Buy article online - an online subscription or single-article purchase is required to access this article.
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H2O)3·2H2O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.
Supporting information
CCDC reference: 914664
Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008).
Crystal data top
C7H16CuMnN2O11 | Z = 4 |
Mr = 422.69 | F(000) = 856 |
Orthorhombic, Pnma | Dx = 1.998 Mg m−3 |
a = 12.7158 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 21.3520 (5) Å | µ = 2.48 mm−1 |
c = 5.1745 (2) Å | T = 10 K |
V = 1404.92 (7) Å3 | 0.27 × 0.16 × 0.06 mm |
Data collection top
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Absorption correction: gaussian CrysAlisPro, Oxford Diffraction Ltd.,
Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET)
(compiled Oct 25 2010,18:11:34)
Numerical absorption correction based on gaussian integration over
a multifaceted crystal model | θmax = 53.3°, θmin = 3.2° |
Tmin = 0.615, Tmax = 0.880 | h = 0→28 |
8505 measured reflections | k = 0→47 |
8505 independent reflections | l = 0→11 |
6880 reflections with > 3σ(I) | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.029 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.062 | Hydrogen site location: inferred from neighbouring sites |
S = 0.96 | H atoms treated by a mixture of independent and constrained refinement |
8505 reflections | w = 1/[σ2(Fo2) + (0.0177P)2 + 1.3214P] where P = (Fo2 + 2Fc2)/3 |
140 parameters | |
Special details top
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell s.u.'s are taken
into account individually in the estimation of s.u.'s in distances, angles
and torsion angles; correlations between s.u.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F2, conventional R-factors R are based
on F, with F set to zero for negative F2. The threshold expression of
F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F2 are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu | 0.050679 (8) | 0.2500 | 0.150042 (19) | 0.00415 (2) | |
Mn | 0.0000 | 0.5000 | 0.0000 | 0.00501 (2) | |
O1 | −0.06303 (3) | 0.423844 (19) | 0.22854 (9) | 0.00660 (5) | |
O2 | 0.09575 (4) | 0.42089 (2) | −0.12554 (9) | 0.00716 (6) | |
O3 | 0.11523 (3) | 0.317983 (19) | −0.06201 (9) | 0.00643 (5) | |
O4 | −0.11791 (4) | 0.47868 (2) | −0.29552 (9) | 0.00889 (6) | |
O5 | 0.17489 (6) | 0.2500 | 0.46535 (14) | 0.00904 (9) | |
O6 | 0.21400 (4) | 0.41212 (3) | 0.42287 (10) | 0.01069 (7) | |
N | −0.03674 (4) | 0.31734 (2) | 0.28494 (10) | 0.00587 (6) | |
C1 | 0.07282 (4) | 0.37043 (2) | −0.01580 (10) | 0.00557 (6) | |
C2 | −0.01646 (4) | 0.37163 (2) | 0.18463 (10) | 0.00536 (6) | |
C4 | −0.10898 (6) | 0.2500 | 0.62761 (15) | 0.00669 (9) | |
C3 | −0.12204 (5) | 0.31020 (3) | 0.47259 (12) | 0.00734 (7) | |
H1 | −0.1630 (17) | 0.2500 | 0.761 (4) | 0.015 (5)* | |
H2 | −0.0382 (16) | 0.2500 | 0.706 (4) | 0.013 (4)* | |
H3 | −0.1877 (12) | 0.3103 (7) | 0.388 (3) | 0.015 (3)* | |
H4 | −0.1224 (11) | 0.3445 (7) | 0.585 (3) | 0.015 (3)* | |
H5 | −0.1509 (15) | 0.5102 (9) | −0.342 (4) | 0.036 (5)* | |
H6 | −0.1047 (13) | 0.4602 (8) | −0.426 (3) | 0.021 (4)* | |
H7 | 0.1673 (14) | 0.2199 (8) | 0.559 (3) | 0.034 (5)* | |
H8 | 0.1986 (14) | 0.4119 (8) | 0.574 (4) | 0.028 (4)* | |
H9 | 0.2733 (15) | 0.4166 (8) | 0.413 (4) | 0.034 (5)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu | 0.00437 (3) | 0.00378 (3) | 0.00429 (3) | 0.000 | 0.00067 (2) | 0.000 |
Mn | 0.00614 (3) | 0.00385 (3) | 0.00503 (4) | 0.00021 (3) | 0.00029 (3) | 0.00065 (3) |
O1 | 0.00760 (13) | 0.00505 (11) | 0.00715 (14) | 0.00133 (10) | 0.00143 (11) | 0.00047 (10) |
O2 | 0.00841 (13) | 0.00557 (12) | 0.00749 (14) | 0.00003 (10) | 0.00203 (11) | 0.00171 (11) |
O3 | 0.00692 (12) | 0.00532 (11) | 0.00705 (13) | 0.00076 (10) | 0.00147 (11) | 0.00037 (10) |
O4 | 0.01031 (15) | 0.00899 (14) | 0.00737 (14) | 0.00099 (12) | −0.00087 (12) | −0.00066 (12) |
O5 | 0.0095 (2) | 0.0099 (2) | 0.0077 (2) | 0.000 | −0.00093 (17) | 0.000 |
O6 | 0.00880 (15) | 0.01390 (17) | 0.00935 (16) | 0.00074 (13) | 0.00066 (13) | −0.00134 (14) |
N | 0.00629 (14) | 0.00500 (12) | 0.00632 (14) | 0.00004 (10) | 0.00167 (11) | 0.00052 (11) |
C1 | 0.00607 (15) | 0.00516 (13) | 0.00547 (15) | 0.00006 (12) | 0.00049 (12) | 0.00050 (12) |
C2 | 0.00559 (15) | 0.00484 (13) | 0.00565 (15) | 0.00029 (11) | 0.00073 (12) | 0.00027 (12) |
C4 | 0.0080 (2) | 0.0062 (2) | 0.0058 (2) | 0.000 | 0.00127 (19) | 0.000 |
C3 | 0.00745 (16) | 0.00606 (14) | 0.00850 (18) | 0.00082 (13) | 0.00319 (14) | 0.00084 (14) |
Geometric parameters (Å, º) top
Cu—Ni | 1.9469 (5) | Mn—O4ii | 2.1894 (5) |
Cu—N | 1.9469 (5) | O1—C2 | 1.2827 (6) |
Cu—O3i | 1.9962 (4) | O2—C1 | 1.2524 (7) |
Cu—O3 | 1.9962 (4) | O3—C1 | 1.2657 (7) |
Cu—O5 | 2.2709 (7) | N—C2 | 1.2960 (7) |
Mn—O1 | 2.1645 (4) | N—C3 | 1.4637 (7) |
Mn—O1ii | 2.1645 (4) | C1—C2 | 1.5378 (7) |
Mn—O2ii | 2.1811 (4) | C4—C3i | 1.5243 (7) |
Mn—O2 | 2.1811 (4) | C4—C3 | 1.5243 (7) |
Mn—O4 | 2.1894 (5) | | |
| | | |
Ni—Cu—N | 95.22 (3) | O1—Mn—O4ii | 91.613 (18) |
Ni—Cu—O3i | 83.962 (18) | O1ii—Mn—O4ii | 88.387 (18) |
N—Cu—O3i | 165.67 (2) | O2ii—Mn—O4ii | 90.758 (18) |
Ni—Cu—O3 | 165.67 (2) | O2—Mn—O4ii | 89.242 (18) |
N—Cu—O3 | 83.962 (18) | O4—Mn—O4ii | 180.0 |
O3i—Cu—O3 | 93.30 (2) | C2—O1—Mn | 112.66 (3) |
Ni—Cu—O5 | 98.021 (19) | C1—O2—Mn | 113.66 (4) |
N—Cu—O5 | 98.021 (19) | C1—O3—Cu | 111.36 (4) |
O3i—Cu—O5 | 96.252 (18) | C2—N—C3 | 120.42 (5) |
O3—Cu—O5 | 96.252 (18) | C2—N—Cu | 113.79 (4) |
O1—Mn—O1ii | 180.000 (14) | C3—N—Cu | 125.73 (3) |
O1—Mn—O2ii | 102.260 (16) | O2—C1—O3 | 125.19 (5) |
O1ii—Mn—O2ii | 77.740 (16) | O2—C1—C2 | 117.60 (5) |
O1—Mn—O2 | 77.740 (16) | O3—C1—C2 | 117.17 (5) |
O1ii—Mn—O2 | 102.260 (16) | O1—C2—N | 127.92 (5) |
O2ii—Mn—O2 | 180.0 | O1—C2—C1 | 118.35 (5) |
O1—Mn—O4 | 88.387 (18) | N—C2—C1 | 113.71 (4) |
O1ii—Mn—O4 | 91.613 (18) | C3i—C4—C3 | 114.98 (7) |
O2ii—Mn—O4 | 89.242 (18) | N—C3—C4 | 110.87 (5) |
O2—Mn—O4 | 90.758 (18) | | |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x, −y+1, −z. |
Subscribe to Acta Crystallographica Section A: Foundations and Advances
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.