Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, the [alpha] and [beta] anomers of methyl 2-(N-benzyl­amino)-2,3-di­deoxy-4,6-O-phenyl­methyl­ene-3-C-phenyl­sulfonyl-D-gluco­pyran­oside, C27H29NO6S, belong to the class of deoxy­amino-­sugars prepared by the addition of amines at C2. The endocyclic bond lengths of the pyran­ose ring in the [alpha] anomer are shorter than the corresponding bonds in the [beta] anomer. The pyran­ose ring is in the chair form in the former, while it is in the boat form in the latter. These observed differences could be attributed to the C2 substitution of a bulky group. The phenyl­sulfonyl and benzyl­amino groups are in equatorial positions in the [alpha] anomer, while the benzyl­amino group is axial in the [beta] anomer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007344/vj1104sup1.cif
Contains datablocks Ia, Ib, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007344/vj1104Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007344/vj1104Ibsup3.hkl
Contains datablock Ib

CCDC references: 150359; 150360

Comment top

Aminosugars in general are one of the most important classes of carbohydrates. The C—N equatorial bonds at the C2 position of carbohydrates play a significant role because naturally occurring aminosugars such as D-glucosamine, D-galactosamine, D-lividosamine, etc. have their C—N bonds at C2 in equatorial configuration. Not many synthetic routes are available for the introduction of N-monoalkylated and N-dialkylated amines to C2 carbon of pyranoses in equatorial configurations. As part of an ongoing programme on the development of novel synthetic routes for the preparation of new classes of deoxyaminosugars, we have been studying the stereoselective addition of various amines to phenylsulfonyl-modified carbohydrates. In this context we have determined the structure of the α, (I), and β, (II), anomers of a phenylsulfonyl-modified monosaccharide with amino substitution at C2. \sch

When the geometry of the pyranose rings in the two molecules is compared, the average endocyclic C—C bond length is 1.528 Å in α and 1.537 Å in β. The value of the former is closer to whereas the latter is higher than the average values reported for glucopyranose rings (Jeffrey, 1990). The average of the endocyclic bond angles around carbon atoms is 111.1 and 111.6°, respectively. These values are higher than the reported average (Jeffrey, 1990). The bond angle around O5 in β anomer is wider than that in α.

The pyranose-dioxane double ring system in α anomer is in chair conformation. The dioxane ring alone has chair form in β anomer while the pyranose takes boat form. The conformation of pyranoses are thus symbolized as 4C1 in α anomer and 1,4B in β (Collins & Ferrier, 1995). In the α anomer, the two bulky groups of phenylsulfonyl and benzylamino attached to the pyranose ring as well as the phenyl group attached to dioxane are all equatorially positioned with respect to the double ring carbohydrate system, while the benzoylamino group is axial in β.

The main conformational difference between the pyranose rings in the two anomers corresponds to C1 puckering. The observed difference, the chair conformation of the pyranose in α form while its boat conformation in β, could presumably be the result of C2 substitution. In the β anomer, the observed boat conformation of the pyranose ring causes the benzylamino and the glycosidic O-methyl groups present in adjucent ring carbons to orient away from each other. In a chair conformation of the pyranose ring these groups would have come sterically more closer. Another difference between the anomers is in the disposition of phenyl ring of the phenylsulfonyl. This phenyl ring is positioned away from C2 benzylamino in the β anomer compared to its position in the α anomer. Among the three planar phenyl rings, the one of benzylamino is almost orthogonal to the other two in both the structures. Whereas, the phenyl rings of phenylmethylene and phenylsulfonyl makes 26.6 (2) and 63.5 (2)° to each other in the α and β anomers, respectively.

In the case of hexapyranoses, the presence of a hydroxyl group at C4 is expected to forbid the orientation of the primary alcohol group C6—OH in tg conformation (Jeffrey, 1990). However, in both the molecules reported here this group is in tg conformation, as a result of dioxan ring formation.

The C—O bond shortening at C1 of the pyranose and the preferred gauche conformations about the glycosidic bond (exo-anomeric effect) are known in carbohydrates (Perez & Marchessault, 1978). The structure of the α anomer reported here belongs to gauche-gauche class which is the allowed one for α anomers. The trans-gauche form is favourable in β anomers (Norrestam et al., 1981). Nevertheless, according to glycosodic torsion angles (Table 1), the β anomer has gauche-gauche conformation. Presumably, this not so common form of β anomers is found in this structure due to the boat form instead of the more common chair form of pyranose ring.

The crystal structures are stabilized by the stacking and hydrophobic interactions of phenyl rings. In the β anomer there is an intermolecular hydrogen bond involving amino nitrogen with sulfone oxygen O3 of the translated molecule along c. In the α anomer this nitrogen is involved in a weak intramolecular hydrogen bond with oxygen (O1) of the glycosidic O-methyl group.

Experimental top

Methyl 2,3-dideoxy-4,6-O-(phenylmethelene)-3 C– phenylsulfonyl-α-D-erythro-hex-2-enopyranoside and the corresponding -β-D-erythro-hex-2-enopyranoside were reacted separately with benzylamine at elevated temperatures (Ravindran et al., 2000). The desired aminosugars were recrystallized from methanol.

Refinement top

Hydrogen atoms were located using geometrical considerations and a difference Fourier map. They were treated as riding on the heavier atoms to which they are attached.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1993) for (Ia); Molecular Diffractometer Control Software (Molecular Structure Corporation, 1991) for (Ib). Cell refinement: CAD-4-PC Software for (Ia); Molecular Diffractometer Control Software for (Ib). Data reduction: NRCVAX DATRD2 (Gabe et al., 1989) for (Ia); Molecular Diffractometer Control Software for (Ib). For both compounds, program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976) and PLUTO (Motherwell \& Clegg, 1978).

