Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the structural refinement of nanoparticles, discrete atomistic modeling can be used for small nanocrystals (< 15 nm), but becomes computationally unfeasible at larger sizes, where instead unit-cell-based small-box modeling is usually employed. However, the effect of the nanocrystal's shape is often ignored or accounted for with a spherical model regardless of the actual shape due to the complexities of solving and implementing accurate shape effects. Recent advancements have provided a way to determine the shape function directly from a pair distribution function calculated from a discrete atomistic model of any given shape, including both regular polyhedra (e.g. cubes, spheres, octahedra) and anisotropic shapes (e.g. rods, discs, ellipsoids) [Olds et al. (2015). J. Appl. Cryst. 48, 1651–1659], although this approach is still limited to small size regimes due to computational demands. In order to accurately account for the effects of nanoparticle size and shape in small-box refinements, a numerical or analytical description is needed. This article presents a methodology to derive numerical approximations of nanoparticle shape functions by fitting to a training set of known shape functions; the numerical approximations can then be employed on larger sizes yielding a more accurate and physically meaningful refined nanoparticle size. The method is demonstrated on a series of simulated and real data sets, and a table of pre-calculated shape function expressions for a selection of common shapes is provided.

Supporting information

txt

Text file https://doi.org/10.1107/S2053273318004977/vk5024sup1.txt
An example implementing the numerical shape functions in TOPAS v6 (TOPAS_example.inp)

txt

Text file https://doi.org/10.1107/S2053273318004977/vk5024sup2.txt
Simulated data for use with TOPAS input file (Au_10nm_tetra_corrected_pdf.xy)

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053273318004977/vk5024sup3.pdf
Additional figures


Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds