Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
After reporting the structure of a new polymorph of 1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (denoted BzF3I3), C6F3I3, (I), which crystallized in the space group P21/c, we perform a comparative analysis with the already reported P21/n polymorph, (II) [Reddy et al. (2006). Chem. Eur. J. 12, 2222–2234]. In polymorph (II), type-II I...I halogen bonds and I...π inter­actions connect mol­ecules in such a way that a three-dimensional structure is formed; however, the way in which mol­ecules are connected in polymorph (I), through type-II I...I halogen bonds and π–π inter­actions, gives rise to an exfoldable lamellar structure, which looks less tightly bound than that of (II). In agreement with this structural observation, both the melting point and the melting enthalpy of (I) are lower than those of (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617011007/uk3135sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617011007/uk3135Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617011007/uk3135sup3.pdf
Cohesion energies and additional figures

CCDC reference: 1564695

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009).

1,3,5-Trifluoro-2,4,6-triiodobenzene top
Crystal data top
C6F3I3F(000) = 888
Mr = 509.76Dx = 3.391 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3455 (9) ÅCell parameters from 1826 reflections
b = 13.1854 (10) Åθ = 4.0–25.5°
c = 9.2185 (8) ŵ = 9.38 mm1
β = 118.466 (11)°T = 295 K
V = 998.61 (18) Å3Plates, light_brown
Z = 40.35 × 0.30 × 0.12 mm
Data collection top
CCD Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
1610 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.075
thick slices scansθmax = 29.3°, θmin = 4.0°
Absorption correction: multi-scan
CrysAlisPro (Oxford Diffraction, 2009)
h = 1212
Tmin = 0.12, Tmax = 0.42k = 1717
7952 measured reflectionsl = 1111
2404 independent reflections
Refinement top
Refinement on F2109 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.0712P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.165(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.26 e Å3
2404 reflectionsΔρmin = 1.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3706 (9)0.8880 (5)0.1550 (8)0.0477 (17)
F30.5120 (9)0.8418 (5)0.7112 (8)0.0454 (16)
F50.9181 (8)0.9031 (6)0.5590 (8)0.0468 (17)
I20.19358 (10)0.83570 (7)0.36597 (10)0.0513 (3)
I40.89656 (9)0.86728 (6)0.88692 (8)0.0414 (3)
I60.71380 (11)0.92451 (7)0.17247 (9)0.0504 (3)
C10.4848 (13)0.8838 (7)0.3127 (12)0.030 (2)
C20.4352 (13)0.8629 (7)0.4307 (13)0.031 (2)
C30.5582 (15)0.8611 (7)0.5956 (13)0.033 (2)
C40.7199 (13)0.8721 (7)0.6403 (11)0.029 (2)
C50.7587 (15)0.8916 (7)0.5171 (13)0.034 (2)