Figures top
[Figure 1] Fig. 1. A perspective view of (I). Displacement ellipsoids are drawn at 50% probability level in this and next figure. H atoms are omitted for clarity.
[Figure 2] Fig. 2. A perspective view of (II).
(Ia) Methyl 2-N-Benzylamino −2,3-dideoxy −4,6-O-(phenyl methylene)- 3-C-phenylsulfonyl a\-D-glucopyranoside top
Crystal data top
C27H29NO6SF(000) = 524
Mr = 495.57Dx = 1.312 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54180 Å
a = 10.418 (2) ÅCell parameters from 25 reflections
b = 8.880 (6) Åθ = 10.0–30.0°
c = 13.560 (2) ŵ = 1.50 mm1
β = 91.36 (1)°T = 293 K
V = 1254.1 (9) Å3Needle, colourless
Z = 20.80 × 0.31 × 0.25 mm
Data collection top
Enraf Nonius CAD4
diffractometer
2563 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 75.6°, θmin = 3.3°
ω–2θ scansh = 013
Absorption correction: ψ scan
North et al (1968)
k = 010
Tmin = 0.668, Tmax = 0.687l = 1616
2810 measured reflections3 standard reflections every 60 min
2667 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Calculated w = 1/[s2(Fo2) + ( 0.062P)2 + 0.1489P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.002
R[F2 > 2σ(F2)] = 0.033Δρmax = 0.25 e Å3
wR(F2) = 0.090Δρmin = 0.34 e Å3
S = 1.06Extinction correction: SHELXL93 (Sheldrick, 1993), Fc*=kFc[1+0.001xFc2l3/sin(2q)]-1/4
2667 reflectionsExtinction coefficient: 0.0119 (8)
318 parametersAbsolute structure: Flack (1983)
1 restraintAbsolute structure parameter: 0.00 (2)
Only H-atom coordinates refined
Crystal data top
C27H29NO6SV = 1254.1 (9) Å3
Mr = 495.57Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.418 (2) ŵ = 1.50 mm1
b = 8.880 (6) ÅT = 293 K
c = 13.560 (2) Å0.80 × 0.31 × 0.25 mm
β = 91.36 (1)°
Data collection top
Enraf Nonius CAD4
diffractometer
2563 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al (1968)
Rint = 0.017
Tmin = 0.668, Tmax = 0.6873 standard reflections every 60 min
2810 measured reflections intensity decay: 0.1%
2667 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033Only H-atom coordinates refined
wR(F2) = 0.090Δρmax = 0.25 e Å3
S = 1.06Δρmin = 0.34 e Å3
2667 reflectionsAbsolute structure: Flack (1983)
318 parametersAbsolute structure parameter: 0.00 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for all reflections except for 0 with very negative F2 or flagged for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71724 (5)0.34878 (7)0.14482 (4)0.0410 (2)
O30.8189 (2)0.3379 (3)0.07602 (13)0.0586 (5)
O20.6880 (2)0.2195 (2)0.2031 (2)0.0565 (5)
O50.3539 (2)0.2914 (2)0.03851 (12)0.0431 (4)
C10.3316 (2)0.3398 (3)0.0592 (2)0.0404 (5)
H10.26830.27200.08780.049*
O10.2819 (2)0.4855 (2)0.06068 (14)0.0485 (4)
C70.1522 (3)0.4935 (6)0.0228 (4)0.0845 (12)
H7A0.12050.59430.02990.127*
H7B0.09930.42550.05900.127*
H7C0.15000.46600.04570.127*
C20.4535 (2)0.3364 (3)0.12525 (15)0.0374 (4)
H20.47320.23030.138500.045*
C30.5714 (2)0.4046 (3)0.0760 (2)0.0347 (4)
H30.56430.51460.07710.042*
C40.5784 (2)0.3525 (3)0.03071 (14)0.0345 (4)
H40.59990.24510.033070.041*
O40.67138 (15)0.4379 (2)0.08186 (11)0.0365 (3)
C80.6798 (2)0.3848 (3)0.1792 (2)0.0382 (5)
H80.69680.27630.17840.046*
O60.5652 (2)0.4132 (2)0.23290 (12)0.0457 (4)
C60.4588 (2)0.3367 (4)0.1907 (2)0.0468 (6)
H6A0.47030.22870.19640.056*
H6B0.38000.36410.22580.056*
C50.4499 (2)0.3802 (3)0.0827 (2)0.0369 (5)
H50.42730.48700.07760.044*
C90.7880 (2)0.4648 (3)0.2279 (2)0.0399 (5)
C100.8822 (2)0.5347 (4)0.1716 (2)0.0489 (6)
H100.87990.52990.10310.059*
C110.9798 (3)0.6116 (5)0.2161 (2)0.0645 (8)
H111.04150.66120.17750.077*
C120.9865 (3)0.6155 (5)0.3166 (3)0.0715 (10)
H121.05240.66810.34640.086*
C130.8960 (3)0.5415 (5)0.3735 (2)0.0710 (10)
H130.90210.54120.44180.085*
C140.7960 (3)0.4678 (4)0.3296 (2)0.0550 (7)
H140.73360.41990.36840.066*
C150.7586 (2)0.4968 (3)0.2260 (2)0.0451 (6)
C160.7076 (3)0.5024 (4)0.3182 (2)0.0573 (7)
H160.64870.43020.33760.069*
C170.7448 (4)0.6163 (6)0.3821 (3)0.0757 (11)
H170.71010.62130.44450.091*
C180.8311 (4)0.7201 (5)0.3545 (3)0.0808 (11)
H180.85600.79580.39840.097*
C190.8819 (4)0.7156 (5)0.2637 (4)0.0822 (11)
H190.94150.78790.24570.099*
C200.8455 (3)0.6028 (4)0.1964 (3)0.0633 (8)
H200.87920.59980.13360.076*
N10.4354 (2)0.4086 (3)0.22024 (14)0.0437 (5)
H1N10.46690.49560.234480.052*
C210.3596 (3)0.3222 (4)0.2895 (2)0.0628 (8)
H21A0.40410.22960.30660.075*
H21B0.27740.29610.25900.075*
C220.3385 (3)0.4128 (4)0.3810 (2)0.0513 (6)
C230.2379 (3)0.5113 (5)0.3856 (2)0.0740 (10)
H230.18090.52000.33200.089*
C240.2196 (4)0.5977 (6)0.4683 (3)0.0893 (13)
H240.15070.66420.47040.107*
C250.3031 (5)0.5855 (6)0.5474 (3)0.0879 (14)
H250.29060.64370.60340.105*
C260.4032 (4)0.4896 (6)0.5445 (2)0.0788 (12)
H260.46050.48310.59810.095*
C270.4213 (3)0.4004 (5)0.4618 (2)0.0649 (9)
H270.48900.33230.46070.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0466 (3)0.0358 (3)0.0405 (3)0.0081 (2)0.0038 (2)0.0002 (2)
O30.0510 (9)0.0735 (15)0.0514 (9)0.0202 (11)0.0002 (7)0.0052 (11)
O20.0724 (12)0.0349 (10)0.0614 (11)0.0039 (9)0.0125 (9)0.0115 (9)
O50.0484 (9)0.0371 (9)0.0439 (8)0.0139 (7)0.0001 (7)0.0012 (7)
C10.0448 (10)0.0315 (12)0.0452 (11)0.0045 (11)0.0050 (8)0.0047 (11)
O10.0438 (8)0.0405 (11)0.0614 (10)0.0072 (8)0.0050 (8)0.0044 (8)
C70.0465 (15)0.080 (3)0.126 (3)0.009 (2)0.007 (2)0.027 (3)
C20.0496 (11)0.0245 (11)0.0382 (10)0.0006 (10)0.0017 (8)0.0003 (9)
C30.0411 (10)0.0265 (11)0.0366 (10)0.0013 (8)0.0011 (8)0.0009 (8)
C40.0431 (9)0.0239 (10)0.0366 (9)0.0033 (10)0.0014 (7)0.0001 (9)
O40.0422 (7)0.0306 (9)0.0368 (7)0.0047 (6)0.0015 (6)0.0021 (6)
C80.0466 (11)0.0327 (14)0.0352 (9)0.0002 (9)0.0009 (8)0.0032 (8)
O60.0452 (8)0.0521 (11)0.0395 (8)0.0078 (8)0.0030 (6)0.0061 (8)
C60.0488 (11)0.050 (2)0.0412 (11)0.0146 (12)0.0024 (9)0.0013 (12)
C50.0412 (10)0.0285 (13)0.0410 (10)0.0061 (8)0.0006 (8)0.0026 (8)
C90.0419 (11)0.0352 (13)0.0427 (11)0.0034 (10)0.0045 (9)0.0012 (10)
C100.0450 (11)0.055 (2)0.0468 (12)0.0030 (12)0.0020 (10)0.0032 (12)
C110.0508 (14)0.073 (2)0.070 (2)0.017 (2)0.0053 (13)0.003 (2)
C120.055 (2)0.088 (3)0.073 (2)0.012 (2)0.0177 (14)0.014 (2)
C130.063 (2)0.102 (3)0.0491 (14)0.001 (2)0.0138 (12)0.011 (2)
C140.0523 (13)0.071 (2)0.0421 (12)0.0010 (14)0.0045 (10)0.0030 (13)
C150.0477 (12)0.0406 (15)0.0464 (12)0.0050 (10)0.0104 (10)0.0021 (10)
C160.0638 (15)0.061 (2)0.0471 (13)0.0041 (14)0.0063 (11)0.0067 (13)
C170.079 (2)0.086 (3)0.062 (2)0.011 (2)0.017 (2)0.026 (2)
C180.086 (2)0.063 (2)0.092 (3)0.005 (2)0.029 (2)0.027 (2)
C190.073 (2)0.058 (2)0.114 (3)0.016 (2)0.022 (2)0.002 (2)
C200.059 (2)0.056 (2)0.074 (2)0.0106 (14)0.0039 (14)0.005 (2)
N10.0570 (11)0.0326 (11)0.0418 (10)0.0090 (9)0.0100 (8)0.0055 (9)
C210.091 (2)0.049 (2)0.0487 (13)0.021 (2)0.0229 (13)0.0054 (13)
C220.0637 (15)0.047 (2)0.0439 (12)0.0096 (13)0.0144 (11)0.0005 (12)
C230.076 (2)0.087 (3)0.059 (2)0.015 (2)0.0115 (15)0.004 (2)
C240.104 (3)0.078 (3)0.088 (3)0.016 (2)0.038 (2)0.003 (2)
C250.120 (3)0.084 (3)0.062 (2)0.029 (3)0.037 (2)0.026 (2)
C260.081 (2)0.108 (3)0.0483 (15)0.032 (2)0.0065 (15)0.001 (2)
C270.068 (2)0.073 (2)0.0537 (15)0.004 (2)0.0099 (13)0.0103 (15)
Geometric parameters (Å, º) top
S1—O21.431 (2)C11—C121.367 (5)
S1—O31.431 (2)C11—H110.93
S1—C151.761 (3)C12—C131.372 (5)
S1—C31.832 (2)C12—H120.93
O5—C11.417 (3)C13—C141.377 (4)
O5—C51.418 (3)C13—H130.93
C1—O11.394 (4)C14—H140.93
C1—C21.537 (3)C15—C161.371 (4)
C1—H10.98C15—C201.372 (4)
O1—C71.436 (3)C16—C171.381 (5)
C7—H7A0.96C16—H160.93
C7—H7B0.96C17—C181.347 (6)
C7—H7C0.96C17—H170.93
C2—N11.455 (3)C18—C191.352 (6)
C2—C31.537 (3)C18—H180.93
C2—H20.98C19—C201.401 (5)
C3—C41.522 (3)C19—H190.93
C3—H30.98C20—H200.93
C4—O41.424 (3)N1—C211.459 (3)
C4—C51.518 (3)N1—H1N10.86
C4—H40.98C21—C221.499 (4)
O4—C81.407 (3)C21—H21A0.97
C8—O61.406 (3)C21—H21B0.97
C8—C91.499 (3)C22—C231.368 (5)
C8—H80.98C22—C271.383 (4)
O6—C61.431 (3)C23—C241.376 (6)
