Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The novel quaternary thio­germanate Li4CdGe2S7 (tetra­lithium cadmium di­ger­manium hepta­sulfide) was discovered from a solid-state reaction at 750 °C. Single-crystal X-ray diffraction data were collected and used to solve and refine the structure. Li4CdGe2S7 is a member of the small, but growing, class of I4–II–IV2–VI7 diamond-like materials. The com­pound adopts the Cu5Si2S7 structure type, which is a derivative of lonsdaleite. Crystallizing in the polar space group Cc, Li4CdGe2S7 contains 14 crystallographically unique ions, all residing on general positions. Like all diamond-like structures, the com­pound is built of corner-sharing tetra­hedral units that create a relatively dense three-dimensional assembly. The title com­pound is the major phase of the reaction product, as evidenced by powder X-ray diffraction and optical diffuse reflectance spectroscopy. While the com­pound exhibits a second-harmonic generation (SHG) response com­parable to that of the AgGaS2 (AGS) reference material in the IR region, its laser-induced damage threshold (LIDT) is over an order of magnitude greater than AGS for λ = 1.064 µm and τ = 30 ps. Bond valence sums, global instability index, minimum bounding ellipsoid (MBE) analysis, and electronic structure calculations using density functional theory (DFT) were used to further evaluate the crystal structure and electronic structure of the com­pound and provide a com­parison with the analogous I2–II–IV–VI4 dia­mond-like com­pound Li2CdGeS4. Li4CdGe2S7 appears to be a better IR nonlinear optical (NLO) candidate than Li2CdGeS4 and one of the most promising contenders to date. The exceptional LIDT is likely due, at least in part, to the wider optical bandgap of ∼3.6 eV.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622008014/wp3029sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622008014/wp3029Isup2.hkl
Contains datablock I

CCDC reference: 2195746

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SMART (Bruker, 2010); data reduction: SMART (Bruker, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2019); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Tetralithium cadmium digermanium heptasulfide top
Crystal data top
Li4CdGe2S7F(000) = 944
Mr = 509.76Dx = 2.926 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 16.8354 (10) ÅCell parameters from 7524 reflections
b = 6.7870 (4) Åθ = 2.4–33.0°
c = 10.1499 (6) ŵ = 8.18 mm1
β = 93.710 (3)°T = 293 K
V = 1157.32 (12) Å3Polyhedra, colourless
Z = 40.21 × 0.12 × 0.11 mm
Data collection top
Bruker SMART APEXII
diffractometer
2612 reflections with I > 2σ(I)
φ and ω scanRint = 0.017
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
θmax = 27.5°, θmin = 2.4°
Tmin = 0.549, Tmax = 0.747h = 2121
7415 measured reflectionsk = 88
2634 independent reflectionsl = 1313
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0097P)2 + 0.0293P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.010Δρmax = 0.27 e Å3
wR(F2) = 0.024Δρmin = 0.21 e Å3
S = 1.08Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2634 reflectionsExtinction coefficient: 0.00183 (7)
129 parametersAbsolute structure: Refined as an inversion twin.
2 restraintsAbsolute structure parameter: 0.001 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.3309 (6)0.1842 (15)0.5012 (10)0.0224 (18)
Li20.1207 (8)0.3276 (14)0.4190 (13)0.025 (2)
Li30.9764 (7)0.3297 (11)0.7180 (11)0.0199 (19)
Li40.7674 (6)0.1619 (14)0.6423 (10)0.025 (2)
Cd0.54849 (2)0.36329 (3)0.56327 (4)0.01770 (6)
Ge10.40538 (2)0.33494 (7)0.84280 (2)0.01042 (11)
Ge20.19465 (2)0.17688 (7)0.77467 (2)0.01045 (10)
S10.50089 (4)0.29460 (12)0.00091 (8)0.01425 (15)
S20.43895 (5)0.16838 (12)0.66829 (7)0.01398 (16)
S30.37399 (5)0.35832 (12)0.31017 (8)0.01570 (17)
S40.30151 (5)0.16992 (11)0.92654 (7)0.01258 (16)
S50.22120 (5)0.33369 (13)0.59790 (8)0.01651 (18)
S60.66610 (5)0.36507 (11)0.73450 (8)0.01491 (16)
S70.09614 (4)0.32632 (13)0.86708 (8)0.01446 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.022 (4)0.025 (4)0.021 (3)0.001 (3)0.006 (3)0.001 (3)
Li20.028 (4)0.021 (4)0.025 (4)0.002 (3)0.000 (3)0.001 (3)
Li30.021 (3)0.023 (4)0.016 (4)0.000 (3)0.004 (3)0.002 (3)
Li40.026 (4)0.025 (4)0.024 (4)0.003 (3)0.003 (3)0.001 (3)
Cd0.01709 (9)0.01891 (11)0.01720 (9)0.00053 (13)0.00176 (6)0.00054 (13)
Ge10.00954 (19)0.0111 (2)0.01056 (18)0.00010 (12)0.00062 (14)0.00022 (12)
Ge20.00921 (18)0.01191 (19)0.01018 (18)0.00051 (13)0.00025 (13)0.00008 (13)
S10.0124 (3)0.0164 (4)0.0135 (3)0.0005 (3)0.0020 (2)0.0005 (3)
S20.0160 (3)0.0138 (4)0.0124 (3)0.0002 (3)0.0032 (3)0.0021 (3)
S30.0179 (4)0.0117 (4)0.0175 (4)0.0012 (3)0.0018 (3)0.0008 (3)
S40.0098 (3)0.0163 (4)0.0115 (3)0.0024 (3)0.0002 (3)0.0023 (3)
S50.0173 (4)0.0203 (4)0.0120 (4)0.0021 (3)0.0011 (3)0.0036 (3)
S60.0150 (4)0.0124 (4)0.0171 (3)0.0010 (3)0.0013 (3)0.0017 (3)
S70.0130 (4)0.0146 (4)0.0161 (3)0.0020 (3)0.0035 (3)0.0005 (3)
Geometric parameters (Å, º) top
Li1—S52.374 (10)Li4—S62.428 (10)
Li1—S22.408 (10)Li4—S4ix2.567 (11)
Li1—S32.421 (10)Cd—S1x2.5235 (8)
Li1—S4i2.559 (10)Cd—S7ix2.5441 (9)
Li2—S1ii2.380 (13)Cd—S62.5487 (10)
Li2—S52.401 (13)Cd—S22.5576 (9)
Li2—S7iii2.437 (10)Ge1—S3x2.1680 (8)
Li2—S6iv2.447 (12)Ge1—S22.2055 (9)
Li3—S3v2.385 (10)Ge1—S1xi2.2141 (8)
Li3—S1v2.420 (12)Ge1—S42.2862 (8)
Li3—S2vi2.428 (7)Ge2—S52.1577 (8)
Li3—S7vii2.440 (12)Ge2—S6xii2.2024 (10)
Li4—S5viii2.393 (9)Ge2—S72.2045 (8)
Li4—S3v2.397 (10)Ge2—S42.2926 (9)
S5—Li1—S2107.5 (4)Ge1xiii—S1—Li2ix112.5 (3)
S5—Li1—S3113.8 (4)Ge1xiii—S1—Li3iv123.0 (3)
S2—Li1—S3109.5 (4)Li2ix—S1—Li3iv113.2 (4)
S5—Li1—S4i112.5 (4)Ge1xiii—S1—Cdiii105.78 (3)
S2—Li1—S4i106.8 (4)Li2ix—S1—Cdiii98.4 (3)
S3—Li1—S4i106.5 (4)Li3iv—S1—Cdiii99.34 (19)
S1ii—Li2—S5108.3 (5)Ge1—S2—Li1108.8 (2)
S1ii—Li2—S7iii106.0 (5)Ge1—S2—Li3xii113.3 (3)
S5—Li2—S7iii104.4 (4)Li1—S2—Li3xii111.3 (4)
S1ii—Li2—S6iv113.2 (4)Ge1—S2—Cd107.38 (3)