C60.6472 (15)0.8977 (9)0.3549 (13)0.037 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.034 (4)0.069 (5)0.033 (3)0.000 (3)0.011 (3)0.008 (3)
F30.046 (4)0.061 (4)0.035 (3)0.001 (3)0.024 (3)0.008 (3)
F50.028 (4)0.078 (5)0.036 (3)0.005 (3)0.017 (3)0.002 (3)
I20.0323 (5)0.0693 (6)0.0482 (5)0.0118 (4)0.0159 (4)0.0070 (4)
I40.0357 (5)0.0575 (5)0.0285 (4)0.0021 (4)0.0133 (4)0.0048 (3)
I60.0451 (6)0.0762 (6)0.0369 (5)0.0089 (4)0.0252 (4)0.0140 (4)
C10.025 (6)0.029 (5)0.022 (5)0.006 (5)0.001 (4)0.004 (4)
C20.024 (5)0.037 (5)0.029 (5)0.003 (5)0.009 (5)0.006 (4)
C30.038 (6)0.036 (6)0.031 (5)0.005 (5)0.021 (5)0.003 (4)
C40.030 (6)0.032 (5)0.021 (5)0.000 (5)0.008 (4)0.002 (4)
C50.038 (6)0.027 (5)0.039 (6)0.001 (5)0.020 (5)0.007 (4)
C60.038 (7)0.050 (6)0.025 (5)0.011 (5)0.017 (5)0.006 (4)
Geometric parameters (Å, º) top
F1—C11.333 (11)C1—C21.398 (14)
F3—C31.351 (11)C1—C61.387 (15)
F5—C51.358 (14)C2—C31.402 (14)
I2—C22.074 (11)C3—C41.371 (15)
I4—C42.079 (10)C4—C51.371 (14)
I6—C62.083 (10)C5—C61.358 (15)
F1—C1—C2117.8 (10)C5—C4—C3117.4 (10)
F1—C1—C6120.1 (9)C5—C4—I4121.7 (8)
C2—C1—C6122.1 (9)C3—C4—I4120.8 (7)
C1—C2—C3116.3 (10)C6—C5—C4123.8 (11)
C1—C2—I2122.0 (8)C6—C5—F5118.0 (9)
C3—C2—I2121.8 (7)C4—C5—F5118.2 (10)
F3—C3—C4120.2 (10)C5—C6—C1117.6 (9)
F3—C3—C2117.0 (10)C5—C6—I6122.1 (9)
C4—C3—C2122.7 (9)C1—C6—I6120.3 (8)
Experimental details for (I) and (II). top
(I)(II)
This workReddy et al. (2006)
Chemical formulaC6F3I3C6F3I3
Mr, F(000)509.76, 888509.76, 888
Crystal systemMonoclinicMonoclinic
Space groupP21/cP21/n
Z44
Temperature (K)295298
a, b, c (Å)9.3455 (9), 13.1854 (10), 9.2185 (8)13.937 (4), 4.7919 (15), 15.488 (5)
β (°)118.466 (11)107.486 (3)
V3)998.61 (18)986.6 (5)
Calculated density (Mg m-1)3.3913.432
Radiation typeMo Kα, 0.7103 ÅMo Kα, 0.7103 Å
µ (mm-1)9.389.49
Crystal shape, colourPlate, light brownPlate, colourless
Crystal size (mm)0.35 × 0.30 × 0.12*
DiffractometerOxford DiffractionBruker–Nonius SMART APEX CCD
Absorption correctionMulti-scanMulti-scan
Tmin, Tmax0.12, 0.42*
Total, independent and observed reflections7952, 2404, 16105283, 1923, 1642
Rint0.0750.0241
θ range (°)3.98, 29.331.73, 26.03
R[F2 > 2σ(F2)], wR(F2), S0.054, 0.165, 1.060.032, 0.080, 1.05
No. of reflections24041923
No. of parameters109109
Δρmax, Δρmin (e Å-3)1.26, -1.88*
Note: (*) information not available in the original publication.
ππ interaction for (I) top
CodeTypeCg···CgCg···Cg (Å)da (°)d/perp (Å)Shift (Å)100*ρ(rCP) (a.u.)100*∇2ρ(rCP) (a.u.)
#1A–ACg1···Cg1i3.859 (7)0.0 (5)3.531 (4)1.5570.400.13
Notes: da is the dihedral angle between planes; d/perp is the perpendicular distances of Cg to the opposite plane; Shift is the parallel shift between planes; rCP is the position of the critical point. Type code: A–A = linking faces type A.