C6—C51.518 (3)C23—H230.93
C6—H6A0.97C24—C251.370 (6)
C6—H6B0.97C24—H240.93
C5—H50.98C25—C261.348 (7)
C9—C101.378 (4)C25—H250.93
C9—C141.383 (3)C26—C271.391 (5)
C10—C111.376 (4)C26—H260.93
C10—H100.93C27—H270.93
O2—S1—O3118.43 (15)C11—C10—C9120.3 (3)
O2—S1—C15107.84 (13)C11—C10—H10119.8 (2)
O3—S1—C15106.49 (13)C9—C10—H10119.84 (14)
O2—S1—C3108.29 (12)C12—C11—C10120.4 (3)
O3—S1—C3107.66 (10)C12—C11—H11119.8 (2)
C15—S1—C3107.70 (11)C10—C11—H11119.8 (2)
C1—O5—C5111.1 (2)C11—C12—C13119.8 (3)
O1—C1—O5111.4 (2)C11—C12—H12120.1 (2)
O1—C1—C2108.2 (2)C13—C12—H12120.1 (2)
O5—C1—C2112.8 (2)C12—C13—C14120.1 (3)
O1—C1—H1108.12 (12)C12—C13—H13120.0 (2)
O5—C1—H1108.12 (13)C14—C13—H13120.0 (2)
C2—C1—H1108.12 (12)C13—C14—C9120.3 (3)
C1—O1—C7112.8 (3)C13—C14—H14119.9 (2)
O1—C7—H7A109.5 (2)C9—C14—H14119.9 (2)
O1—C7—H7B109.5 (2)C16—C15—C20120.9 (3)
H7A—C7—H7B109.5C16—C15—S1120.2 (2)
O1—C7—H7C109.5 (2)C20—C15—S1118.9 (2)
H7A—C7—H7C109.5C15—C16—C17119.3 (3)
H7B—C7—H7C109.5C15—C16—H16120.4 (2)
N1—C2—C3109.5 (2)C17—C16—H16120.4 (2)
N1—C2—C1112.6 (2)C18—C17—C16120.4 (4)
C3—C2—C1113.4 (2)C18—C17—H17119.8 (2)
N1—C2—H2107.01 (14)C16—C17—H17119.8 (2)
C3—C2—H2107.01 (14)C17—C18—C19120.7 (4)
C1—C2—H2107.01 (15)C17—C18—H18119.7 (2)
C4—C3—C2110.5 (2)C19—C18—H18119.7 (2)
C4—C3—S1110.17 (15)C18—C19—C20120.6 (4)
C2—C3—S1109.5 (2)C18—C19—H19119.7 (2)
C4—C3—H3108.89 (14)C20—C19—H19119.7 (2)
C2—C3—H3108.89 (14)C15—C20—C19118.1 (3)
S1—C3—H3108.89 (8)C15—C20—H20121.0 (2)
O4—C4—C5106.8 (2)C19—C20—H20121.0 (2)
O4—C4—C3110.5 (2)C2—N1—C21114.9 (2)
C5—C4—C3109.4 (2)C2—N1—H1N1122.54 (13)
O4—C4—H4110.04 (13)C21—N1—H1N1122.54 (15)
C5—C4—H4110.04 (13)N1—C21—C22110.0 (2)
C3—C4—H4110.04 (14)N1—C21—H21A109.7 (2)
C8—O4—C4109.7 (2)C22—C21—H21A109.7 (2)
O6—C8—O4110.8 (2)N1—C21—H21B109.7 (2)
O6—C8—C9109.0 (2)C22—C21—H21B109.7 (2)
O4—C8—C9108.6 (2)H21A—C21—H21B108.2
O6—C8—H8109.49 (13)C23—C22—C27118.6 (3)
O4—C8—H8109.49 (12)C23—C22—C21120.6 (3)
C9—C8—H8109.49 (13)C27—C22—C21120.8 (3)
C8—O6—C6111.3 (2)C22—C23—C24121.0 (4)
O6—C6—C5109.3 (2)C22—C23—H23119.5 (2)
O6—C6—H6A109.8 (2)C24—C23—H23119.5 (3)
C5—C6—H6A109.8 (2)C25—C24—C23119.8 (4)
O6—C6—H6B109.82 (13)C25—C24—H24120.1 (3)
C5—C6—H6B109.82 (13)C23—C24—H24120.1 (3)
H6A—C6—H6B108.3C26—C25—C24120.3 (3)
O5—C5—C4109.6 (2)C26—C25—H25119.8 (2)
O5—C5—C6109.0 (2)C24—C25—H25119.8 (3)
C4—C5—C6109.5 (2)C25—C26—C27120.2 (4)
O5—C5—H5109.56 (12)C25—C26—H26119.9 (2)
C4—C5—H5109.56 (13)C27—C26—H26119.9 (2)
C6—C5—H5109.6 (2)C22—C27—C26120.0 (3)
C10—C9—C14119.0 (2)C22—C27—H27120.0 (2)
C10—C9—C8120.2 (2)C26—C27—H27120.0 (2)
C14—C9—C8120.8 (2)
C5—O5—C1—O164.4 (2)O4—C8—C9—C1019.4 (3)
C5—O5—C1—C257.4 (3)O6—C8—C9—C1440.8 (3)
O5—C1—O1—C770.5 (3)O4—C8—C9—C14161.6 (3)
C2—C1—O1—C7165.0 (2)C14—C9—C10—C112.7 (5)
O1—C1—C2—N147.0 (3)C8—C9—C10—C11178.3 (3)
O5—C1—C2—N1170.7 (2)C9—C10—C11—C122.1 (6)
O1—C1—C2—C378.0 (2)C10—C11—C12—C130.4 (6)
O5—C1—C2—C345.7 (3)C11—C12—C13—C142.2 (7)
N1—C2—C3—C4169.6 (2)C12—C13—C14—C91.5 (6)
C1—C2—C3—C442.9 (3)C10—C9—C14—C130.9 (5)
N1—C2—C3—S168.9 (2)C8—C9—C14—C13179.9 (3)
C1—C2—C3—S1164.4 (2)O2—S1—C15—C1628.9 (3)
O2—S1—C3—C4102.2 (2)O3—S1—C15—C16156.9 (2)
O3—S1—C3—C427.0 (2)C3—S1—C15—C1687.8 (2)
C15—S1—C3—C4141.5 (2)O2—S1—C15—C20148.9 (2)
O2—S1—C3—C219.5 (2)O3—S1—C15—C2020.8 (3)
O3—S1—C3—C2148.7 (2)C3—S1—C15—C2094.4 (2)
C15—S1—C3—C296.8 (2)C20—C15—C16—C170.1 (5)
C2—C3—C4—O4168.4 (2)S1—C15—C16—C17177.6 (3)
S1—C3—C4—O470.5 (2)C15—C16—C17—C180.6 (5)
C2—C3—C4—C551.1 (3)C16—C17—C18—C190.6 (6)
S1—C3—C4—C5172.2 (2)C17—C18—C19—C200.1 (6)
C5—C4—O4—C863.2 (2)C16—C15—C20—C190.8 (5)
C3—C4—O4—C8177.9 (2)S1—C15—C20—C19177.0 (3)
C4—O4—C8—O666.5 (2)C18—C19—C20—C150.8 (6)
C4—O4—C8—C9173.9 (2)C3—C2—N1—C21158.8 (2)
O4—C8—O6—C661.8 (3)C1—C2—N1—C2174.1 (3)
C9—C8—O6—C6178.8 (2)C2—N1—C21—C22175.4 (2)
C8—O6—C6—C555.1 (3)N1—C21—C22—C2386.2 (4)
C1—O5—C5—C467.0 (2)N1—C21—C22—C2792.8 (4)
C1—O5—C5—C6173.2 (2)C27—C22—C23—C240.7 (6)
O4—C4—C5—O5176.8 (2)C21—C22—C23—C24178.4 (4)
C3—C4—C5—O563.7 (2)C22—C23—C24—C250.0 (7)
O4—C4—C5—C657.2 (3)C23—C24—C25—C260.2 (7)
C3—C4—C5—C6176.8 (2)C24—C25—C26—C271.1 (6)
O6—C6—C5—O5173.4 (2)C23—C22—C27—C261.6 (5)
O6—C6—C5—C453.5 (3)C21—C22—C27—C26177.5 (3)
O6—C8—C9—C10140.2 (2)C25—C26—C27—C221.8 (6)
(Ib) Methyl 2-N-Benzylamino −2,3-dideoxy −4,6-O-(phenyl methylene)- 3-C-phenylsulfonyl b\-D-glucopyranoside top
Crystal data top
C27H29NO6SZ = 1
Mr = 495.57F(000) = 262
Triclinic, P1Dx = 1.343 Mg m3
a = 8.319 (1) ÅCu Kα radiation, λ = 1.54180 Å
b = 13.197 (2) ÅCell parameters from 18 reflections
c = 5.750 (2) Åθ = 29.5–46.0°
α = 100.84 (2)°µ = 1.54 mm1
β = 98.61 (2)°T = 293 K
γ = 89.43 (1)°Irregular flakes, colourless
V = 612.9 (2) Å30.40 × 0.14 × 0.06 mm
Data collection top
AFC7S
diffractometer
2407 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 70.1°, θmin = 3.4°
ω–2θ scansh = 010
Absorption correction: for a sphere
Weber(1969)
k = 1616
Tmin = 0.709, Tmax = 0.722l = 66
2739 measured reflections3 standard reflections every 150 reflections
2425 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.069Calculated w = 1/[s2(Fo2) + (0.1392P)2 + 0.4772P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.203(Δ/σ)max = 0.005
S = 1.10Δρmax = 0.20 e Å3
2425 reflectionsΔρmin = 0.31 e Å3
318 parametersExtinction correction: SHELXL93 (Sheldrick, 1993), Fc*=kFc[1+0.001xFc2l3/sin(2q)]-1/4
3 restraintsExtinction coefficient: 0.0995 (98)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (4)
Crystal data top
C27H29NO6Sγ = 89.43 (1)°
Mr = 495.57V = 612.9 (2) Å3
Triclinic, P1Z = 1
a = 8.319 (1) ÅCu Kα radiation
b = 13.197 (2) ŵ = 1.54 mm1
c = 5.750 (2) ÅT = 293 K
α = 100.84 (2)°0.40 × 0.14 × 0.06 mm
β = 98.61 (2)°
Data collection top
AFC7S
diffractometer
2407 reflections with I > 2σ(I)
Absorption correction: for a sphere
Weber(1969)
Rint = 0.052
Tmin = 0.709, Tmax = 0.7223 standard reflections every 150 reflections
2739 measured reflections intensity decay: 0.2%
2425 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.203Δρmax = 0.20 e Å3
S = 1.10Δρmin = 0.31 e Å3
2425 reflectionsAbsolute structure: Flack (1983)
318 parametersAbsolute structure parameter: 0.00 (4)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.19100 (14)0.78316 (11)1.1315 (2)0.0433 (4)
O21.3471 (6)0.8294 (4)1.1300 (10)0.0590 (13)
O31.1226 (7)0.8027 (4)1.3479 (7)0.0577 (12)
O50.7504 (6)0.9418 (3)0.8197 (8)0.0488 (10)
C10.8750 (8)0.9817 (4)1.0096 (10)0.0427 (13)
H10.8746 (8)1.0570 (4)1.0257 (10)0.051*
O10.8472 (6)0.9600 (4)1.2263 (8)0.0482 (10)
C70.7002 (11)1.0069 (7)1.2944 (15)0.068 (2)
H7A0.70801.02001.46570.102*
H7B0.60930.96131.22500.102*
H7C0.68521.07081.23780.102*
C21.0451 (8)0.9462 (5)0.9601 (11)0.0438 (13)
H21.12060.97051.10780.053*
C31.0548 (8)0.8251 (4)0.9046 (11)0.0437 (13)
H31.10180.80650.75610.052*
C40.8845 (7)0.7772 (4)0.8548 (10)0.0392 (12)
H40.84420.77451.00520.047*
O40.8888 (5)0.6748 (3)0.7131 (7)0.0442 (10)
C80.7299 (8)0.6266 (5)0.6607 (13)0.0491 (14)
H80.69040.62040.80970.059*
O60.6191 (6)0.6826 (4)0.5259 (10)0.0621 (13)
C60.6033 (9)0.7863 (6)0.6477 (15)0.059 (2)
H6A0.55940.78650.79480.071*
H6B0.53000.82350.54750.071*
C50.7700 (8)0.8374 (5)0.7031 (10)0.0425 (13)
H50.81160.83780.55250.051*
C90.7491 (8)0.5210 (5)0.5138 (13)0.0495 (14)
C100.6689 (12)0.4939 (7)0.2817 (17)0.073 (2)
H100.59970.54000.21470.087*
C110.6931 (14)0.3969 (8)0.1500 (18)0.082 (3)
H110.64110.37810.00700.098*
C120.7932 (12)0.3290 (7)0.251 (2)0.080 (3)
H120.80740.26390.16150.096*
C130.8726 (12)0.3550 (7)0.479 (2)0.076 (2)
H130.94200.30870.54520.092*
C140.8481 (11)0.4522 (6)0.6125 (16)0.067 (2)
H140.89960.47030.77000.081*
C151.2099 (8)0.6485 (5)1.0514 (10)0.0437 (13)
C161.2891 (9)0.6096 (6)0.8588 (12)0.0527 (15)
H161.32710.65340.76890.063*
C171.3107 (12)0.5018 (6)0.8022 (15)0.068 (2)
H171.36400.47370.67450.081*
C181.2531 (13)0.4396 (6)0.9359 (16)0.073 (2)
H181.26720.36870.89780.087*
C191.1754 (13)0.4789 (6)1.1240 (16)0.074 (2)
H191.13910.43501.21490.088*
C201.1499 (10)0.5840 (6)1.1813 (13)0.058 (2)
H201.09290.61061.30590.069*
N11.0916 (7)0.9987 (4)0.7789 (9)0.0470 (12)
H1N11.02111.01800.67130.056*
C211.2637 (9)1.0162 (6)0.7914 (15)0.056 (2)
H21A1.31260.95230.72510.068*
H21B1.31211.03580.95810.068*
C221.3022 (8)1.0988 (5)0.6590 (11)0.0471 (14)
C231.1897 (9)1.1349 (5)0.4954 (13)0.055 (2)
H231.08261.11090.47070.066*
C241.2331 (12)1.2068 (6)0.3653 (17)0.070 (2)
H241.15661.22890.25100.084*
C251.3930 (12)1.2455 (6)0.4087 (16)0.066 (2)
H251.42381.29370.32380.079*
C261.5031 (11)1.2119 (6)0.5769 (17)0.069 (2)
H261.60881.23880.60920.083*
C271.4603 (9)1.1387 (6)0.6995 (15)0.060 (2)
H271.53801.11570.81070.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0471 (8)0.0462 (7)0.0341 (7)0.0098 (5)0.0012 (5)0.0045 (5)
O20.045 (2)0.063 (3)0.067 (3)0.020 (2)0.002 (2)0.014 (2)
O30.083 (3)0.071 (3)0.021 (2)0.000 (2)0.019 (2)0.004 (2)
O50.056 (3)0.044 (2)0.044 (2)0.000 (2)0.003 (2)0.004 (2)
C10.058 (3)0.041 (3)0.031 (3)0.007 (2)0.013 (2)0.005 (2)
O10.054 (2)0.059 (2)0.034 (2)0.008 (2)0.012 (2)0.010 (2)
C70.073 (5)0.084 (5)0.059 (4)0.032 (4)0.035 (4)0.030 (4)
C20.051 (3)0.043 (3)0.037 (3)0.013 (2)0.012 (2)0.001 (2)
C30.053 (3)0.037 (3)0.040 (3)0.015 (2)0.017 (2)0.003 (2)
C40.045 (3)0.037 (3)0.035 (3)0.004 (2)0.002 (2)0.006 (2)
O40.041 (2)0.038 (2)0.049 (2)0.010 (2)0.001 (2)0.000 (2)
C80.039 (3)0.047 (3)0.057 (4)0.008 (2)0.001 (3)0.006 (3)
O60.049 (3)0.053 (3)0.073 (3)0.003 (2)0.012 (2)0.001 (2)
C60.043 (4)0.055 (4)0.068 (4)0.002 (3)0.011 (3)0.000 (3)
C50.050 (3)0.039 (3)0.036 (3)0.001 (2)0.004 (2)0.003 (2)
C90.043 (3)0.045 (3)0.061 (4)0.013 (2)0.008 (3)0.008 (3)
C100.079 (6)0.061 (4)0.068 (5)0.015 (4)0.002 (4)0.002 (4)
C110.091 (7)0.074 (5)0.070 (5)0.016 (5)0.009 (5)0.011 (4)
C120.079 (6)0.054 (4)0.101 (7)0.019 (4)0.025 (5)0.015 (4)
C130.072 (5)0.053 (4)0.104 (7)0.002 (4)0.017 (5)0.011 (4)
C140.068 (5)0.057 (4)0.073 (5)0.003 (3)0.002 (4)0.007 (4)
C150.049 (3)0.046 (3)0.037 (3)0.001 (2)0.003 (2)0.012 (2)
C160.052 (4)0.063 (4)0.043 (3)0.001 (3)0.006 (3)0.011 (3)
C170.078 (5)0.058 (4)0.062 (4)0.008 (4)0.004 (4)0.001 (3)
C180.087 (6)0.048 (4)0.075 (6)0.003 (4)0.011 (5)0.006 (3)
C190.096 (6)0.053 (4)0.074 (5)0.011 (4)0.002 (5)0.031 (4)
C200.068 (4)0.054 (4)0.054 (4)0.008 (3)0.009 (3)0.018 (3)
N10.057 (3)0.047 (3)0.041 (3)0.011 (2)0.009 (2)0.016 (2)
C210.056 (4)0.051 (3)0.066 (4)0.006 (3)0.013 (3)0.017 (3)
C220.054 (4)0.040 (3)0.049 (3)0.006 (3)0.015 (3)0.006 (2)
C230.057 (4)0.051 (3)0.057 (4)0.011 (3)0.007 (3)0.014 (3)
C240.082 (6)0.062 (4)0.072 (5)0.006 (4)0.014 (4)0.026 (4)
C250.090 (6)0.047 (3)0.074 (5)0.005 (3)0.037 (4)0.023 (3)
C260.065 (5)0.056 (4)0.086 (6)0.018 (4)0.029 (4)0.001 (4)
C270.049 (4)0.066 (4)0.067 (4)0.008 (3)0.013 (3)0.017 (3)
Geometric parameters (Å, º) top
S1—O31.424 (4)C11—C121.37 (2)
S1—O21.442 (5)C11—H110.93
S1—C151.761 (6)C12—C131.36 (2)
S1—C31.763 (7)C12—H120.93
O5—C11.414 (7)C13—C141.396 (12)
O5—C51.433 (7)C13—H130.93
C1—O11.382 (7)C14—H140.93
C1—C21.537 (9)C15—C201.375 (9)
C1—H10.98C15—C161.386 (9)
O1—C71.438 (8)C16—C171.414 (11)
C7—H7A0.96C16—H160.93
C7—H7B0.96C17—C181.361 (14)
C7—H7C0.96C17—H170.93
C2—N11.453 (7)C18—C191.360 (14)
C2—C31.574 (8)C18—H180.93
C2—H20.98C19—C201.386 (11)
C3—C41.522 (8)C19—H190.93
C3—H30.98C20—H200.93
C4—O41.444 (7)N1—C211.442 (9)
C4—C51.516 (8)N1—H1N10.86
C4—H40.98C21—C221.504 (9)
O4—C81.439 (7)C21—H21A0.97
C8—O61.408 (8)C21—H21B0.97
C8—C91.508 (9)C22—C231.372 (10)
C8—H80.98C22—C271.392 (10)
O6—C61.430 (9)C23—C241.395 (10)
C6—C51.511 (9)C23—H230.93
C6—H6A0.97C24—C251.400 (13)
C6—H6B0.97C24—H240.93
C5—H50.98C25—C261.364 (13)
C9—C141.365 (11)C25—H250.93
C9—C101.383 (11)C26—C271.376 (11)
C10—C111.389 (13)C26—H260.93
C10—H100.93C27—H270.93
O3—S1—O2118.4 (3)C9—C10—C11119.1 (9)
O3—S1—C15107.2 (3)C9—C10—H10120.4 (5)
O2—S1—C15107.4 (3)C11—C10—H10120.4 (6)
O3—S1—C3108.8 (3)C12—C11—C10120.1 (9)
O2—S1—C3106.4 (3)C12—C11—H11119.9 (5)
C15—S1—C3108.3 (3)C10—C11—H11119.9 (6)
C1—O5—C5115.6 (4)C13—C12—C11121.2 (8)
O1—C1—O5112.4 (5)C13—C12—H12119.4 (5)
O1—C1—C2110.1 (5)C11—C12—H12119.4 (5)
O5—C1—C2113.0 (5)C12—C13—C14118.9 (9)
O1—C1—H1107.0 (3)C12—C13—H13120.6 (5)
O5—C1—H1107.0 (3)C14—C13—H13120.6 (6)
C2—C1—H1107.0 (3)C9—C14—C13120.5 (8)
C1—O1—C7111.0 (5)C9—C14—H14119.7 (5)
O1—C7—H7A109.5 (4)C13—C14—H14119.7 (6)
O1—C7—H7B109.5 (5)C20—C15—C16121.1 (6)
H7A—C7—H7B109.47 (10)C20—C15—S1120.3 (5)
O1—C7—H7C109.5 (4)C16—C15—S1118.6 (5)
H7A—C7—H7C109.5C15—C16—C17118.4 (7)
H7B—C7—H7C109.47 (8)C15—C16—H16120.8 (4)
N1—C2—C1108.5 (5)C17—C16—H16120.8 (5)
N1—C2—C3115.6 (5)C18—C17—C16119.6 (8)
C1—C2—C3111.5 (5)C18—C17—H17120.2 (5)
N1—C2—H2106.9 (3)C16—C17—H17120.2 (5)
C1—C2—H2106.9 (3)C19—C18—C17121.3 (8)
C3—C2—H2106.9 (3)C19—C18—H18119.4 (5)
C4—C3—C2110.1 (5)C17—C18—H18119.4 (5)
C4—C3—S1116.0 (4)C18—C19—C20120.5 (7)
C2—C3—S1109.8 (4)C18—C19—H19119.8 (5)
C4—C3—H3106.8 (3)C20—C19—H19119.8 (5)
C2—C3—H3106.8 (3)C15—C20—C19119.1 (7)
S1—C3—H3106.8 (2)C15—C20—H20120.4 (4)
O4—C4—C5105.8 (4)C19—C20—H20120.4 (5)
O4—C4—C3109.0 (5)C21—N1—C2115.6 (5)
C5—C4—C3110.4 (5)C21—N1—H1N1122.2 (4)
O4—C4—H4110.5 (3)C2—N1—H1N1122.2 (3)
C5—C4—H4110.5 (3)N1—C21—C22113.1 (6)
C3—C4—H4110.5 (3)N1—C21—H21A109.0 (4)
C8—O4—C4110.9 (4)C22—C21—H21A109.0 (4)
O6—C8—O4111.2 (5)N1—C21—H21B109.0 (4)
O6—C8—C9109.0 (5)C22—C21—H21B109.0 (4)
O4—C8—C9106.2 (5)H21A—C21—H21B107.8
O6—C8—H8110.1 (4)C23—C22—C27118.3 (6)
O4—C8—H8110.1 (3)C23—C22—C21123.1 (6)
C9—C8—H8110.1 (4)C27—C22—C21118.6 (7)
C8—O6—C6112.2 (5)C22—C23—C24121.2 (7)
O6—C6—C5108.1 (6)C22—C23—H23119.4 (4)
O6—C6—H6A110.1 (4)C24—C23—H23119.4 (5)
C5—C6—H6A110.1 (4)C23—C24—C25119.3 (8)
O6—C6—H6B110.1 (3)C23—C24—H24120.4 (5)
C5—C6—H6B110.1 (4)C25—C24—H24120.4 (5)
H6A—C6—H6B108.4C26—C25—C24119.3 (7)
O5—C5—C6107.0 (5)C26—C25—H25120.4 (4)
O5—C5—C4113.1 (5)C24—C25—H25120.4 (5)
C6—C5—C4109.6 (5)C25—C26—C27121.0 (8)
O5—C5—H5109.0 (3)C25—C26—H26119.5 (5)
C6—C5—H5109.0 (4)C27—C26—H26119.5 (5)
C4—C5—H5109.0 (3)C26—C27—C22120.8 (8)
C14—C9—C10120.1 (7)C26—C27—H27119.6 (5)
C14—C9—C8119.1 (7)C22—C27—H27119.6 (4)
C10—C9—C8120.8 (6)
C5—O5—C1—O187.1 (6)O4—C8—C9—C1461.9 (8)
C5—O5—C1—C238.3 (7)O6—C8—C9—C102.2 (9)
O5—C1—O1—C762.2 (7)O4—C8—C9—C10117.7 (7)
C2—C1—O1—C7170.9 (6)C14—C9—C10—C111.2 (13)
O1—C1—C2—N1161.5 (5)C8—C9—C10—C11178.3 (8)
O5—C1—C2—N171.9 (6)C9—C10—C11—C120.9 (15)
O1—C1—C2—C370.0 (6)C10—C11—C12—C130.9 (16)
O5—C1—C2—C356.7 (6)C11—C12—C13—C141.1 (15)
N1—C2—C3—C4110.7 (6)C10—C9—C14—C131.5 (12)
C1—C2—C3—C414.0 (6)C8—C9—C14—C13178.0 (8)
N1—C2—C3—S1120.4 (5)C12—C13—C14—C91.5 (14)
C1—C2—C3—S1114.9 (5)O3—S1—C15—C205.2 (7)
O3—S1—C3—C457.4 (5)O2—S1—C15—C20133.4 (6)
O2—S1—C3—C4174.0 (4)C3—S1—C15—C20112.1 (6)
C15—S1—C3—C458.8 (5)O3—S1—C15—C16173.6 (5)
O3—S1—C3—C268.2 (4)O2—S1—C15—C1645.3 (6)
O2—S1—C3—C260.5 (5)C3—S1—C15—C1669.2 (5)
C15—S1—C3—C2175.7 (4)C20—C15—C16—C171.6 (10)
C2—C3—C4—O4156.6 (4)S1—C15—C16—C17177.1 (6)
S1—C3—C4—O478.0 (5)C15—C16—C17—C180.4 (12)
C2—C3—C4—C540.9 (6)C16—C17—C18—C190.3 (13)
S1—C3—C4—C5166.2 (4)C17—C18—C19—C201.4 (14)
C5—C4—O4—C861.0 (6)C16—C15—C20—C192.7 (11)
C3—C4—O4—C8179.8 (5)S1—C15—C20—C19175.9 (6)
C4—O4—C8—O661.6 (7)C18—C19—C20—C152.6 (13)
C4—O4—C8—C9179.9 (5)C1—C2—N1—C21150.9 (6)
O4—C8—O6—C659.1 (8)C3—C2—N1—C2182.9 (7)
C9—C8—O6—C6175.9 (6)C2—N1—C21—C22161.0 (5)
C8—O6—C6—C557.3 (8)N1—C21—C22—C2315.5 (10)
C1—O5—C5—C6141.3 (5)N1—C21—C22—C27166.2 (6)
C1—O5—C5—C420.5 (7)C27—C22—C23—C242.4 (11)
O6—C6—C5—O5178.6 (5)C21—C22—C23—C24175.9 (7)
O6—C6—C5—C458.4 (7)C22—C23—C24—C252.2 (12)
O4—C4—C5—O5179.4 (5)C23—C24—C25—C260.1 (12)
C3—C4—C5—O562.8 (6)C24—C25—C26—C271.7 (12)
O4—C4—C5—C660.1 (6)C25—C26—C27—C221.5 (12)
C3—C4—C5—C6177.9 (5)C23—C22—C27—C260.6 (11)
O6—C8—C9—C14178.2 (6)C21—C22—C27—C26177.8 (7)

Experimental details

(Ia)(Ib)
Crystal data
Chemical formulaC27H29NO6SC27H29NO6S
Mr495.57495.57
Crystal system, space groupMonoclinic, P21Triclinic, P1
Temperature (K)293293
a, b, c (Å)10.418 (2), 8.880 (6), 13.560 (2)8.319 (1), 13.197 (2), 5.750 (2)
α, β, γ (°)90, 91.36 (1), 90100.84 (2), 98.61 (2), 89.43 (1)
V3)1254.1 (9)612.9 (2)
Z21
Radiation typeCu KαCu Kα
µ (mm1)1.501.54
Crystal size (mm)0.80 × 0.31 × 0.250.40 × 0.14 × 0.06
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
AFC7S
diffractometer
Absorption correctionψ scan
North et al (1968)
For a sphere
Weber(1969)
Tmin, Tmax0.668, 0.6870.709, 0.722
No. of measured, independent and
observed [I > 2σ(I)] reflections
2810, 2667, 2563 2739, 2425, 2407
Rint0.0170.052
(sin θ/λ)max1)0.6280.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.06 0.069, 0.203, 1.10
No. of reflections26672425
No. of parameters318318
No. of restraints13
H-atom treatmentOnly H-atom coordinates refinedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.340.20, 0.31
Absolute structureFlack (1983)Flack (1983)
Absolute structure parameter0.00 (2)0.00 (4)

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1993), Molecular Diffractometer Control Software (Molecular Structure Corporation, 1991), CAD-4-PC Software, Molecular Diffractometer Control Software, NRCVAX DATRD2 (Gabe et al., 1989), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), ORTEPII (Johnson, 1976) and PLUTO (Motherwell \& Clegg, 1978).

Selected geometric parameters (Å, º) for (Ia) top
S1—C31.832 (2)O1—C71.436 (3)
O5—C11.417 (3)C2—N11.455 (3)
O5—C51.418 (3)C2—C31.537 (3)
C1—O11.394 (4)C3—C41.522 (3)
C1—C21.537 (3)C4—C51.518 (3)
C1—O5—C5111.1 (2)C4—C3—S1110.17 (15)
O1—C1—O5111.4 (2)C2—C3—S1109.5 (2)
O1—C1—C2108.2 (2)O4—C4—C5106.8 (2)
O5—C1—C2112.8 (2)O4—C4—C3110.5 (2)
C1—O1—C7112.8 (3)C5—C4—C3109.4 (2)
N1—C2—C3109.5 (2)O5—C5—C4109.6 (2)
N1—C2—C1112.6 (2)O5—C5—C6109.0 (2)
C3—C2—C1113.4 (2)C4—C5—C6109.5 (2)
C4—C3—C2110.5 (2)C2—N1—C21114.9 (2)
C5—O5—C1—O164.4 (2)C1—O5—C5—C467.0 (2)
C5—O5—C1—C257.4 (3)C1—O5—C5—C6173.2 (2)
O5—C1—O1—C770.5 (3)O4—C4—C5—O5176.8 (2)
O1—C1—C2—N147.0 (3)C3—C4—C5—O563.7 (2)
O5—C1—C2—C345.7 (3)O4—C4—C5—C657.2 (3)
C1—C2—C3—C442.9 (3)O6—C6—C5—O5173.4 (2)
C2—C3—C4—C551.1 (3)O6—C6—C5—C453.5 (3)
Selected geometric parameters (Å, º) for (Ib) top
S1—C31.763 (7)C2—N11.453 (7)
O5—C11.414 (7)C2—C31.574 (8)
O5—C51.433 (7)C3—C41.522 (8)
C1—O11.382 (7)C4—C51.516 (8)
C1—C21.537 (9)N1—C211.442 (9)
O1—C71.438 (8)
C1—O5—C5115.6 (4)C4—C3—S1116.0 (4)
O1—C1—O5112.4 (5)C2—C3—S1109.8 (4)
O1—C1—C2110.1 (5)O4—C4—C5105.8 (4)
O5—C1—C2113.0 (5)O4—C4—C3109.0 (5)
C1—O1—C7111.0 (5)C5—C4—C3110.4 (5)
N1—C2—C1108.5 (5)O5—C5—C6107.0 (5)
N1—C2—C3115.6 (5)O5—C5—C4113.1 (5)
C1—C2—C3111.5 (5)C6—C5—C4109.6 (5)
C4—C3—C2110.1 (5)C21—N1—C2115.6 (5)
C5—O5—C1—O187.1 (6)C1—O5—C5—C6141.3 (5)
C5—O5—C1—C238.3 (7)C1—O5—C5—C420.5 (7)
O5—C1—O1—C762.2 (7)O6—C6—C5—O5178.6 (5)
O1—C1—C2—N1161.5 (5)O6—C6—C5—C458.4 (7)
O5—C1—C2—C356.7 (6)O4—C4—C5—O5179.4 (5)
C1—C2—C3—C414.0 (6)C3—C4—C5—O562.8 (6)
C2—C3—C4—C540.9 (6)O4—C4—C5—C660.1 (6)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds