Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Single crystals of ammonium 2,4-dinitrophenolate hydrate (ADH) were grown by the slow evaporation solution growth technique. The structure is elucidated by single-crystal X-ray diffraction analysis and the crystal belongs to an orthorhombic system with noncentrosymmetric space group Pna21. The second harmonic generation efficiency of ADH is superior to that of the reference material KH2PO4. The X-ray study reveals that molecules are associated by weak C—H...O, O—H...N, N—H...π and π–π stacking interactions, which are responsible for the formation and strengthening of the supramolecular assembly. Inter- and intramolecular hydrogen-bonding interactions support the supramol­ecular architecture in the crystal packing. Three different types of architecture, i.e. column-like packing, a sandwich model of packing and a cluster network type of infrastructure, are observed. Optical studies reveal that the absorption is minimum in the visible region and the cutoff wavelength is at ∼240 nm. The band-gap energy was estimated by the application of the Kubelka–Munk algorithm. The powder X-ray diffraction pattern reveals the good crystallinity of the as-grown specimen. Investigation of the intermolecular interactions and crystal packing using Hirshfeld surface analysis, based on single-crystal X-ray diffraction, reveals that the close contacts are associated with molecular interactions. Fingerprint plots of Hirshfeld surfaces were used to locate and analyze the percentage of hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576715006445/vh5030sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576715006445/vh5030Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576715006445/vh5030sup3.pdf
Supplementary Figure S1

CCDC reference: 1012355

Computing details top

Program(s) used to solve structure: olex2.solve (Bourhis et al., 2013); program(s) used to refine structure: olex2.refine (Bourhis et al., 2013); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(I) top
Crystal data top
C6H3N2O5·H2O·H4NF(000) = 456.3395
Mr = 219.15Dx = 1.598 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 9.0136 (12) ŵ = 0.14 mm1
b = 21.500 (3) ÅT = 293 K
c = 4.7005 (6) ÅNeedle, clear yellowish yellow
V = 910.9 (2) Å30.35 × 0.3 × 0.3 mm
Z = 4
Data collection top
Oxford Gemini
diffractometer
1402 reflections with I 2u(I)
Radiation source: Molybdenum, MORint = 0.021
Molybdenum monochromatorθmax = 26.4°, θmin = 3.0°
Detector resolution: 8 pixels mm-1h = 1011
ω rotation scansk = 826
2420 measured reflectionsl = 45
1681 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0326P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.19 e Å3
1681 reflectionsΔρmin = 0.22 e Å3
171 parametersAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876-881.
0 restraintsAbsolute structure parameter: 2.1 (6)
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50318 (18)0.41603 (8)0.4692 (4)0.0405 (4)
O60.0408 (2)0.52882 (11)0.5842 (5)0.0479 (5)
N10.3503 (3)0.53313 (12)0.4783 (5)0.0399 (5)
N20.2809 (2)0.38420 (10)0.8974 (5)0.0432 (5)
N30.3802 (3)0.16993 (11)0.6925 (5)0.0543 (6)
O20.3142 (2)0.43857 (9)0.8963 (4)0.0586 (6)
O40.2946 (3)0.15656 (9)0.8823 (5)0.0796 (7)
O30.1798 (2)0.36468 (10)1.0442 (5)0.0788 (8)
C10.4709 (2)0.36009 (11)0.5251 (5)0.0332 (5)
C20.3640 (3)0.34029 (11)0.7294 (5)0.0330 (5)
C40.4096 (3)0.23405 (12)0.6343 (5)0.0395 (6)
C30.3349 (3)0.27838 (13)0.7790 (6)0.0395 (6)
O50.4414 (4)0.13043 (10)0.5515 (5)0.0972 (10)
C50.5129 (3)0.24994 (13)0.4311 (6)0.0463 (7)
C60.5413 (3)0.31081 (13)0.3795 (5)0.0434 (7)
H50.561 (3)0.2185 (12)0.327 (6)0.049 (8)*
H60.610 (3)0.3229 (13)0.256 (6)0.050 (8)*
H6a0.024 (4)0.5152 (16)0.742 (9)0.075 (14)*
H1a0.383 (3)0.4933 (16)0.478 (7)0.061 (9)*
H30.268 (3)0.2679 (12)0.928 (7)0.050 (8)*
H1b0.378 (3)0.5516 (16)0.317 (8)0.067 (11)*
H6b0.006 (4)0.5639 (18)0.577 (11)0.119 (17)*
H1c0.399 (3)0.5585 (15)0.627 (7)0.071 (10)*
H1d0.253 (3)0.5284 (14)0.495 (7)0.065 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0487 (9)0.0307 (9)0.0421 (10)0.0033 (8)0.0086 (7)0.0044 (8)
O60.0518 (11)0.0410 (12)0.0508 (14)0.0054 (10)0.0003 (9)0.0023 (11)
N10.0447 (14)0.0294 (12)0.0457 (15)0.0029 (11)0.0020 (12)0.0045 (12)
N20.0422 (11)0.0346 (12)0.0526 (14)0.0036 (11)0.0110 (10)0.0076 (12)
N30.0723 (16)0.0307 (14)0.0600 (17)0.0010 (13)0.0034 (13)0.0028 (13)
O20.0742 (13)0.0302 (10)0.0713 (13)0.0004 (10)0.0275 (12)0.0025 (10)
O40.0962 (16)0.0360 (12)0.1067 (17)0.0056 (12)0.0379 (16)0.0150 (13)
O30.0759 (14)0.0426 (12)0.118 (2)0.0088 (11)0.0624 (14)0.0157 (13)
C10.0346 (12)0.0294 (13)0.0358 (14)0.0021 (11)0.0033 (10)0.0019 (11)
C20.0342 (12)0.0287 (13)0.0362 (13)0.0027 (11)0.0032 (10)0.0022 (11)
C40.0472 (14)0.0273 (13)0.0440 (16)0.0012 (11)0.0009 (12)0.0025 (12)
C30.0395 (14)0.0336 (14)0.0455 (16)0.0004 (12)0.0048 (12)0.0058 (12)
O50.168 (3)0.0326 (12)0.0914 (19)0.0035 (15)0.0511 (19)0.0091 (14)
C50.0627 (17)0.0334 (14)0.0428 (16)0.0061 (14)0.0068 (14)0.0068 (13)
C60.0489 (15)0.0390 (15)0.0424 (16)0.0013 (13)0.0136 (13)0.0017 (13)
Geometric parameters (Å, º) top
O1—C11.265 (3)N3—C41.430 (3)
O6—H6a0.81 (4)N3—O51.210 (3)
O6—H6b0.82 (4)C1—C21.425 (3)
N1—H1a0.91 (3)C1—C61.412 (3)
N1—H1b0.89 (4)C2—C31.376 (3)
N1—H1c0.99 (4)C4—C31.351 (3)
N1—H1d0.89 (3)C4—C51.377 (3)
N2—O21.207 (3)C3—H30.95 (3)
N2—O31.218 (3)C5—C61.355 (4)
N2—C21.441 (3)C5—H50.94 (3)
N3—O41.213 (3)C6—H60.89 (3)
H6b—O6—H6a108 (4)C1—C2—N2121.7 (2)
H1b—N1—H1a109 (3)C3—C2—N2116.2 (2)
H1c—N1—H1a112 (3)C3—C2—C1122.1 (2)
H1c—N1—H1b103 (3)C3—C4—N3119.4 (2)
H1d—N1—H1a102 (3)C5—C4—N3119.8 (2)
H1d—N1—H1b114 (3)C5—C4—C3120.8 (2)
H1d—N1—H1c116 (3)C4—C3—C2120.1 (2)
O3—N2—O2121.5 (2)H3—C3—C2118.3 (17)
C2—N2—O2120.2 (2)H3—C3—C4121.3 (16)
C2—N2—O3118.3 (2)C6—C5—C4119.4 (3)
C4—N3—O4119.1 (2)H5—C5—C4119.7 (16)
O5—N3—O4121.7 (2)H5—C5—C6120.9 (16)
O5—N3—C4119.1 (2)C5—C6—C1123.6 (3)
C2—C1—O1125.4 (2)H6—C6—C1114.3 (18)
C6—C1—O1120.6 (2)H6—C6—C5122.0 (18)
C6—C1—C2114.0 (2)
 

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds