Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structural and microstructural responses of a model metal–organic framework material, Ni(3-methyl-4,4′-bipyridine)[Ni(CN)4] (Ni-BpyMe or PICNIC-21), to CO2 adsorption and desorption are reported for in situ small-angle X-ray scattering and X-ray diffraction measurements under different gas pressure conditions for two technologically important cases. These conditions are single or dual gas flow (CO2 with N2, CH4 or H2 at sub-critical CO2 partial pressures and ambient temperatures) and supercritical CO2 (with static pressures and temperatures adjusted to explore the gas, liquid and supercritical fluid regimes on the CO2 phase diagram). The experimental results are compared with density functional theory calculations that seek to predict where CO2 and other gas molecules are accommodated within the sorbent structure as a function of gas pressure conditions, and hence the degree of swelling and contraction in the associated structure spacings and void spaces. These predictions illustrate the insights that can be gained concerning how such sorbents can be designed or modified to optimize the desired gas sorption properties relevant to enhanced gas recovery or to addressing carbon dioxide reduction through carbon mitigation, or even direct air capture of CO2.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576722012134/vb5033sup1.pdf
Additional tables and figures

zip

Zip compressed file https://doi.org/10.1107/S1600576722012134/vb5033sup2.zip
Zipped archive of POSCAR files


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds