Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614009310/wq3060sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614009310/wq30601sup2.hkl | |
MDL mol file https://doi.org/10.1107/S2053229614009310/wq30601sup4.mol | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614009310/wq30602sup3.hkl | |
MDL mol file https://doi.org/10.1107/S2053229614009310/wq30602sup5.mol |
CCDC references: 999386; 999387
Iron–sulfur cluster complexes have attracted considerable attention, not only because of their fascinating chemistry (Song, 2005; Shieh et al., 2012) but also for their ability to act as electron reservoirs, their potential as catalysts and their practical applications as biomimetic models for the active sites of the Fe–Fe hydrogenases (Capon et al., 2009; Taylor et al., 2011; Wang et al., 2010). However, to date, few efficient electrocatalysts have been obtained and the mechanism of the natural production/uptake of hydrogen remains unclear. Therefore, structural and chemical models are necessary to gain a better understanding of the protonation mechanisms implied at the molecular level (Erdem et al., 2011; Tard & Pickett, 2009; Song et al., 2006). For these reasons, we have initiated a project investigating the reactions of heteroallyl anions G—C(═Y)—Z- with iron carbonyls in order to develop synthetic methodologies towards iron–sulfur cluster complexes as model compounds (Shi, Cheng, Fu et al., 2013; Shi, Cheng & Cheng, 2013; Shi & Fu, 2013; Shi & Gu, 2013; Shi et al., 2012). As part of this on-going project, we report herein the syntheses and crystal structures of two triiron clusters with N-heterocyclic carbene ligands (Shi et al., 2014; Shi, Cheng et al., 2011; Shi, Lai et al., 2011), namely octacarbonyl(imidazolidinylidene-κC2)di-µ3-sulfido-triiron(II)(2 Fe—Fe), (I), and octacarbonyl(1-methylimidazo[1,5-a]pyridin-3-ylidene-κC3)di-µ3-sulfido-triiron(II)(2 Fe—Fe), (II).
For the preparation of (I), a mixture of Fe3(CO)12 (1.007 g, 2 mmol) and (CH2NH)2CS (0.511 g, 5 mmol) in tetrahydrofuran (THF; 25 ml) was refluxed for 30 min. After the solvent had been removed under reduced pressure, the resulting residue was chromatographed on a silica-gel column with petroleum ether (333–363 K) and CH2Cl2 (1:2 v/v) as eluent to give (I) as a brown–red solid (yield 71%, 0.746 g). Red single crystals of (I) were obtained by slow evaporation of a petroleum ether–CH2Cl2 [Solvent ratio?] solution at 277 K. Analysis, calculated for C11H6Fe3N2O8S2, (I): C 25.13, H 1.15, N 5.33%; found: C 25.34, H 1.19, N 5.16%. Spectroscopic analysis: IR (KBr disk, cm-1): ν(NH) 3340 (m); ν(C≡O) 2068 (vs), 2009 (vs, br); 1H NMR (500 MHz, CDCl3, TMS, δ, p.p.m.): 3.68–3.81 (m, 4H, C2H4), 6.28–6.37 (m, 2H, 2NH).
For the preparation of (II), a mixture of Fe3(CO)12 (1.5 g, 2.98 mmol) and [HNEt3][2-C5H4NCH(CH3)NHCS2] (0.899 g, 3 mmol) in THF (25 ml) was stirred for 3 h at room temperature to form a red–brown solution. To this solution was added PhCOCl (1.04 ml, 9 mmol). After the solution had been stirred for 24 h, the same work-up as for (I) above gave a purple–red solid of (II) (yield 28%, 0.491 g). Red single crystals of (II) were obtained by slow evaporation of a petroleum ether–CH2Cl2 [Solvent ratio?] solution at 277 K. Analysis, calculated for C16H8Fe3N2O8S2, (II): C 32.69, H 1.37, N 4.76%; found: C 32.83, H 1.19, N 4.79%. Spectroscopic analysis: IR (KBr disk, cm-1): ν(NH) 3431 (m); ν(C≡O) 2069 (s), 2037 (s), 1998 (vs), 1944 (s); 1H NMR (500 MHz, CDCl3, TMS, δ, p.p.m.): 2.53 (s, 3H, CH3), 6.62, 6.75, 7.27, 8.20 (4s, 4H, C5H4N), 9.59 (s, 1H, NH).
C-bound H atoms were placed at calculated positions and subsequently treated as riding, with C—H = 0.93 (CH, aromatic), 0.97 (CH2) or 0.96 Å (CH3), and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. N-bound H atoms were located in difference Fourier maps and freely refined isotropically.
The title compounds, (I) and (II), were synthesized according to the scheme. Thus, reaction of Fe3(CO)12 with (CH2NH)2C═S in refluxing THF afforded cluster (I) in satisfactory yield. Reaction of Fe3(CO)12 and [HNEt3][2-C5H4NCH(CH3)NHCS2] with PhCOCl at room temperature gave cluster (II) containing an unprecedented N-heterocyclic carbene ligand, presumably via initial formation of the thiourea derivative 1-methylimidazo[1,5-a]pyridine-3(2H)-thione, (III).
As shown in Figs. 1 and 2, each of (I) and (II) is a trinuclear iron carbonyl complex, with a distorted square-based pyramidal geometry similar to the previously reported cluster (µ3-S)2Fe3(CO)9 (Wei & Dahl, 1965). In (µ3-S)2Fe3(CO)9, each of the two S atoms on the square base triply bridges the two basal Fe(CO)3 units on the same base and the third Fe(CO)3 group at the apex of the pyramid, and each of the three Fe atoms obeys the 18-electron rule. Therefore, (I) and (II) may be regarded as involving formal replacement of the axial carbonyl ligand on one of the iron centres on the square base in (µ3-S)2Fe3(CO)9 by a two-electron carbene group. The carbene ligand leads to small structural effects in (I) and (II): a slight increase in the Fe1—Fe3—Fe2 bond angle [81.885 (12)° for (I) and 81.492 (15)° for (II)] compared with (µ3-S)2Fe3(CO)9 [81.0 (3)°], and a slight increase in the Fe1—Fe3 bond length compared with the Fe2—Fe3 bond length. In addition, one of the three carbonyl ligands attached to apical atom Fe3 participates in a weak interaction with the carbene-substituted basal atom Fe1 from a direction trans to the carbene ligand. The C6···Fe1 distances are 2.686 (3) Å for (I) and 2.802 (2) Å for (II), which lie between the sum of the covalent radii and van der Waals radii for Fe and C [r(Fe) + r(C) = 2.13 Å and R(Fe) + R(C) = 3.84 Å; Standard references?]. Associated with this interaction is a significant deviation of the O6—C6—Fe3 bond angles in (I) and (II) from linearity, with carbonyl atom C6 bent towards atom Fe1 [O6—C6—Fe3 = 171.1 (2)° for (I) and 172.1 (2)° for (II)], whereas the other Fe—C—O bond angles lie in the ranges 176.9 (2)–179.5 (3)° for (I) and 177.2 (2)–179.1 (2)° for (II). Similar interactions have been observed in previously reported clusters of the type (µ3-S)2Fe3(CO)8L (L = carbene), namely L axial, with O—C—Fe = 171.8 (6)° and C···Fe = 2.844 (9) Å [An et al., 1992; Cambridge Structural Database (CSD; Allen, 2002) refcode VOYWAH]; L axial, with O—C—Fe = 171.7 (9)° and C···Fe = 2.750 (10) Å (CSD refcode TAQMAZ; Liu et al., 1996); L equatorial, with O—C—Fe = 173.4 (4)° and C···Fe = 2.805 (6) Å (CSD refcode XEPZAT; Liu et al., 1998); L axial, with O—C—Fe = 172.8 (6)° and C···Fe = 2.751 (7) Å (CCDC deposition number 216503; Hong et al., 2004); and L axial, with O—C—Fe = 172.2 (3)° and C···Fe = 2.757 (4) Å (CSD refcode HY2012 [This is an IUCr paper code. Please give correct CSD code]; Zhang et al., 2008). This type of weak interaction was also found in [(µ3-κ1P:κ2C:κ2S-Ph2PCS)Fe3(CO)8(µ-κ2S-S)]2 [O—C—Fe = 168.3 (2)° and C···Fe = 2.589 (3) Å; Shi, Cheng & Cheng, 2013].
Each of the above N-heterocyclic carbenes is planar. In agreement with this, the sums of the bond angles around atom C9 are 359.98 (16)° for (I) (Table 2) and 359.02 (15)° for (II) (Table 3), suggesting that this atom is sp2-hybridized (Shi & Fu, 2013). Furthermore, the Fe1—C9, C9—N1 and C9—N2 bond lengths are 1.925 (2), 1.323 (3) and 1.322 (3) Å, respectively, for (I), and 1.944 (2), 1.354 (3) and 1.371 (2) Å, respectively, for (II), comparable with values reported for Fe3(C8H8N2O)S2(CO)8 crystallized in the space group P1 [1.914 (2), 1.348 (3) and 1.355 (3) Å, respectively; Zhang et al., 2008], Fe3[C(NH2)NHN═ CH(2—C4H3S)]S2(CO)8 crystallized in the space group P1 [1.929 (6), 1.345 (7) and 1.311 (8) Å, respectively; Hong et al., 2004], Fe3[C(NHC(═S)CMe2NH)]S2(CO)8 crystallized in the space group P21/n [1.898 (6), 1.310 (9) and 1.382 (9) Å, respectively; Liu et al., 1996] and Fe3(C7H6N2)S2(CO)8 crystallized in the space group P1 [1.916 (5), 1.333 (7) and 1.353 (9) Å, respectively; An et al., 1992], supporting the fact that π-bonding in each case is delocalized over atoms Fe1, C9, N1 and N2. Although the S2Fe3 core as in these complexes is well known, triiron clusters with N-heterocyclic carbenes are rare (Shi & Gu, 2013; Liu et al., 1998).
It is worth discussing the packing interactions in the title compounds, because there have been no reports on the supramolecular assemblies of clusters of type (µ3-S)2Fe3(CO)8L (L = carbene). In (I), two N—H···S and one C—H···O hydrogen bond (Table 4) combine the molecules into sheets that lie in the [101] plane (Fig. 3). For (II), N—H···S and C—H···O interactions (Table 5) link the molecules into chains lying along the [111] direction (Fig. 4).
For related literature, see: An et al. (1992); Capon et al. (2009); Erdem et al. (2011); Hong et al. (2004); Liu et al. (1996, 1998); Shi & Fu (2013); Shi & Gu (2013); Shi et al. (2012, 2014); Shi, Cheng & Cheng (2013); Shi, Cheng, Fu, Gu & Wu (2013); Shi, Cheng, Yuan & Li (2011); Shi, Lai, Shen & Yuan (2011); Shieh et al. (2012); Song (2005); Song et al. (2006); Tard & Pickett (2009); Taylor et al. (2011); Wang et al. (2010); Wei & Dahl (1965); Zhang et al. (2008).
Iron–sulfur cluster complexes have attracted considerable attention, not only because of their fascinating chemistry (Song, 2005; Shieh et al., 2012) but also for their ability to act as electron reservoirs, their potential as catalysts and their practical applications as biomimetic models for the active sites of the Fe–Fe hydrogenases (Capon et al., 2009; Taylor et al., 2011; Wang et al., 2010). However, to date, few efficient electrocatalysts have been obtained and the mechanism of the natural production/uptake of hydrogen remains unclear. Therefore, structural and chemical models are necessary to gain a better understanding of the protonation mechanisms implied at the molecular level (Erdem et al., 2011; Tard & Pickett, 2009; Song et al., 2006). For these reasons, we have initiated a project investigating the reactions of heteroallyl anions G—C(═Y)—Z- with iron carbonyls in order to develop synthetic methodologies towards iron–sulfur cluster complexes as model compounds (Shi, Cheng, Fu et al., 2013; Shi, Cheng & Cheng, 2013; Shi & Fu, 2013; Shi & Gu, 2013; Shi et al., 2012). As part of this on-going project, we report herein the syntheses and crystal structures of two triiron clusters with N-heterocyclic carbene ligands (Shi et al., 2014; Shi, Cheng et al., 2011; Shi, Lai et al., 2011), namely octacarbonyl(imidazolidinylidene-κC2)di-µ3-sulfido-triiron(II)(2 Fe—Fe), (I), and octacarbonyl(1-methylimidazo[1,5-a]pyridin-3-ylidene-κC3)di-µ3-sulfido-triiron(II)(2 Fe—Fe), (II).
The title compounds, (I) and (II), were synthesized according to the scheme. Thus, reaction of Fe3(CO)12 with (CH2NH)2C═S in refluxing THF afforded cluster (I) in satisfactory yield. Reaction of Fe3(CO)12 and [HNEt3][2-C5H4NCH(CH3)NHCS2] with PhCOCl at room temperature gave cluster (II) containing an unprecedented N-heterocyclic carbene ligand, presumably via initial formation of the thiourea derivative 1-methylimidazo[1,5-a]pyridine-3(2H)-thione, (III).
As shown in Figs. 1 and 2, each of (I) and (II) is a trinuclear iron carbonyl complex, with a distorted square-based pyramidal geometry similar to the previously reported cluster (µ3-S)2Fe3(CO)9 (Wei & Dahl, 1965). In (µ3-S)2Fe3(CO)9, each of the two S atoms on the square base triply bridges the two basal Fe(CO)3 units on the same base and the third Fe(CO)3 group at the apex of the pyramid, and each of the three Fe atoms obeys the 18-electron rule. Therefore, (I) and (II) may be regarded as involving formal replacement of the axial carbonyl ligand on one of the iron centres on the square base in (µ3-S)2Fe3(CO)9 by a two-electron carbene group. The carbene ligand leads to small structural effects in (I) and (II): a slight increase in the Fe1—Fe3—Fe2 bond angle [81.885 (12)° for (I) and 81.492 (15)° for (II)] compared with (µ3-S)2Fe3(CO)9 [81.0 (3)°], and a slight increase in the Fe1—Fe3 bond length compared with the Fe2—Fe3 bond length. In addition, one of the three carbonyl ligands attached to apical atom Fe3 participates in a weak interaction with the carbene-substituted basal atom Fe1 from a direction trans to the carbene ligand. The C6···Fe1 distances are 2.686 (3) Å for (I) and 2.802 (2) Å for (II), which lie between the sum of the covalent radii and van der Waals radii for Fe and C [r(Fe) + r(C) = 2.13 Å and R(Fe) + R(C) = 3.84 Å; Standard references?]. Associated with this interaction is a significant deviation of the O6—C6—Fe3 bond angles in (I) and (II) from linearity, with carbonyl atom C6 bent towards atom Fe1 [O6—C6—Fe3 = 171.1 (2)° for (I) and 172.1 (2)° for (II)], whereas the other Fe—C—O bond angles lie in the ranges 176.9 (2)–179.5 (3)° for (I) and 177.2 (2)–179.1 (2)° for (II). Similar interactions have been observed in previously reported clusters of the type (µ3-S)2Fe3(CO)8L (L = carbene), namely L axial, with O—C—Fe = 171.8 (6)° and C···Fe = 2.844 (9) Å [An et al., 1992; Cambridge Structural Database (CSD; Allen, 2002) refcode VOYWAH]; L axial, with O—C—Fe = 171.7 (9)° and C···Fe = 2.750 (10) Å (CSD refcode TAQMAZ; Liu et al., 1996); L equatorial, with O—C—Fe = 173.4 (4)° and C···Fe = 2.805 (6) Å (CSD refcode XEPZAT; Liu et al., 1998); L axial, with O—C—Fe = 172.8 (6)° and C···Fe = 2.751 (7) Å (CCDC deposition number 216503; Hong et al., 2004); and L axial, with O—C—Fe = 172.2 (3)° and C···Fe = 2.757 (4) Å (CSD refcode HY2012 [This is an IUCr paper code. Please give correct CSD code]; Zhang et al., 2008). This type of weak interaction was also found in [(µ3-κ1P:κ2C:κ2S-Ph2PCS)Fe3(CO)8(µ-κ2S-S)]2 [O—C—Fe = 168.3 (2)° and C···Fe = 2.589 (3) Å; Shi, Cheng & Cheng, 2013].
Each of the above N-heterocyclic carbenes is planar. In agreement with this, the sums of the bond angles around atom C9 are 359.98 (16)° for (I) (Table 2) and 359.02 (15)° for (II) (Table 3), suggesting that this atom is sp2-hybridized (Shi & Fu, 2013). Furthermore, the Fe1—C9, C9—N1 and C9—N2 bond lengths are 1.925 (2), 1.323 (3) and 1.322 (3) Å, respectively, for (I), and 1.944 (2), 1.354 (3) and 1.371 (2) Å, respectively, for (II), comparable with values reported for Fe3(C8H8N2O)S2(CO)8 crystallized in the space group P1 [1.914 (2), 1.348 (3) and 1.355 (3) Å, respectively; Zhang et al., 2008], Fe3[C(NH2)NHN═ CH(2—C4H3S)]S2(CO)8 crystallized in the space group P1 [1.929 (6), 1.345 (7) and 1.311 (8) Å, respectively; Hong et al., 2004], Fe3[C(NHC(═S)CMe2NH)]S2(CO)8 crystallized in the space group P21/n [1.898 (6), 1.310 (9) and 1.382 (9) Å, respectively; Liu et al., 1996] and Fe3(C7H6N2)S2(CO)8 crystallized in the space group P1 [1.916 (5), 1.333 (7) and 1.353 (9) Å, respectively; An et al., 1992], supporting the fact that π-bonding in each case is delocalized over atoms Fe1, C9, N1 and N2. Although the S2Fe3 core as in these complexes is well known, triiron clusters with N-heterocyclic carbenes are rare (Shi & Gu, 2013; Liu et al., 1998).
It is worth discussing the packing interactions in the title compounds, because there have been no reports on the supramolecular assemblies of clusters of type (µ3-S)2Fe3(CO)8L (L = carbene). In (I), two N—H···S and one C—H···O hydrogen bond (Table 4) combine the molecules into sheets that lie in the [101] plane (Fig. 3). For (II), N—H···S and C—H···O interactions (Table 5) link the molecules into chains lying along the [111] direction (Fig. 4).
For related literature, see: An et al. (1992); Capon et al. (2009); Erdem et al. (2011); Hong et al. (2004); Liu et al. (1996, 1998); Shi & Fu (2013); Shi & Gu (2013); Shi et al. (2012, 2014); Shi, Cheng & Cheng (2013); Shi, Cheng, Fu, Gu & Wu (2013); Shi, Cheng, Yuan & Li (2011); Shi, Lai, Shen & Yuan (2011); Shieh et al. (2012); Song (2005); Song et al. (2006); Tard & Pickett (2009); Taylor et al. (2011); Wang et al. (2010); Wei & Dahl (1965); Zhang et al. (2008).