Symmetry code: (i) -x+1, -y+2, -z+1.
C—X···π interactions for (I) (X = F, I) top
CodeTypeC—X···CgX···Cg (Å)X/perp (Å)X···Cg/perp (°)C—X/perp (°)100*ρ(rCP) (a.u.)100*∇2ρ(rCP) (a.u.)
#2B–BC6—I6···Cg1ii4.308 (3)3.797 (3)28.1 (2)69.8 (2)0.500.14
#3B–BC3—F3···Cg1iii3.663 (6)3.109 (7)30.8 (2)111.3 (3)0.490.20
Notes: X/perp is the perpendicular distances of X to the plane; X···Cg/perp is the angle between the X···Cg vector and the plane normal; C—X/perp is the angle between the C—X vector and the plane normal; rCP is the position of the critical point. Type code: B–B = linking faces type B.

Symmetry codes: (ii) x, -y+3/2, z-1/2; (iii) x, -y+3/2, z+1/2.
C—X···X'—C' interactions for (I) (X = F, I) top
CodeTypeC—X···(X—C)'X···X' (Å)<C—X···X'> (°)<X···X'—C'> (°)100*ρ(rCP) (a.u.)100*∇2ρ(rCP) (a.u.)
#4XC4—I4···(I6—C6)iv3.8341 (15)111.3 (3)157.4 (3)0.930.22
#5B–BC2—I2···(I4—C4)v3.9264 (14)143.3 (3)100.3 (3)0.860.20
#6A–AC4—I4···(I4—C4)vi4.0610 (12)118.1 (3)118.1 (3)0.730.17
#7XC2—I2···(I4—C4)vii3.9617 (11)113.0 (3)176.6 (3)0.700.18
#8XC2—I2···(I6—C6)viii4.1271 (15)152.3 (4)106.5 (4)0.420.11
#9B–BC2—I2···(F1—C1)iii3.7852 (13)83.2 (4)126.1 (4)0.380.12
#10B–BC4—I4···(F5—C5)iii3.8683 (14)109.6 (3)86.9 (3)0.360.12
Notes: <C—X···X'> is the angle between the C—X and X···X' vectors; <X···X'—C'> is the angle between the X···X' and X'—C' vectors; rCP is the position of the critical point. Type codes: X = interplane, A–A = linking faces type A and B–B = linking faces type B.

Symmetry codes: (iii) x, -y+3/2, z+1/2; (iv) x, y, z+1; (v) x-1, -y+3/2, z-1/2; (vi) -x+2, -y+2, -z+2; (vii) x-1, y, z-1; (viii) x-1, y, z.
C—X···π bonds for (II) (X = F, I) top
CodeTypeC—X···CgX···Cg (Å)X/perp (Å)X···Cg/perp (°)C—X/perp (°)100*ρ(rCP) (a.u.)100\*υ0087112ρ(rCP) (a.u.)
#1XC2—I2···Cg1i3.728 (3)3.64212.2983.1 (2)0.690.21
#2XC5—F5···Cg1ii3.663 (6)3.57512.6682.7 (4)0.480.19
Notes: X/perp is the perpendicular distances of X to the plane; X···Cg/perp is the angle between the X···Cg vector and the plane normal; C—X/perp is the angle between the C—X vector and the plane normal; rCP: position of the critical point. Type code: X = intra-column. Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.
C—X···X'—C' bonds for (II) (X = F, I) top
CodeTypeC—X···(X—C)'X···X'<C—X···X'> (°)<X···X'—C'> (°)100*ρ(rCP) (a.u.)100*∇2ρ(rCP) (a.u.)
#3YC2—I2···(I2—C2)iii3.774 (2)171.1 (2)100.7 (2)1.020.24
#4ZC4—I4···(I6—C6)iv3.957 (2)80.5 (5)146.8 (5)0.800.19
#5ZC6—I6···(I6—C6)v4.101 (2)138.4 (2)138.4 (2)0.570.14
#6ZC2—I2···(I4—C4)vi4.241 (5)126.9 (4)123.2 (4)0.550.13
#7XC1—F1···(I6—C6)i3.656 (5)87.3 (4)90.4 (4)0.530.17
#8ZC3—F3···(F3—C3)vii2.851 (8)157.4 (5)157.4 (5)0.520.28
#9ZC1—F1···(I4—C4)vii3.584 (5)145.5 (4)126.1 (4)0.490.17
#10ZC5—F5···(I6—C6)viii3.530 (5)167.3 (4)74.2 (4)0.410.13
#11ZC3—F3···(I4—C4)vi3.979 (6)111.9 (5)79.0 (5)0.350.11
#12ZC2—I2···(I4—C4)vii4.044 (2)105.6 (2)157.5 (2)0.240.06
Notes: <C—X···X'> is the angle between the C—X and X···X' vectors; <X···X'—C'> is the angle between the X···X' and X'—C' vectors; rCP is the position of the critical point. Type codes: X = intra-column, Y = intra-bicolumn and Z = inter-bicolumn.

Symmetry codes: (iii) -x-1/2, y-1/2, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) -x, -y-1, -z; (vi) -x, -y, -z+1; (vii) x-1/2, -y+1/2, z-1/2; (viii) -x+1/2, y-1/2, -z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds