C1—C2 | 117.8 (10) | C5—C4—C3 | 117.4 (10) |
F1—C1—C6 | 120.1 (9) | C5—C4—I4 | 121.7 (8) |
C2—C1—C6 | 122.1 (9) | C3—C4—I4 | 120.8 (7) |
C1—C2—C3 | 116.3 (10) | C6—C5—C4 | 123.8 (11) |
C1—C2—I2 | 122.0 (8) | C6—C5—F5 | 118.0 (9) |
C3—C2—I2 | 121.8 (7) | C4—C5—F5 | 118.2 (10) |
F3—C3—C4 | 120.2 (10) | C5—C6—C1 | 117.6 (9) |
F3—C3—C2 | 117.0 (10) | C5—C6—I6 | 122.1 (9) |
C4—C3—C2 | 122.7 (9) | C1—C6—I6 | 120.3 (8) |
Experimental details for (I) and (II). top | (I) | (II) |
| This work | Reddy et al. (2006) |
Chemical formula | C6F3I3 | C6F3I3 |
Mr, F(000) | 509.76, 888 | 509.76, 888 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/c | P21/n |
Z | 4 | 4 |
Temperature (K) | 295 | 298 |
a, b, c (Å) | 9.3455 (9), 13.1854 (10), 9.2185 (8) | 13.937 (4), 4.7919 (15), 15.488 (5) |
β (°) | 118.466 (11) | 107.486 (3) |
V (Å3) | 998.61 (18) | 986.6 (5) |
Calculated density (Mg m-1) | 3.391 | 3.432 |
Radiation type | Mo Kα, 0.7103 Å | Mo Kα, 0.7103 Å |
µ (mm-1) | 9.38 | 9.49 |
Crystal shape, colour | Plate, light brown | Plate, colourless |
Crystal size (mm) | 0.35 × 0.30 × 0.12 | * |
Diffractometer | Oxford Diffraction | Bruker–Nonius SMART APEX CCD |
Absorption correction | Multi-scan | Multi-scan |
Tmin, Tmax | 0.12, 0.42 | * |
Total, independent and observed reflections | 7952, 2404, 1610 | 5283, 1923, 1642 |
Rint | 0.075 | 0.0241 |
θ range (°) | 3.98, 29.33 | 1.73, 26.03 |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.165, 1.06 | 0.032, 0.080, 1.05 |
No. of reflections | 2404 | 1923 |
No. of parameters | 109 | 109 |
Δρmax, Δρmin (e Å-3) | 1.26, -1.88 | * |
Note: (*) information not available in the original publication. |
π–π interaction for (I) topCode | Type | Cg···Cg | Cg···Cg (Å) | da (°) | d/perp (Å) | Shift (Å) | 100*ρ(rCP) (a.u.) | 100*∇2ρ(rCP) (a.u.) |
#1 | A–A | Cg1···Cg1i | 3.859 (7) | 0.0 (5) | 3.531 (4) | 1.557 | 0.40 | 0.13 |
Notes: da is the dihedral angle between planes;
d/perp is the perpendicular distances of Cg to the opposite
plane; Shift is the parallel shift between planes;
rCP is the position of the critical point.
Type code: A–A = linking faces type A.
Symmetry code: (i) -x+1, -y+2, -z+1. |
C—X···π interactions for (I) (X = F, I) topCode | Type | C—X···Cg | X···Cg (Å) | X/perp (Å) | X···Cg/perp (°) | C—X/perp (°) | 100*ρ(rCP) (a.u.) | 100*∇2ρ(rCP) (a.u.) |
#2 | B–B | C6—I6···Cg1ii | 4.308 (3) | 3.797 (3) | 28.1 (2) | 69.8 (2) | 0.50 | 0.14 |
#3 | B–B | C3—F3···Cg1iii | 3.663 (6) | 3.109 (7) | 30.8 (2) | 111.3 (3) | 0.49 | 0.20 |
Notes: X/perp is the perpendicular distances of X to the
plane; X···Cg/perp is the angle between the X···Cg
vector and the plane normal; C—X/perp is the angle between the
C—X vector and the plane normal; rCP is the position of
the critical point.
Type code: B–B = linking faces type B.
Symmetry codes: (ii) x, -y+3/2, z-1/2;
(iii) x, -y+3/2, z+1/2. |
C—X···X'—C' interactions for (I) (X = F, I) topCode | Type | C—X···(X—C)' | X···X' (Å) | <C—X···X'> (°) | <X···X'—C'> (°) | 100*ρ(rCP) (a.u.) | 100*∇2ρ(rCP) (a.u.) |
#4 | X | C4—I4···(I6—C6)iv | 3.8341 (15) | 111.3 (3) | 157.4 (3) | 0.93 | 0.22 |
#5 | B–B | C2—I2···(I4—C4)v | 3.9264 (14) | 143.3 (3) | 100.3 (3) | 0.86 | 0.20 |
#6 | A–A | C4—I4···(I4—C4)vi | 4.0610 (12) | 118.1 (3) | 118.1 (3) | 0.73 | 0.17 |
#7 | X | C2—I2···(I4—C4)vii | 3.9617 (11) | 113.0 (3) | 176.6 (3) | 0.70 | 0.18 |
#8 | X | C2—I2···(I6—C6)viii | 4.1271 (15) | 152.3 (4) | 106.5 (4) | 0.42 | 0.11 |
#9 | B–B | C2—I2···(F1—C1)iii | 3.7852 (13) | 83.2 (4) | 126.1 (4) | 0.38 | 0.12 |
#10 | B–B | C4—I4···(F5—C5)iii | 3.8683 (14) | 109.6 (3) | 86.9 (3) | 0.36 | 0.12 |
Notes: <C—X···X'> is the angle between the
C—X and X···X' vectors;
<X···X'—C'> is the angle between the X···X'
and X'—C' vectors; rCP is the position of the critical
point. Type codes: X = interplane, A–A = linking faces type
A and B–B = linking faces type B.
Symmetry codes: (iii) x, -y+3/2, z+1/2;
(iv) x, y, z+1;
(v) x-1, -y+3/2, z-1/2;
(vi) -x+2, -y+2, -z+2;
(vii) x-1, y, z-1;
(viii) x-1, y, z. |
C—X···π bonds for (II) (X = F, I) topCode | Type | C—X···Cg | X···Cg (Å) | X/perp (Å) | X···Cg/perp (°) | C—X/perp (°) | 100*ρ(rCP) (a.u.) | 100\*υ0087112ρ(rCP) (a.u.) |
#1 | X | C2—I2···Cg1i | 3.728 (3) | 3.642 | 12.29 | 83.1 (2) | 0.69 | 0.21 |
#2 | X | C5—F5···Cg1ii | 3.663 (6) | 3.575 | 12.66 | 82.7 (4) | 0.48 | 0.19 |
Notes: X/perp is the perpendicular distances of X to the
plane; X···Cg/perp is the angle between the X···Cg
vector and the plane normal; C—X/perp is the angle between the
C—X vector and the plane normal; rCP: position of the
critical point. Type code: X = intra-column.
Symmetry codes: (i) x, y+1, z;
(ii) x, y-1, z. |
C—X···X'—C' bonds for (II) (X = F, I) topCode | Type | C—X···(X—C)' | X···X' | <C—X···X'> (°) | <X···X'—C'> (°) | 100*ρ(rCP) (a.u.) | 100*∇2ρ(rCP) (a.u.) |
#3 | Y | C2—I2···(I2—C2)iii | 3.774 (2) | 171.1 (2) | 100.7 (2) | 1.02 | 0.24 |
#4 | Z | C4—I4···(I6—C6)iv | 3.957 (2) | 80.5 (5) | 146.8 (5) | 0.80 | 0.19 |
#5 | Z | C6—I6···(I6—C6)v | 4.101 (2) | 138.4 (2) | 138.4 (2) | 0.57 | 0.14 |
#6 | Z | C2—I2···(I4—C4)vi | 4.241 (5) | 126.9 (4) | 123.2 (4) | 0.55 | 0.13 |
#7 | X | C1—F1···(I6—C6)i | 3.656 (5) | 87.3 (4) | 90.4 (4) | 0.53 | 0.17 |
#8 | Z | C3—F3···(F3—C3)vii | 2.851 (8) | 157.4 (5) | 157.4 (5) | 0.52 | 0.28 |
#9 | Z | C1—F1···(I4—C4)vii | 3.584 (5) | 145.5 (4) | 126.1 (4) | 0.49 | 0.17 |
#10 | Z | C5—F5···(I6—C6)viii | 3.530 (5) | 167.3 (4) | 74.2 (4) | 0.41 | 0.13 |
#11 | Z | C3—F3···(I4—C4)vi | 3.979 (6) | 111.9 (5) | 79.0 (5) | 0.35 | 0.11 |
#12 | Z | C2—I2···(I4—C4)vii | 4.044 (2) | 105.6 (2) | 157.5 (2) | 0.24 | 0.06 |
Notes: <C—X···X'> is the angle between the C—X and
X···X' vectors; <X···X'—C'> is the angle
between the X···X' and X'—C' vectors; rCP is
the position of the critical point.
Type codes: X = intra-column, Y = intra-bicolumn and
Z = inter-bicolumn.
Symmetry codes: (iii) -x-1/2, y-1/2, -z+1/2;
(iv) -x+1/2, y+1/2, -z+1/2;
(v) -x, -y-1, -z;
(vi) -x, -y, -z+1;
(vii) x-1/2, -y+1/2, z-1/2;
(viii) -x+1/2, y-1/2, -z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.