S5—Li2—S6iv110.4 (5)Li1—S2—Cd102.5 (2)
S7iii—Li2—S6iv114.0 (5)Li3xii—S2—Cd113.0 (3)
S3v—Li3—S1v109.9 (4)Ge1iii—S3—Li3iv113.5 (2)
S3v—Li3—S2vi113.8 (5)Ge1iii—S3—Li4iv109.1 (2)
S1v—Li3—S2vi101.4 (3)Li3iv—S3—Li4iv102.6 (4)
S3v—Li3—S7vii110.0 (4)Ge1iii—S3—Li1115.4 (2)
S1v—Li3—S7vii112.3 (5)Li3iv—S3—Li1108.3 (3)
S2vi—Li3—S7vii109.3 (4)Li4iv—S3—Li1107.0 (4)
S5viii—Li4—S3v107.5 (4)Ge1—S4—Ge2109.01 (3)
S5viii—Li4—S6111.9 (4)Ge1—S4—Li1xiv115.6 (2)
S3v—Li4—S6105.7 (4)Ge2—S4—Li1xiv110.3 (2)
S5viii—Li4—S4ix110.0 (4)Ge1—S4—Li4ii108.5 (2)
S3v—Li4—S4ix115.7 (4)Ge2—S4—Li4ii110.8 (2)
S6—Li4—S4ix106.1 (3)Li1xiv—S4—Li4ii102.4 (4)
S1x—Cd—S7ix112.35 (3)Ge2—S5—Li1110.0 (2)
S1x—Cd—S6112.75 (3)Ge2—S5—Li4xv112.6 (3)
S7ix—Cd—S6105.41 (3)Li1—S5—Li4xv102.9 (4)
S1x—Cd—S2110.77 (3)Ge2—S5—Li2116.5 (3)
S7ix—Cd—S2109.70 (2)Li1—S5—Li2102.1 (4)
S6—Cd—S2105.52 (3)Li4xv—S5—Li2111.3 (3)
S3x—Ge1—S2116.24 (3)Ge2vi—S6—Li4117.8 (2)
S3x—Ge1—S1xi112.82 (3)Ge2vi—S6—Li2v116.6 (2)
S2—Ge1—S1xi107.87 (3)Li4—S6—Li2v104.7 (3)
S3x—Ge1—S4110.03 (3)Ge2vi—S6—Cd106.34 (3)
S2—Ge1—S4106.82 (3)Li4—S6—Cd105.6 (2)
S1xi—Ge1—S4101.95 (3)Li2v—S6—Cd104.6 (3)
S5—Ge2—S6xii111.99 (3)Ge2—S7—Li2x114.4 (3)
S5—Ge2—S7109.20 (3)Ge2—S7—Li3xvi110.8 (3)
S6xii—Ge2—S7111.08 (3)Li2x—S7—Li3xvi104.3 (4)
S5—Ge2—S4111.93 (3)Ge2—S7—Cdii112.60 (3)
S6xii—Ge2—S4104.90 (3)Li2x—S7—Cdii112.1 (3)
S7—Ge2—S4107.62 (3)Li3xvi—S7—Cdii101.6 (2)
Symmetry codes: (i) x, y, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x+1, y, z; (viii) x+1/2, y1/2, z; (ix) x+1/2, y+1/2, z1/2; (x) x, y+1, z+1/2; (xi) x, y, z+1; (xii) x1/2, y1/2, z; (xiii) x, y, z1; (xiv) x, y, z+1/2; (xv) x1/2, y+1/2, z; (xvi) x1, y, z.
Known I4–II–IV2–VI7 diamond-like compounds with structures derived from cubic diamond (C2) or lonsdaleite (Cc) with the corresponding SHG responses and optical bandgaps where applicable top
CompoundSpace GroupSHG response*Eg (eV)Reference
Li4MgGe2S7Cc0.7 × AGS (λ = 2.09 µm)4.12Abudurusuli et al. (2021)
Li4MnGe2S7CcKaib et al. (2013)
Li4MnSn2Se7CcKaib et al. (2013)
Li4CdGe2S7Cc~ 1 × AGS (λ = 1.8 µm)3.6This work
Li4CdSn2S7Ccχ(2) = 35.0±3.5 pm V-12.59Zhang, Stoyko et al. (2020)
Li4HgGe2S7Cc1.5 × AGS (λ = 2.09 µm)2.75Wu et al. (2017)
Li4HgSn2S7CcAitken (2001)
Li4HgSn2Se7Cc3.6 × AGS (λ = 2.09 µm)2.1Guo et al. (2019)
Ag4CdGe2S7CcGulay et al. (2002)
Ag4HgGe2S7CcGulay et al. (2002)
Cu4MnGe2S7Ccχ(2) = 2.33 × 0.86 pm V-11.98Glenn et al. (2021)
Cu4FeGe2S7C2Craig et al. (2020)
Cu4CoGe2S7C2Craig et al. (2020)
Cu4NiSi2S7C2Schäfer et al. (1980)
Cu4NiGe2S7C2Schäfer et al. (1980)
Cu4ZnGe2Se7C2weak0.91Sinagra et al. (2021)
* χ(2) values are assessed at the static limit, where the sample and the reference are phase matching and multiphoton absorption is not a factor.
Extended connectivity table for Li4CdGe2S7 used to predict structural distortions in accordance with Pauling's second rule top
Anions
*CMP = compensated
Bond distances in Li4CdGe2S7 and Li2CdGeS4 top
Li4CdGe2S7Bond distanceLi2CdGeS4Bond distance
Li1—S52.374 (10)Li—S32.402 (9)
Li1—S22.408 (10)Li—S12.41 (2)
Li1—S32.421 (10)Li—S12.424 (7)
Li1—S42.559 (10)Li—S22.446 (6)
Avg Li1—S2.44 (2)Avg Li—S2.42 (2)
Li2—S12.380 (13)
Li2—S52.401 (13)
Li2—S72.437 (10)
Li2—S62.447 (12)
Avg Li2—S2.42 (2)
Li3—S32.385 (10)
Li3—S12.420 (12)
Li3—S22.428 (7)
Li3—S72.440 (12)
Avg Li3—S2.42 (2)
Li4—S52.392 (9)
Li4—S32.397 (10)
Li4—S62.428 (10)
Li4—S42.567 (11)
Avg Li4—S2.45 (2)
Avg Li—S2.43 (4)
Cd—S12.5235 (8)Cd—S32.5204 (10)
Cd—S72.5440 (9)Cd—S12.5493 (12)
Cd—S62.5487 (10)Cd—S22.5568 (6)
Cd—S22.5575 (9)Cd—S22.5568 (6)
Avg Cd—S2.543 (2)Avg Cd—S2.546 (2)
Ge1—S32.1680 (8)Ge—S32.2075 (14)
Ge1—S22.2055 (9)Ge—S12.2099 (9)
Ge1—S12.2141 (8)Ge—S22.2152 (6)
Ge1—S42.2862 (8)Ge—S22.2152 (6)
Avg Ge1—S2.218 (2)Avg Ge—S2.212 (2)
Ge2—S52.1577 (8)
Ge2—S62.2024 (10)
Ge2—S72.2045 (8)
Ge2—S42.2926 (9)
Avg Ge2—S2.214 (2)
Avg Ge—S2.216 (2)
Bond angles (°) for Li4CdGe2S7 and Li2CdGeS4 top
Li4CdGe2S7Bond angleLi2CdGeS4Bond angle
S5—Li1—S2107.5 (4)S3—Li—S2110.3 (4)
S5—Li1—S3113.8 (4)S3—Li—S1107.9 (5)
S2—Li1—S3109.5 (4)S2—Li—S1109.9 (5)
S5—Li1—S4112.5 (4)S3—Li—S2106.3 (5)
S2—Li1—S4106.8 (4)S2—Li—S2108.9 (5)
S3—Li1—S4106.5 (4)S1—Li—S2113.4 (5)
Avg S—Li1—S109 (1)Avg S—Li—S109 (1)
S1—Li2—S5108.3 (5)
S1—Li2—S7106.0 (5)
S5—Li2—S7104.4 (4)
S1—Li2—S6113.3 (4)
S5—Li2—S6110.4 (5)
S7—Li2—S6114.0 (5)
Avg S—Li1—S109 (1)
S3—Li3—S1109.9 (4)
S3—Li3—S2113.8 (5)
S1—Li3—S2101.4 (3)
S3—Li3—S7110.0 (4)
S1—Li3—S7112.3 (5)
S2—Li3—S7109.3 (4)
Avg S-Li1-S109 (1)
S5—Li4—S3107.5 (4)
S5—Li4—S6111.9 (4)
S3—Li4—S6105.7 (4)
S5—Li4—S4110.0 (4)
S3—Li4—S4115.7 (4)
S6—Li4—S4106.1 (3)
Avg S—Li1—S109 (1)
Avg S—Li—S109 (2)
S1—Cd—S7112.35 (3)S3—Cd—S1110.32 (4)
S1—Cd—S6112.75 (3)S3—Cd—S2110.10 (2)
S7—Cd—S6105.41 (3)S1—Cd—S2108.14 (2)
S1—Cd—S2110.77 (3)S3—Cd—S2110.10 (2)
S7—Cd—S2109.69 (2)S1—Cd—S2108.14 (2)
S6—Cd—S2105.52 (3)S2—Cd—S2110.01 (3)
Avg S—Cd—S109.42 (7)Avg S—Cd—S109.47 (6)
S3—Ge1—S2116.23 (3)
S3—Ge1—S1112.82 (3)
S2—Ge1—S1107.87 (3)
S3—Ge1—S4110.03 (3)
S2—Ge1—S4106.82 (3)
S1—Ge1—S4101.95 (3)
Avg S—Ge1—S109.29 (7)
S5—Ge2—S6111.99 (3)S3—Ge—S1110.69 (5)
S5—Ge2—S7109.20 (3)S3—Ge—S2108.64 (3)
S6—Ge2—S7111.08 (3)S1—Ge—S2111.15 (3)
S5—Ge2—S4111.93 (3)S3—Ge—S2108.64 (3)
S6—Ge2—S4104.90 (3)S1—Ge—S2111.15 (3)
S7—Ge2—S4107.62 (3)S2—Ge—S2106.43 (4)
Avg S—Ge2—S109.5 (5)Avg S—Ge—S109.45 (9)
Avg S—Ge—S109.4 (5)
PIEFACE ellipsoid data (Å) for Li4CdGe2S7 (top) and Li2CdGeS4 (bottom)* top
AtomR1R2R3<R>σ(R)SDCoordination number
Li12.5332.4332.3502.4390.0750.0050.0944
Li22.5382.3752.3262.4130.0910.0440.0884
Li32.5292.4382.2782.4150.104-0.0290.0794
Li42.5962.4442.2902.4440.125-0.0050.0494
Cd2.6162.5522.4562.5410.066-0.0130.0884
Ge12.2852.2152.1392.2130.060-0.0040.1454
Ge22.2832.2012.1552.2130.0530.0150.0764
S12.5242.3382.2272.3630.1220.0260.3174
S22.5562.3532.2792.3960.1170.0480.1414
S32.4182.3322.2652.3380.0620.0060.1694
S42.5522.4522.2642.4230.119-0.0370.1474
S52.4342.3142.2242.3240.0860.0100.1924
S62.5002.3632.3322.3990.0730.0420.2214
S72.5322.3662.3012.4000.0970.0380.1894
Li2.4932.4242.3382.4180.063-0.0080.0384
Cd2.5652.5532.5192.5460.020-0.0080.0324
Ge2.2562.2052.1732.2110.0340.0080.0444
S12.4762.3812.3252.3940.0620.0150.2194
S22.5002.3822.3262.4030.0720.0240.1624
S32.4132.3902.3172.3730.041-0.0210.2334
*R1, R2, and R3 are the radii of the ellipsoids, R is the average ellipsoid radius, σ(R) is the polyhedral distortion, S is the shape parameter, and D is the center displacement, which shows the atom displacement relative to the center of the ellipsoid.
Calculated BVSs and G values for Li4CdGe2S7 and Li2CdGeS4 top
CompoundLi+ (avg)Cd2+Ge4+ (avg)S2- (avg)G
Li4CdGe2S711.071.964.042.050.08
Li4CdGe2S7*1.072.104.042.070.09
Li2CdGeS411.101.954.062.060.07
Li2CdGeS4*1.102.084.062.090.09
1 Cd—S r0 value from Brown & Altermatt (1985). * Cd—S r0 value from Palenik (2006).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds