Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecular and crystal structure of 1H-1,2,4-triazolium perchlorate, C2H4N3+·ClO4, was determined as detailed crystallographic data had not been available previously. The structure has monoclinic (P21/m) symmetry. It is of inter­est in the field of energetic com­pounds because nitro­gen-rich azoles are the backbone of high-density energetic com­pounds, and salt-based energetic materials can exhibit preferential energy-release behaviour. The bond angles of the 1,2,4-triazolium cation in this study were similar to those of a cationic triazole ring reported previously and were different from those of the neutral triazole ring. This study contributes to the available data that can be used to analyse the relationship between the structures and properties of energetic materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621003260/wp3012sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621003260/wp3012Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621003260/wp3012Isup3.cml
Supplementary material

CCDC reference: 1999346

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

1H-1,2,4-Triazolium perchlorate top
Crystal data top
C2H4N3+·ClO4F(000) = 344
Mr = 169.53Dx = 1.911 Mg m3
Monoclinic, P21/mCu Kα radiation, λ = 1.54184 Å
a = 5.1859 (1) ÅCell parameters from 2328 reflections
b = 11.8497 (1) Åθ = 4.6–73.1°
c = 9.6461 (1) ŵ = 5.54 mm1
β = 96.153 (1)°T = 223 K
V = 589.35 (1) Å3Plate, clear pale yellow
Z = 41 × 0.6 × 0.3 mm
Data collection top
XtaLAB AFC12 (RINC) Kappa dual home/near
diffractometer
1217 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku (Cu) X-ray Source1136 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
ω scansθmax = 73.3°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 66
Tmin = 0.838, Tmax = 1.000k = 1314
3611 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.1864P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1217 reflectionsΔρmax = 0.27 e Å3
108 parametersΔρmin = 0.75 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl100.85233 (11)0.7500000.42804 (6)0.0232 (2)
O110.8685 (4)0.7500000.28056 (18)0.0319 (5)
O120.5866 (4)0.7500000.4563 (2)0.0416 (5)
O130.9799 (3)0.65063 (13)0.48852 (15)0.0388 (4)
N10.5121 (3)0.43779 (14)0.83520 (17)0.0277 (4)
H10.477 (5)0.391 (2)0.888 (3)0.044 (7)*
N20.3322 (3)0.51339 (16)0.7827 (2)0.0429 (5)
N40.6962 (3)0.53346 (15)0.69127 (17)0.0297 (4)
H40.808 (6)0.561 (3)0.648 (3)0.052 (8)*
C30.4530 (4)0.57112 (19)0.6944 (2)0.0384 (5)
H30.3793500.6312090.6402110.046*
C50.7300 (4)0.44967 (17)0.7816 (2)0.0288 (4)
H50.8818710.4069920.8030170.035*
Cl61.03081 (10)0.2500000.06220 (5)0.0209 (2)
O70.7698 (4)0.2500000.0070 (2)0.0327 (5)
O81.0241 (4)0.2500000.21008 (18)0.0319 (5)
O91.1632 (3)0.34949 (12)0.02056 (13)0.0313 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl100.0243 (3)0.0267 (3)0.0191 (3)0.0000.0053 (2)0.000
O110.0459 (12)0.0308 (11)0.0195 (9)0.0000.0058 (8)0.000
O120.0244 (10)0.0558 (15)0.0464 (12)0.0000.0116 (9)0.000
O130.0447 (8)0.0410 (9)0.0318 (7)0.0131 (7)0.0096 (6)0.0121 (6)
N10.0313 (8)0.0227 (8)0.0304 (8)0.0006 (7)0.0089 (7)0.0045 (7)
N20.0234 (8)0.0329 (10)0.0742 (13)0.0036 (7)0.0138 (8)0.0147 (9)
N40.0288 (8)0.0331 (9)0.0286 (8)0.0067 (7)0.0093 (7)0.0019 (7)
C30.0275 (9)0.0327 (11)0.0529 (13)0.0024 (8)0.0047 (9)0.0169 (10)
C50.0232 (9)0.0276 (10)0.0356 (10)0.0017 (7)0.0036 (7)0.0011 (8)
Cl60.0233 (3)0.0212 (3)0.0184 (3)0.0000.0034 (2)0.000
O70.0242 (9)0.0308 (11)0.0416 (11)0.0000.0044 (8)0.000
O80.0456 (12)0.0307 (11)0.0207 (9)0.0000.0091 (8)0.000
O90.0359 (7)0.0309 (8)0.0279 (7)0.0098 (6)0.0070 (5)0.0023 (6)
Geometric parameters (Å, º) top
Cl10—O111.4341 (18)N4—C31.341 (3)
Cl10—O121.433 (2)N4—C51.321 (3)
Cl10—O13i1.4428 (15)C3—H30.9400
Cl10—O131.4428 (15)C5—H50.9400
N1—H10.78 (3)Cl6—O71.4438 (19)
N1—N21.352 (2)Cl6—O81.4305 (18)
N1—C51.299 (2)Cl6—O91.4428 (14)
N2—C31.303 (3)Cl6—O9ii1.4427 (14)
N4—H40.82 (3)
O11—Cl10—O13109.15 (8)N2—C3—N4111.04 (19)
O11—Cl10—O13i109.15 (8)N2—C3—H3124.5
O12—Cl10—O11110.38 (13)N4—C3—H3124.5
O12—Cl10—O13109.38 (8)N1—C5—N4106.52 (17)
O12—Cl10—O13i109.38 (8)N1—C5—H5126.7
O13—Cl10—O13i109.40 (14)N4—C5—H5126.7
N2—N1—H1120 (2)O8—Cl6—O7109.84 (12)
C5—N1—H1127 (2)O8—Cl6—O9ii109.92 (7)
C5—N1—N2111.94 (17)O8—Cl6—O9109.92 (7)
C3—N2—N1103.41 (17)O9ii—Cl6—O7108.77 (8)
C3—N4—H4127 (2)O9—Cl6—O7108.77 (7)
C5—N4—H4126 (2)O9ii—Cl6—O9109.60 (12)
C5—N4—C3107.08 (16)
N1—N2—C3—N40.2 (3)C5—N1—N2—C30.2 (3)
N2—N1—C5—N40.5 (2)C5—N4—C3—N20.5 (3)
C3—N4—C5—N10.6 (2)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O130.8182.1412.921159.61
N1—H1···O90.7872.2302.874139.46
N—H1···O70.7872.4072.936125.59
N4—H4···O80.8182.7193.049106.14
Neutral and cationic triazole bond lengths (Å) top
BondC5—N1N1—N2N2—C3C3—N4N4—C5
Neutral1.319 (1)1.368 (1)1.310 (1)1.348 (1)1.335 (1)
Cationic1.290 (1)1.349 (1)1.291 (1)1.339 (1)1.312 (1)
This study1.299 (2)1.352 (2)1.303 (3)1.341 (3)1.321 (3)
Neutral and cationic triazole bond angles (°) top
AnglesN4—C5—N1C5—N1—N2N1—N2—C3N2—C3—N4C3—N4—C5
Neutral110.3 (1)109.5 (1)102.6 (1)114.9 (1)102.7 (1)
Cationic107.0 (1)111.7 (1)103.3 (1)111.4 (1)106.6 (1)
This study106.52 (17)111.94 (17)103.41 (17)111.04 (19)107.08 (16)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds