Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012005/wn6163sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012005/wn6163Isup2.hkl |
CCDC reference: 217442
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.005 Å
- R factor = 0.054
- wR factor = 0.127
- Data-to-parameter ratio = 13.5
checkCIF results
No syntax errors found ADDSYM reports no extra symmetry
Alert Level B:
PLAT_360 Alert B Short C(sp3)-C(sp3) Bond C10 - C11 = 1.32 Ang.
Alert Level C:
PLAT_320 Alert C Check Hybridisation of C3 in Main Residue . ? PLAT_320 Alert C Check Hybridisation of C4 in Main Residue . ? PLAT_320 Alert C Check Hybridisation of C5 in Main Residue . ?
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
3 Alert Level C = Please check
The title compound, (I), was prepared according to a literature method (Oea & Drabowicz, 1977), from (1S,1'R,3'R)-1-methoxyspiro[(bicyclo[2.2.2]oct-2-ene)-6,2'- (1,3-dithiolane)]-1',3'-dioxide (compound 29a in Aggarwal et al., 1998) (0.127 g, 0.49 mmol) in acetone (3 cm3), sodium iodide (0.366 g, 2.44 mmol) and TFAA (trifluoroacetic anhydride; 0.4 cm3, 2.94 mmol) at 195 K for 7 h. The crude sulfide was subjected to flash chromatography, eluting with acetone/petrol (50:50) and yielded the title compound, (I), as a white solid. It was crystallized from petrol ether (yield 0.035 g, 32%), m.p. 331 K.
Atoms H31, H41, H51, H61 and H62 were located in a difference synthesis and refined isotropically [C—H = 0.87 (4)–1.09 (7) Å]. The remaining H atoms were positioned geometrically at distances of 0.97 Å (CH2) and 0.96 Å (CH3) from the parent C atoms; a riding model was used during the refinement process.
Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C11H16OS2 | Z = 2 |
Mr = 228.36 | F(000) = 244 |
Triclinic, P1 | Dx = 1.342 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.748 (4) Å | Cell parameters from 25 reflections |
b = 7.870 (4) Å | θ = 12–20° |
c = 11.474 (7) Å | µ = 0.44 mm−1 |
α = 99.23 (4)° | T = 293 K |
β = 103.00 (5)° | Block, colourless |
γ = 102.69 (3)° | 0.55 × 0.34 × 0.28 mm |
V = 564.9 (6) Å3 |
Siemens P4 diffractometer | Rint = 0.037 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.7° |
Graphite monochromator | h = −1→8 |
non–profiled ω scans | k = −9→9 |
2493 measured reflections | l = −13→13 |
1983 independent reflections | 3 standard reflections every 100 reflections |
1040 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0676P)2] where P = (Fo2 + 2Fc2)/3 |
1983 reflections | (Δ/σ)max = 0.002 |
147 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C11H16OS2 | γ = 102.69 (3)° |
Mr = 228.36 | V = 564.9 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.748 (4) Å | Mo Kα radiation |
b = 7.870 (4) Å | µ = 0.44 mm−1 |
c = 11.474 (7) Å | T = 293 K |
α = 99.23 (4)° | 0.55 × 0.34 × 0.28 mm |
β = 103.00 (5)° |
Siemens P4 diffractometer | Rint = 0.037 |
2493 measured reflections | 3 standard reflections every 100 reflections |
1983 independent reflections | intensity decay: 1% |
1040 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.30 e Å−3 |
1983 reflections | Δρmin = −0.17 e Å−3 |
147 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H41 | −0.307 (9) | 0.320 (8) | 0.268 (5) | 0.14 (2)* | |
H31 | 0.103 (6) | 0.526 (4) | 0.241 (3) | 0.063 (10)* | |
H61 | −0.334 (5) | 0.734 (4) | 0.101 (3) | 0.054 (9)* | |
H62 | −0.253 (8) | 0.582 (7) | 0.036 (5) | 0.120 (16)* | |
H51 | −0.516 (9) | 0.458 (7) | 0.197 (5) | 0.128 (18)* | |
S1 | 0.14523 (13) | 0.75242 (11) | 0.10461 (7) | 0.0537 (3) | |
S2 | −0.02942 (15) | 1.01505 (11) | 0.22952 (10) | 0.0674 (4) | |
O1 | 0.2272 (3) | 0.8104 (3) | 0.38379 (19) | 0.0608 (6) | |
C2 | −0.0373 (4) | 0.7751 (3) | 0.1983 (2) | 0.0386 (6) | |
C1 | 0.0184 (4) | 0.7118 (3) | 0.3202 (2) | 0.0408 (6) | |
C4 | −0.2288 (6) | 0.4076 (5) | 0.2180 (4) | 0.0676 (10) | |
C11 | −0.3429 (5) | 0.6548 (5) | 0.3202 (3) | 0.0655 (9) | |
H11A | −0.4261 | 0.7395 | 0.3068 | 0.079* | |
H11B | −0.4031 | 0.5800 | 0.3697 | 0.079* | |
C3 | −0.0032 (5) | 0.5118 (4) | 0.2862 (3) | 0.0552 (8) | |
C5 | −0.3623 (5) | 0.5404 (5) | 0.1995 (3) | 0.0597 (9) | |
C6 | −0.2620 (5) | 0.6598 (5) | 0.1219 (3) | 0.0588 (9) | |
C7 | 0.3251 (6) | 0.9731 (5) | 0.1657 (4) | 0.0767 (11) | |
H7A | 0.4237 | 0.9746 | 0.2420 | 0.092* | |
H7B | 0.4048 | 1.0042 | 0.1081 | 0.092* | |
C9 | 0.2998 (6) | 0.7914 (5) | 0.5060 (3) | 0.0674 (10) | |
H9A | 0.4429 | 0.8625 | 0.5407 | 0.101* | |
H9B | 0.2935 | 0.6683 | 0.5057 | 0.101* | |
H9C | 0.2122 | 0.8306 | 0.5541 | 0.101* | |
C8 | 0.2045 (6) | 1.1028 (5) | 0.1873 (5) | 0.0822 (12) | |
H8A | 0.1663 | 1.1467 | 0.1133 | 0.099* | |
H8B | 0.2939 | 1.2035 | 0.2518 | 0.099* | |
C10 | −0.1484 (4) | 0.7441 (4) | 0.3825 (3) | 0.0508 (7) | |
H10A | −0.1179 | 0.7120 | 0.4615 | 0.061* | |
H10B | −0.1399 | 0.8707 | 0.3974 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0521 (5) | 0.0628 (5) | 0.0466 (4) | 0.0145 (4) | 0.0171 (3) | 0.0089 (3) |
S2 | 0.0737 (6) | 0.0474 (5) | 0.0923 (7) | 0.0230 (4) | 0.0369 (5) | 0.0175 (4) |
O1 | 0.0430 (13) | 0.0799 (15) | 0.0403 (10) | −0.0090 (10) | −0.0036 (9) | 0.0158 (10) |
C2 | 0.0326 (14) | 0.0447 (13) | 0.0353 (12) | 0.0104 (11) | 0.0044 (11) | 0.0065 (11) |
C1 | 0.0274 (13) | 0.0508 (14) | 0.0359 (13) | 0.0056 (11) | −0.0008 (11) | 0.0060 (11) |
C4 | 0.071 (2) | 0.0519 (17) | 0.064 (2) | 0.0037 (16) | 0.0072 (18) | 0.0001 (16) |
C11 | 0.0481 (19) | 0.088 (2) | 0.070 (2) | 0.0251 (17) | 0.0239 (16) | 0.0225 (19) |
C3 | 0.0444 (18) | 0.0631 (19) | 0.0613 (18) | 0.0217 (14) | 0.0108 (15) | 0.0179 (15) |
C5 | 0.0381 (17) | 0.069 (2) | 0.0549 (17) | −0.0026 (14) | 0.0025 (14) | 0.0035 (15) |
C6 | 0.0398 (18) | 0.0579 (18) | 0.0588 (19) | 0.0077 (14) | −0.0142 (15) | 0.0036 (15) |
C7 | 0.060 (2) | 0.067 (2) | 0.096 (3) | −0.0007 (17) | 0.030 (2) | 0.0106 (19) |
C9 | 0.061 (2) | 0.090 (2) | 0.0336 (14) | 0.0000 (18) | −0.0036 (14) | 0.0126 (16) |
C8 | 0.068 (3) | 0.064 (2) | 0.094 (3) | 0.0073 (18) | −0.004 (2) | 0.011 (2) |
C10 | 0.0422 (17) | 0.0527 (16) | 0.0507 (16) | 0.0089 (13) | 0.0088 (13) | 0.0028 (14) |
S1—C7 | 1.811 (4) | C11—H11B | 0.9700 |
S1—C2 | 1.826 (3) | C3—H31 | 0.97 (4) |
S2—C8 | 1.782 (5) | C5—C6 | 1.547 (6) |
S2—C2 | 1.852 (3) | C5—H51 | 1.09 (6) |
O1—C1 | 1.412 (3) | C6—H61 | 0.87 (4) |
O1—C9 | 1.421 (4) | C6—H62 | 1.09 (5) |
C2—C1 | 1.554 (4) | C7—C8 | 1.462 (6) |
C2—C6 | 1.560 (4) | C7—H7A | 0.9700 |
C1—C10 | 1.507 (4) | C7—H7B | 0.9700 |
C1—C3 | 1.526 (4) | C9—H9A | 0.9600 |
C4—C3 | 1.521 (5) | C9—H9B | 0.9600 |
C4—C5 | 1.532 (5) | C9—H9C | 0.9600 |
C4—H41 | 1.09 (7) | C8—H8A | 0.9700 |
C11—C10 | 1.319 (4) | C8—H8B | 0.9700 |
C11—C5 | 1.488 (5) | C10—H10A | 0.9700 |
C11—H11A | 0.9700 | C10—H10B | 0.9700 |
C7—S1—C2 | 97.42 (16) | C6—C5—H51 | 139 (3) |
C8—S2—C2 | 99.37 (16) | C5—C6—C2 | 109.8 (3) |
C1—O1—C9 | 116.0 (2) | C5—C6—H61 | 112 (2) |
C1—C2—C6 | 108.0 (2) | C2—C6—H61 | 106 (2) |
C1—C2—S1 | 113.79 (18) | C5—C6—H62 | 112 (3) |
C6—C2—S1 | 108.1 (2) | C2—C6—H62 | 110 (3) |
C1—C2—S2 | 110.58 (17) | H61—C6—H62 | 106 (4) |
C6—C2—S2 | 110.6 (2) | C8—C7—S1 | 109.3 (3) |
S1—C2—S2 | 105.72 (15) | C8—C7—H7A | 109.8 |
O1—C1—C10 | 115.5 (2) | S1—C7—H7A | 109.8 |
O1—C1—C3 | 112.3 (2) | C8—C7—H7B | 109.8 |
C10—C1—C3 | 109.7 (2) | S1—C7—H7B | 109.8 |
O1—C1—C2 | 106.8 (2) | H7A—C7—H7B | 108.3 |
C10—C1—C2 | 104.8 (2) | O1—C9—H9A | 109.5 |
C3—C1—C2 | 107.1 (2) | O1—C9—H9B | 109.5 |
C3—C4—C5 | 108.5 (3) | H9A—C9—H9B | 109.5 |
C3—C4—H41 | 114 (3) | O1—C9—H9C | 109.5 |
C5—C4—H41 | 104 (3) | H9A—C9—H9C | 109.5 |
C10—C11—C5 | 114.9 (3) | H9B—C9—H9C | 109.5 |
C10—C11—H11A | 108.6 | C7—C8—S2 | 113.9 (3) |
C5—C11—H11A | 108.6 | C7—C8—H8A | 108.8 |
C10—C11—H11B | 108.6 | S2—C8—H8A | 108.8 |
C5—C11—H11B | 108.6 | C7—C8—H8B | 108.8 |
H11A—C11—H11B | 107.5 | S2—C8—H8B | 108.8 |
C4—C3—C1 | 111.7 (3) | H8A—C8—H8B | 107.7 |
C4—C3—H31 | 119 (2) | C11—C10—C1 | 114.6 (3) |
C1—C3—H31 | 93.6 (19) | C11—C10—H10A | 108.6 |
C11—C5—C4 | 109.6 (3) | C1—C10—H10A | 108.6 |
C11—C5—C6 | 108.3 (3) | C11—C10—H10B | 108.6 |
C4—C5—C6 | 105.3 (3) | C1—C10—H10B | 108.6 |
C11—C5—H51 | 92 (3) | H10A—C10—H10B | 107.6 |
C4—C5—H51 | 100 (3) | ||
C7—S1—C2—C1 | −91.5 (2) | O1—C1—C3—C4 | 179.9 (3) |
C7—S1—C2—C6 | 148.5 (2) | C10—C1—C3—C4 | 50.1 (3) |
C7—S1—C2—S2 | 30.1 (2) | C2—C1—C3—C4 | −63.1 (3) |
C8—S2—C2—C1 | 108.3 (2) | C10—C11—C5—C4 | 57.2 (5) |
C8—S2—C2—C6 | −132.0 (2) | C10—C11—C5—C6 | −57.1 (4) |
C8—S2—C2—S1 | −15.3 (2) | C3—C4—C5—C11 | −55.5 (4) |
C9—O1—C1—C10 | 55.4 (4) | C3—C4—C5—C6 | 60.8 (3) |
C9—O1—C1—C3 | −71.4 (3) | C11—C5—C6—C2 | 50.3 (4) |
C9—O1—C1—C2 | 171.5 (3) | C4—C5—C6—C2 | −66.8 (3) |
C6—C2—C1—O1 | 176.4 (2) | C1—C2—C6—C5 | 7.1 (3) |
S1—C2—C1—O1 | 56.4 (2) | S1—C2—C6—C5 | 130.6 (3) |
S2—C2—C1—O1 | −62.4 (2) | S2—C2—C6—C5 | −114.1 (3) |
C6—C2—C1—C10 | −60.7 (3) | C2—S1—C7—C8 | −38.6 (4) |
S1—C2—C1—C10 | 179.34 (17) | S1—C7—C8—S2 | 32.1 (4) |
S2—C2—C1—C10 | 60.5 (2) | C2—S2—C8—C7 | −10.1 (4) |
C6—C2—C1—C3 | 55.8 (3) | C5—C11—C10—C1 | −0.6 (5) |
S1—C2—C1—C3 | −64.2 (2) | O1—C1—C10—C11 | 178.2 (3) |
S2—C2—C1—C3 | 177.04 (19) | C3—C1—C10—C11 | −53.7 (4) |
C5—C4—C3—C1 | 2.8 (4) | C2—C1—C10—C11 | 61.0 (4) |
Experimental details
Crystal data | |
Chemical formula | C11H16OS2 |
Mr | 228.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.748 (4), 7.870 (4), 11.474 (7) |
α, β, γ (°) | 99.23 (4), 103.00 (5), 102.69 (3) |
V (Å3) | 564.9 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.55 × 0.34 × 0.28 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2493, 1983, 1040 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.127, 1.00 |
No. of reflections | 1983 |
No. of parameters | 147 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.17 |
Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
S1—C7 | 1.811 (4) | C1—C10 | 1.507 (4) |
S1—C2 | 1.826 (3) | C1—C3 | 1.526 (4) |
S2—C8 | 1.782 (5) | C4—C3 | 1.521 (5) |
S2—C2 | 1.852 (3) | C4—C5 | 1.532 (5) |
O1—C1 | 1.412 (3) | C11—C10 | 1.319 (4) |
O1—C9 | 1.421 (4) | C11—C5 | 1.488 (5) |
C2—C1 | 1.554 (4) | C5—C6 | 1.547 (6) |
C2—C6 | 1.560 (4) | C7—C8 | 1.462 (6) |
C7—S1—C2 | 97.42 (16) | O1—C1—C3 | 112.3 (2) |
C8—S2—C2 | 99.37 (16) | O1—C1—C2 | 106.8 (2) |
C1—O1—C9 | 116.0 (2) | C3—C1—C2 | 107.1 (2) |
C1—C2—S1 | 113.79 (18) | C10—C11—C5 | 114.9 (3) |
C6—C2—S1 | 108.1 (2) | C4—C3—C1 | 111.7 (3) |
C1—C2—S2 | 110.58 (17) | C4—C5—C6 | 105.3 (3) |
C6—C2—S2 | 110.6 (2) | C8—C7—S1 | 109.3 (3) |
S1—C2—S2 | 105.72 (15) | C7—C8—S2 | 113.9 (3) |
O1—C1—C10 | 115.5 (2) | C11—C10—C1 | 114.6 (3) |
C7—S1—C2—S2 | 30.1 (2) | S2—C2—C1—O1 | −62.4 (2) |
C8—S2—C2—S1 | −15.3 (2) | C2—S1—C7—C8 | −38.6 (4) |
C9—O1—C1—C3 | −71.4 (3) | S1—C7—C8—S2 | 32.1 (4) |
S1—C2—C1—O1 | 56.4 (2) | C2—S2—C8—C7 | −10.1 (4) |
Angles | (I) | (II) | (III) | (IV) |
S1—C2—S2 | 105.72 (15) | 105.8 (2) | 106.93 (8) | 107.37 (9) |
C2—S1—C7 | 97.42 (16) | 94.7 (2) | 94.6 (1) | 95.04 (9) |
C2—S2—C8 | 99.37 (16) | 99.0 (2) | 98.4 (1) | 97.89 (9) |
S2—C8—C7 | 113.9 (3) | 108.3 (4) | 109.7 (2) | 109.0 (2) |
S1—C7—C8 | 109.3 (3) | 106.9 (3) | 107.5 (2) | 107.2 (1) |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
Ketene equivalents have found widespread use as partners in Diels-Alder reactions for the construction of cyclic, fused and bridged unsaturated ketones (Ranganathan et al., 1977; Aggarwal et al., 1999). The C2-symmetric ketene equivalent has been prepared in racemic and enantiomerically pure forms in four steps, and found to be highly reactive and highly diastereoselective (>97:3) in Diels-Alder reactions (Aggarwal et al., 1995). The advantage of this chiral ketene equivalent is that it requires only two steps to remove the chiral auxilary from the cycloadduct (Aggarwal et al., 1995).
Ketene equivalents have also been used in the synthesis of terpenes (Subba Rao & Kalliappan, 1996; Mirrington & Gregson, 1973; Monti & Yang, 1979). 1-Methoxycyclohexa-1,3-diene has been used as a diene in the Diels-Alder reaction (Evans et al., 1972) and it is also a useful diene in the synthesis of terpenoids (Subba Rao & Kalliappan, 1996; Monti & Yang, 1979).
The C2 symmetric ketene equivalent (Aggarwal et al., 1995) has been investigated with 1-methoxycyclohexa-1,3-diene, under a range of conditions (Aggarwal et al., 1998), giving >97:3 diastereoselectivity in 95% yield.
The title compound, (I), was obtained by reduction of the cycloadduct, according to a literature method (Oea & Drabowicz, 1977). It is a useful starting material for the synthesis of terpenes. The structure determination of (I) was undertaken to understand the effects of the methoxybicyclooctene system and to compare the results with those found in 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), spiro[carbazole-1(2H),2'-[1,3]dithiolan]-4(3H)-one, (III) (Hökelek et al., 1998) and 9-acetonyl-3-ethylidene- 1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan]-4-one, (IV) (Hökelek et al., 1999).
The title compound, (I), (Fig. 1) consists of a five-membered dithiolane ring with a methoxybicyclooctene spiro-fused at the 2-position; the dithiolane ring adopts a twist conformation. The S atoms of the dithiolane ring have electron-releasing properties, but the O atom of the methoxy group is electron-withdrawing, thereby influencing the bond lengths and angles of the dithiolane ring (Table 1). Some significant changes in the geometry of the dithiolane ring are evident when a few bond angles are compared with the values found in compounds (II)-(IV) (Table 2).
The structure reveals a number of close contacts: S1···H31(C3) 2.562 (38), O1···H31(C3) 2.403 (31), S2···H61(C6) 2.621 (28), S1···H62(C6) 2.602 (48), O1···H7A(C7) 2.639 (3), S2···H10B(C10) 2.556 (2), O1i···H11A(C11) 2.813 (3) and Oii···H9A(C9) 2.869 (3) Å [symmetry codes: (i) x − 1, y, z; (ii) −x + 1, −y + 2, −z + 1]. These interactions may have an influence on the bond lengths and angles and also the shape of the molecule.