For the preparation of (I), a mixture of Fe3(CO)12 (1.007 g, 2 mmol) and (CH2NH)2CS (0.511 g, 5 mmol) in tetrahydrofuran (THF; 25 ml) was refluxed for 30 min. After the solvent had been removed under reduced pressure, the resulting residue was chromatographed on a silica-gel column with petroleum ether (333–363 K) and CH2Cl2 (1:2 v/v) as eluent to give (I) as a brown–red solid (yield 71%, 0.746 g). Red single crystals of (I) were obtained by slow evaporation of a petroleum ether–CH2Cl2 [Solvent ratio?] solution at 277 K. Analysis, calculated for C11H6Fe3N2O8S2, (I): C 25.13, H 1.15, N 5.33%; found: C 25.34, H 1.19, N 5.16%. Spectroscopic analysis: IR (KBr disk, cm-1): ν(NH) 3340 (m); ν(C≡O) 2068 (vs), 2009 (vs, br); 1H NMR (500 MHz, CDCl3, TMS, δ, p.p.m.): 3.68–3.81 (m, 4H, C2H4), 6.28–6.37 (m, 2H, 2NH).
For the preparation of (II), a mixture of Fe3(CO)12 (1.5 g, 2.98 mmol) and [HNEt3][2-C5H4NCH(CH3)NHCS2] (0.899 g, 3 mmol) in THF (25 ml) was stirred for 3 h at room temperature to form a red–brown solution. To this solution was added PhCOCl (1.04 ml, 9 mmol). After the solution had been stirred for 24 h, the same work-up as for (I) above gave a purple–red solid of (II) (yield 28%, 0.491 g). Red single crystals of (II) were obtained by slow evaporation of a petroleum ether–CH2Cl2 [Solvent ratio?] solution at 277 K. Analysis, calculated for C16H8Fe3N2O8S2, (II): C 32.69, H 1.37, N 4.76%; found: C 32.83, H 1.19, N 4.79%. Spectroscopic analysis: IR (KBr disk, cm-1): ν(NH) 3431 (m); ν(C≡O) 2069 (s), 2037 (s), 1998 (vs), 1944 (s); 1H NMR (500 MHz, CDCl3, TMS, δ, p.p.m.): 2.53 (s, 3H, CH3), 6.62, 6.75, 7.27, 8.20 (4s, 4H, C5H4N), 9.59 (s, 1H, NH).
C-bound H atoms were placed at calculated positions and subsequently treated as riding, with C—H = 0.93 (CH, aromatic), 0.97 (CH2) or 0.96 Å (CH3), and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. N-bound H atoms were located in difference Fourier maps and freely refined isotropically.
For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Fig. 1. The asymmetric unit of complex (I), showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 20% probability level. H atoms
attached to C atoms have been omitted for clarity. The dashed line indicates
the weak intramolecular interaction. Fig. 2. The asymmetric unit of complex (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms attached to C atoms have been omitted for clarity. The dashed line indicates the weak intramolecular interaction. Fig. 3. A partial packing diagram for (I), showing the formation of a [101] sheet. Dashed lines indicate hydrogen bonds. For clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with a hash (#), an asterisk (*) or a dollar sign ($) are at the symmetry positions (x + 1, y, z), (-x + 1, -y + 1, -z + 1) or (x, y, z + 1), respectively. Fig. 4. A partial packing diagram for (II), showing the formation of a [111] chain. Dashed lines indicate hydrogen bonds. For clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with a hash (#) or an asterisk (*) are at the symmetry positions (-x , -y, -z) or (-x + 1, -y + 1, -z + 1), respectively. |
[Fe3(C3H6N2)S2(CO)8] | Z = 2 |
Mr = 525.87 | F(000) = 520 |
Triclinic, P1 | Dx = 1.900 Mg m−3 |
a = 8.7679 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0811 (3) Å | Cell parameters from 4141 reflections |
c = 11.8549 (15) Å | θ = 1.8–27.5° |
α = 78.4565 (14)° | µ = 2.60 mm−1 |
β = 72.7596 (13)° | T = 296 K |
γ = 67.3315 (14)° | Block, red |
V = 919.07 (12) Å3 | 0.18 × 0.13 × 0.13 mm |
Bruker APEXII CCD area-detector diffractometer | 4141 independent reflections |
Radiation source: fine-focus sealed tube | 3710 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −10→11 |
Tmin = 0.651, Tmax = 0.708 | k = −13→13 |
7989 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0423P)2 + 0.130P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4141 reflections | Δρmax = 0.47 e Å−3 |
244 parameters | Δρmin = −0.30 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.042 (2) |
[Fe3(C3H6N2)S2(CO)8] | γ = 67.3315 (14)° |
Mr = 525.87 | V = 919.07 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.7679 (3) Å | Mo Kα radiation |
b = 10.0811 (3) Å | µ = 2.60 mm−1 |
c = 11.8549 (15) Å | T = 296 K |
α = 78.4565 (14)° | 0.18 × 0.13 × 0.13 mm |
β = 72.7596 (13)° |
Bruker APEXII CCD area-detector diffractometer | 4141 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 3710 reflections with I > 2σ(I) |
Tmin = 0.651, Tmax = 0.708 | Rint = 0.032 |
7989 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.47 e Å−3 |
4141 reflections | Δρmin = −0.30 e Å−3 |
244 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6460 (3) | 0.6802 (2) | 0.7929 (2) | 0.0456 (5) | |
C2 | 0.6362 (3) | 0.6785 (2) | 0.5752 (2) | 0.0431 (5) | |
C3 | 0.3538 (3) | 0.2950 (3) | 0.8391 (2) | 0.0524 (5) | |
C4 | 0.6398 (3) | 0.0960 (3) | 0.9071 (2) | 0.0505 (5) | |
C5 | 0.6007 (4) | 0.0964 (3) | 0.6964 (2) | 0.0578 (6) | |
C6 | 0.9491 (3) | 0.4399 (2) | 0.6604 (2) | 0.0457 (5) | |
C7 | 0.9582 (3) | 0.2074 (3) | 0.5769 (2) | 0.0497 (5) | |
C8 | 0.9745 (3) | 0.1859 (3) | 0.7959 (2) | 0.0501 (5) | |
C9 | 0.3648 (3) | 0.6593 (2) | 0.75631 (17) | 0.0360 (4) | |
C10 | 0.0884 (3) | 0.7427 (3) | 0.8751 (2) | 0.0628 (7) | |
H10A | 0.0333 | 0.8313 | 0.9138 | 0.075* | |
H10B | 0.0363 | 0.6723 | 0.9185 | 0.075* | |
C11 | 0.0801 (3) | 0.7700 (3) | 0.7454 (2) | 0.0597 (6) | |
H11A | 0.0094 | 0.7241 | 0.7313 | 0.072* | |
H11B | 0.0374 | 0.8726 | 0.7204 | 0.072* | |
Fe1 | 0.60847 (3) | 0.56686 (3) | 0.71292 (2) | 0.03342 (10) | |
Fe2 | 0.58059 (4) | 0.23067 (3) | 0.78620 (3) | 0.03822 (10) | |
Fe3 | 0.84395 (3) | 0.30967 (3) | 0.70201 (2) | 0.03373 (10) | |
H1N | 0.289 (4) | 0.694 (3) | 0.611 (3) | 0.059 (8)* | |
H2N | 0.316 (4) | 0.655 (3) | 0.922 (3) | 0.065 (9)* | |
N1 | 0.2597 (2) | 0.7028 (3) | 0.68538 (18) | 0.0577 (6) | |
N2 | 0.2706 (3) | 0.6871 (3) | 0.86465 (17) | 0.0559 (5) | |
O1 | 0.6707 (3) | 0.7485 (2) | 0.8464 (2) | 0.0759 (6) | |
O2 | 0.6545 (3) | 0.7497 (2) | 0.48830 (17) | 0.0669 (5) | |
O3 | 0.2091 (3) | 0.3422 (3) | 0.8727 (2) | 0.0841 (7) | |
O4 | 0.6810 (3) | 0.0131 (2) | 0.9822 (2) | 0.0787 (6) | |
O5 | 0.6102 (4) | 0.0136 (2) | 0.6405 (3) | 0.0954 (8) | |
O6 | 1.0352 (2) | 0.5076 (2) | 0.63203 (19) | 0.0673 (5) | |
O7 | 1.0296 (3) | 0.1421 (3) | 0.4979 (2) | 0.0853 (7) | |
O8 | 1.0564 (3) | 0.1054 (2) | 0.8551 (2) | 0.0825 (6) | |
S1 | 0.63208 (6) | 0.39129 (5) | 0.86325 (4) | 0.03702 (13) | |
S2 | 0.61240 (6) | 0.38781 (5) | 0.62498 (4) | 0.03564 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0472 (12) | 0.0420 (11) | 0.0508 (12) | −0.0178 (9) | −0.0108 (9) | −0.0079 (10) |
C2 | 0.0412 (10) | 0.0395 (11) | 0.0466 (11) | −0.0145 (9) | −0.0097 (9) | −0.0004 (9) |
C3 | 0.0493 (13) | 0.0506 (13) | 0.0599 (14) | −0.0245 (11) | −0.0146 (11) | 0.0057 (11) |
C4 | 0.0471 (12) | 0.0461 (12) | 0.0594 (14) | −0.0214 (10) | −0.0169 (10) | 0.0090 (11) |
C5 | 0.0678 (16) | 0.0417 (12) | 0.0671 (16) | −0.0177 (11) | −0.0245 (13) | −0.0025 (11) |
C6 | 0.0449 (11) | 0.0449 (12) | 0.0462 (12) | −0.0169 (9) | −0.0059 (9) | −0.0076 (9) |
C7 | 0.0484 (12) | 0.0488 (13) | 0.0496 (12) | −0.0112 (10) | −0.0119 (10) | −0.0116 (10) |
C8 | 0.0480 (12) | 0.0466 (12) | 0.0555 (13) | −0.0113 (10) | −0.0190 (10) | −0.0055 (10) |
C9 | 0.0412 (10) | 0.0346 (9) | 0.0330 (9) | −0.0140 (8) | −0.0091 (7) | −0.0034 (7) |
C10 | 0.0430 (12) | 0.0763 (18) | 0.0519 (14) | −0.0075 (12) | −0.0011 (10) | −0.0114 (13) |
C11 | 0.0410 (12) | 0.0719 (17) | 0.0625 (15) | −0.0090 (11) | −0.0133 (11) | −0.0192 (13) |
Fe1 | 0.03642 (16) | 0.03113 (16) | 0.03280 (16) | −0.01207 (11) | −0.00879 (11) | −0.00204 (11) |
Fe2 | 0.04031 (17) | 0.03477 (17) | 0.04056 (18) | −0.01631 (12) | −0.01102 (12) | 0.00266 (12) |
Fe3 | 0.03439 (16) | 0.03344 (16) | 0.03300 (16) | −0.01115 (11) | −0.00861 (11) | −0.00315 (11) |
N1 | 0.0394 (10) | 0.0898 (16) | 0.0380 (10) | −0.0116 (10) | −0.0110 (8) | −0.0136 (10) |
N2 | 0.0452 (10) | 0.0753 (14) | 0.0333 (9) | −0.0032 (10) | −0.0096 (8) | −0.0110 (9) |
O1 | 0.0850 (14) | 0.0771 (13) | 0.0859 (14) | −0.0387 (11) | −0.0220 (11) | −0.0291 (11) |
O2 | 0.0746 (12) | 0.0620 (11) | 0.0564 (11) | −0.0284 (10) | −0.0148 (9) | 0.0187 (9) |
O3 | 0.0441 (10) | 0.0925 (16) | 0.1062 (17) | −0.0254 (10) | −0.0095 (10) | 0.0012 (13) |
O4 | 0.0773 (13) | 0.0734 (13) | 0.0841 (14) | −0.0334 (11) | −0.0390 (11) | 0.0391 (12) |
O5 | 0.127 (2) | 0.0595 (13) | 0.1128 (19) | −0.0250 (13) | −0.0442 (16) | −0.0289 (13) |
O6 | 0.0575 (11) | 0.0610 (11) | 0.0887 (14) | −0.0355 (9) | −0.0045 (10) | −0.0086 (10) |
O7 | 0.0868 (15) | 0.0880 (15) | 0.0683 (13) | −0.0063 (12) | −0.0097 (11) | −0.0426 (12) |
O8 | 0.0891 (15) | 0.0691 (13) | 0.0896 (16) | −0.0077 (11) | −0.0591 (13) | 0.0076 (11) |
S1 | 0.0424 (3) | 0.0394 (3) | 0.0278 (2) | −0.0127 (2) | −0.00969 (18) | −0.00136 (19) |
S2 | 0.0422 (3) | 0.0358 (2) | 0.0311 (2) | −0.01377 (19) | −0.01277 (19) | −0.00166 (18) |
C1—O1 | 1.137 (3) | C9—Fe1 | 1.925 (2) |
C1—Fe1 | 1.795 (2) | C10—N2 | 1.450 (3) |
C2—O2 | 1.138 (3) | C10—C11 | 1.525 (4) |
C2—Fe1 | 1.798 (2) | C10—H10A | 0.9700 |
C3—O3 | 1.143 (3) | C10—H10B | 0.9700 |
C3—Fe2 | 1.788 (2) | C11—N1 | 1.467 (3) |
C4—O4 | 1.133 (3) | C11—H11A | 0.9700 |
C4—Fe2 | 1.812 (2) | C11—H11B | 0.9700 |
C5—O5 | 1.131 (3) | Fe1—S1 | 2.2418 (6) |
C5—Fe2 | 1.811 (3) | Fe1—S2 | 2.2428 (5) |
C6—O6 | 1.142 (3) | Fe1—Fe2 | 3.4111 (6) |
C6—Fe1 | 2.686 (3) | Fe1—Fe3 | 2.6176 (4) |
C6—Fe3 | 1.795 (2) | Fe2—S2 | 2.2479 (6) |
C7—O7 | 1.133 (3) | Fe2—S1 | 2.2494 (6) |
C7—Fe3 | 1.789 (2) | Fe2—Fe3 | 2.5876 (4) |
C8—O8 | 1.135 (3) | Fe3—S1 | 2.2645 (5) |
C8—Fe3 | 1.790 (2) | Fe3—S2 | 2.2704 (6) |
C9—N2 | 1.322 (3) | N1—H1N | 0.85 (3) |
C9—N1 | 1.323 (3) | N2—H2N | 0.84 (3) |
O1—C1—Fe1 | 177.8 (2) | C4—Fe2—S2 | 157.92 (8) |
O2—C2—Fe1 | 179.4 (2) | C3—Fe2—S1 | 97.66 (8) |
O3—C3—Fe2 | 176.9 (2) | C5—Fe2—S1 | 163.11 (9) |
O4—C4—Fe2 | 177.9 (2) | C4—Fe2—S1 | 90.25 (8) |
O5—C5—Fe2 | 178.8 (3) | S2—Fe2—S1 | 79.92 (2) |
O6—C6—Fe3 | 171.1 (2) | C3—Fe2—Fe3 | 144.06 (8) |
O7—C7—Fe3 | 179.5 (3) | C5—Fe2—Fe3 | 107.88 (9) |
O8—C8—Fe3 | 178.7 (2) | C4—Fe2—Fe3 | 102.73 (7) |
N2—C9—N1 | 107.11 (19) | S2—Fe2—Fe3 | 55.470 (15) |
N2—C9—Fe1 | 125.81 (16) | S1—Fe2—Fe3 | 55.298 (15) |
N1—C9—Fe1 | 127.06 (15) | C7—Fe3—C8 | 93.34 (11) |
N2—C10—C11 | 101.87 (19) | C7—Fe3—C6 | 97.10 (11) |
N2—C10—H10A | 111.4 | C8—Fe3—C6 | 97.96 (11) |
C11—C10—H10A | 111.4 | C7—Fe3—S1 | 157.49 (8) |
N2—C10—H10B | 111.4 | C8—Fe3—S1 | 90.38 (8) |
C11—C10—H10B | 111.4 | C6—Fe3—S1 | 104.36 (7) |
H10A—C10—H10B | 109.3 | C7—Fe3—S2 | 87.25 (8) |
N1—C11—C10 | 101.51 (19) | C8—Fe3—S2 | 151.60 (8) |
N1—C11—H11A | 111.5 | C6—Fe3—S2 | 110.16 (8) |
C10—C11—H11A | 111.5 | S1—Fe3—S2 | 79.13 (2) |
N1—C11—H11B | 111.5 | C7—Fe3—Fe2 | 102.74 (8) |
C10—C11—H11B | 111.5 | C8—Fe3—Fe2 | 97.80 (8) |
H11A—C11—H11B | 109.3 | C6—Fe3—Fe2 | 153.80 (7) |
C1—Fe1—C2 | 93.25 (11) | S1—Fe3—Fe2 | 54.748 (16) |
C1—Fe1—C9 | 93.83 (9) | S2—Fe3—Fe2 | 54.655 (16) |
C2—Fe1—C9 | 94.43 (9) | C7—Fe3—Fe1 | 129.23 (8) |
C1—Fe1—S1 | 91.35 (8) | C8—Fe3—Fe1 | 136.70 (8) |
C2—Fe1—S1 | 166.56 (7) | C6—Fe3—Fe1 | 72.29 (7) |
C9—Fe1—S1 | 97.85 (6) | S1—Fe3—Fe1 | 54.085 (15) |
C1—Fe1—S2 | 167.25 (8) | S2—Fe3—Fe1 | 54.060 (15) |
C2—Fe1—S2 | 93.01 (7) | Fe2—Fe3—Fe1 | 81.885 (12) |
C9—Fe1—S2 | 96.75 (6) | C9—N1—C11 | 114.0 (2) |
S1—Fe1—S2 | 80.19 (2) | C9—N1—H1N | 125 (2) |
C1—Fe1—Fe3 | 112.25 (7) | C11—N1—H1N | 120.6 (19) |
C2—Fe1—Fe3 | 111.75 (7) | C9—N2—C10 | 114.58 (19) |
C9—Fe1—Fe3 | 140.93 (6) | C9—N2—H2N | 119 (2) |
S1—Fe1—Fe3 | 54.894 (15) | C10—N2—H2N | 125 (2) |
S2—Fe1—Fe3 | 55.044 (15) | Fe1—S1—Fe2 | 98.84 (2) |
C3—Fe2—C5 | 98.20 (12) | Fe1—S1—Fe3 | 71.021 (18) |
C3—Fe2—C4 | 100.26 (11) | Fe2—S1—Fe3 | 69.954 (17) |
C5—Fe2—C4 | 92.60 (12) | Fe1—S2—Fe2 | 98.85 (2) |
C3—Fe2—S2 | 100.61 (8) | Fe1—S2—Fe3 | 70.896 (17) |
C5—Fe2—S2 | 91.48 (9) | Fe2—S2—Fe3 | 69.875 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O6i | 0.97 | 2.59 | 3.391 (3) | 141 |
N1—H1N···S2ii | 0.85 (3) | 2.87 (3) | 3.707 (2) | 170 (2) |
N2—H2N···S1iii | 0.84 (3) | 2.64 (3) | 3.442 (2) | 162 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2. |
[Fe3(C8H8N2)S2(CO)8] | Z = 2 |
Mr = 587.93 | F(000) = 584 |
Triclinic, P1 | Dx = 1.844 Mg m−3 |
a = 8.9723 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.1249 (11) Å | Cell parameters from 4073 reflections |
c = 12.0611 (16) Å | θ = 1.9–27.5° |
α = 108.477 (5)° | µ = 2.27 mm−1 |
β = 107.608 (2)° | T = 296 K |
γ = 96.455 (8)° | Block, red-purple |
V = 1059.1 (2) Å3 | 0.17 × 0.13 × 0.13 mm |
Bruker APEXII CCD area-detector diffractometer | 4784 independent reflections |
Radiation source: fine-focus sealed tube | 4073 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −11→11 |
Tmin = 0.697, Tmax = 0.741 | k = −14→14 |
9290 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0392P)2 + 0.0391P] where P = (Fo2 + 2Fc2)/3 |
4784 reflections | (Δ/σ)max = 0.001 |
285 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Fe3(C8H8N2)S2(CO)8] | γ = 96.455 (8)° |
Mr = 587.93 | V = 1059.1 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.9723 (12) Å | Mo Kα radiation |
b = 11.1249 (11) Å | µ = 2.27 mm−1 |
c = 12.0611 (16) Å | T = 296 K |
α = 108.477 (5)° | 0.17 × 0.13 × 0.13 mm |
β = 107.608 (2)° |
Bruker APEXII CCD area-detector diffractometer | 4784 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 4073 reflections with I > 2σ(I) |
Tmin = 0.697, Tmax = 0.741 | Rint = 0.032 |
9290 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.32 e Å−3 |
4784 reflections | Δρmin = −0.29 e Å−3 |
285 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3574 (3) | 0.6550 (2) | 0.6344 (2) | 0.0530 (5) | |
C2 | 0.4721 (3) | 0.8911 (2) | 0.7945 (2) | 0.0529 (5) | |
C3 | 0.9653 (3) | 0.7421 (2) | 0.6719 (3) | 0.0577 (6) | |
C4 | 0.9925 (3) | 0.5436 (2) | 0.7588 (2) | 0.0501 (5) | |
C5 | 1.1142 (3) | 0.7818 (2) | 0.9197 (2) | 0.0537 (6) | |
C6 | 0.5227 (3) | 0.6540 (2) | 0.9021 (2) | 0.0558 (6) | |
C7 | 0.8131 (3) | 0.7938 (3) | 1.0615 (2) | 0.0631 (6) | |
C8 | 0.7822 (3) | 0.5441 (2) | 0.9280 (2) | 0.0562 (6) | |
C9 | 0.5835 (2) | 0.80764 (19) | 0.5909 (2) | 0.0428 (4) | |
C10 | 0.6107 (4) | 0.7103 (3) | 0.2754 (3) | 0.0819 (9) | |
H10A | 0.6841 | 0.6539 | 0.2783 | 0.123* | |
H10B | 0.6404 | 0.7712 | 0.2401 | 0.123* | |
H10C | 0.5036 | 0.6594 | 0.2245 | 0.123* | |
C11 | 0.6171 (3) | 0.7820 (2) | 0.4038 (2) | 0.0510 (5) | |
C12 | 0.6796 (3) | 0.9107 (2) | 0.4800 (2) | 0.0471 (5) | |
C13 | 0.7593 (3) | 1.0211 (2) | 0.4681 (2) | 0.0596 (6) | |
H13 | 0.7797 | 1.0131 | 0.3952 | 0.072* | |
C14 | 0.8049 (3) | 1.1370 (2) | 0.5628 (3) | 0.0656 (7) | |
H14 | 0.8564 | 1.2098 | 0.5553 | 0.079* | |
C15 | 0.7747 (3) | 1.1491 (2) | 0.6750 (3) | 0.0636 (7) | |
H15 | 0.8046 | 1.2305 | 0.7390 | 0.076* | |
C16 | 0.7043 (3) | 1.0460 (2) | 0.6904 (2) | 0.0530 (5) | |
H16 | 0.6881 | 1.0554 | 0.7651 | 0.064* | |
Fe1 | 0.55420 (3) | 0.75865 (3) | 0.72526 (3) | 0.04104 (9) | |
Fe2 | 0.92683 (3) | 0.69495 (3) | 0.79106 (3) | 0.03959 (9) | |
Fe3 | 0.72209 (4) | 0.68388 (3) | 0.90112 (3) | 0.04242 (9) | |
H1N | 0.512 (3) | 0.644 (3) | 0.443 (2) | 0.063 (7)* | |
N1 | 0.5624 (2) | 0.72524 (17) | 0.47447 (18) | 0.0475 (4) | |
N2 | 0.6555 (2) | 0.92438 (16) | 0.59346 (16) | 0.0435 (4) | |
O1 | 0.2344 (2) | 0.5881 (2) | 0.5776 (2) | 0.0844 (6) | |
O2 | 0.4161 (3) | 0.9707 (2) | 0.83834 (19) | 0.0780 (6) | |
O3 | 0.9860 (3) | 0.7744 (3) | 0.5966 (2) | 0.0995 (8) | |
O4 | 1.0315 (2) | 0.44821 (17) | 0.7375 (2) | 0.0792 (6) | |
O5 | 1.2307 (2) | 0.8352 (2) | 1.0017 (2) | 0.0851 (6) | |
O6 | 0.4007 (2) | 0.6263 (2) | 0.9108 (2) | 0.0825 (6) | |
O7 | 0.8690 (3) | 0.8659 (3) | 1.16251 (19) | 0.0966 (7) | |
O8 | 0.8154 (3) | 0.4526 (2) | 0.9421 (2) | 0.0831 (6) | |
S1 | 0.66779 (6) | 0.58725 (5) | 0.69227 (5) | 0.04116 (12) | |
S2 | 0.80693 (6) | 0.85570 (5) | 0.85743 (5) | 0.04302 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0439 (13) | 0.0651 (14) | 0.0575 (14) | 0.0143 (11) | 0.0251 (11) | 0.0254 (12) |
C2 | 0.0481 (13) | 0.0652 (14) | 0.0545 (14) | 0.0210 (11) | 0.0234 (11) | 0.0263 (11) |
C3 | 0.0543 (14) | 0.0683 (14) | 0.0746 (17) | 0.0245 (11) | 0.0409 (13) | 0.0371 (13) |
C4 | 0.0436 (12) | 0.0458 (11) | 0.0604 (14) | 0.0096 (9) | 0.0219 (11) | 0.0161 (10) |
C5 | 0.0474 (13) | 0.0471 (11) | 0.0642 (15) | 0.0168 (10) | 0.0247 (12) | 0.0112 (11) |
C6 | 0.0510 (14) | 0.0683 (14) | 0.0610 (15) | 0.0207 (11) | 0.0311 (12) | 0.0279 (12) |
C7 | 0.0540 (15) | 0.0873 (18) | 0.0514 (15) | 0.0159 (13) | 0.0237 (12) | 0.0260 (13) |
C8 | 0.0546 (14) | 0.0707 (15) | 0.0619 (15) | 0.0217 (12) | 0.0298 (12) | 0.0376 (13) |
C9 | 0.0419 (11) | 0.0435 (10) | 0.0490 (12) | 0.0133 (8) | 0.0193 (9) | 0.0208 (9) |
C10 | 0.113 (3) | 0.0728 (17) | 0.0566 (16) | −0.0012 (16) | 0.0441 (17) | 0.0141 (13) |
C11 | 0.0573 (14) | 0.0519 (12) | 0.0468 (12) | 0.0086 (10) | 0.0217 (11) | 0.0206 (10) |
C12 | 0.0469 (12) | 0.0502 (11) | 0.0499 (12) | 0.0114 (9) | 0.0188 (10) | 0.0243 (10) |
C13 | 0.0632 (15) | 0.0601 (14) | 0.0643 (16) | 0.0082 (11) | 0.0243 (12) | 0.0349 (13) |
C14 | 0.0743 (17) | 0.0523 (13) | 0.0728 (17) | 0.0034 (12) | 0.0250 (14) | 0.0315 (13) |
C15 | 0.0726 (17) | 0.0421 (11) | 0.0706 (17) | 0.0085 (11) | 0.0231 (14) | 0.0178 (11) |
C16 | 0.0587 (14) | 0.0457 (11) | 0.0523 (13) | 0.0137 (10) | 0.0196 (11) | 0.0152 (10) |
Fe1 | 0.03886 (17) | 0.04684 (16) | 0.04599 (18) | 0.01386 (12) | 0.02065 (14) | 0.02175 (13) |
Fe2 | 0.03811 (17) | 0.03823 (15) | 0.04785 (18) | 0.01034 (12) | 0.02211 (13) | 0.01607 (13) |
Fe3 | 0.04096 (18) | 0.05190 (17) | 0.04507 (18) | 0.01455 (13) | 0.02267 (14) | 0.02356 (14) |
N1 | 0.0553 (11) | 0.0398 (9) | 0.0481 (10) | 0.0056 (8) | 0.0216 (9) | 0.0162 (8) |
N2 | 0.0449 (10) | 0.0437 (9) | 0.0463 (10) | 0.0118 (7) | 0.0182 (8) | 0.0201 (8) |
O1 | 0.0480 (11) | 0.0979 (15) | 0.0896 (15) | 0.0003 (10) | 0.0192 (11) | 0.0228 (12) |
O2 | 0.0806 (13) | 0.0825 (13) | 0.0837 (14) | 0.0466 (11) | 0.0442 (12) | 0.0239 (11) |
O3 | 0.1075 (18) | 0.140 (2) | 0.1192 (19) | 0.0520 (16) | 0.0793 (16) | 0.0906 (18) |
O4 | 0.0713 (13) | 0.0482 (10) | 0.1129 (17) | 0.0243 (9) | 0.0344 (12) | 0.0185 (10) |
O5 | 0.0562 (12) | 0.0757 (12) | 0.0828 (14) | 0.0138 (10) | 0.0085 (11) | −0.0070 (11) |
O6 | 0.0568 (11) | 0.1098 (16) | 0.1024 (16) | 0.0223 (10) | 0.0504 (11) | 0.0453 (13) |
O7 | 0.0882 (16) | 0.1288 (19) | 0.0493 (12) | 0.0114 (14) | 0.0202 (11) | 0.0117 (12) |
O8 | 0.0934 (15) | 0.0851 (13) | 0.1061 (17) | 0.0414 (11) | 0.0459 (13) | 0.0644 (13) |
S1 | 0.0416 (3) | 0.0386 (2) | 0.0458 (3) | 0.0071 (2) | 0.0193 (2) | 0.0163 (2) |
S2 | 0.0436 (3) | 0.0380 (2) | 0.0498 (3) | 0.0124 (2) | 0.0202 (2) | 0.0149 (2) |
C1—O1 | 1.129 (3) | C10—H10C | 0.9600 |
C1—Fe1 | 1.795 (2) | C11—C12 | 1.372 (3) |
C2—O2 | 1.132 (3) | C11—N1 | 1.376 (3) |
C2—Fe1 | 1.802 (2) | C12—N2 | 1.414 (3) |
C3—O3 | 1.133 (3) | C12—C13 | 1.420 (3) |
C3—Fe2 | 1.788 (2) | C13—C14 | 1.342 (4) |
C4—O4 | 1.132 (3) | C13—H13 | 0.9300 |
C4—Fe2 | 1.811 (2) | C14—C15 | 1.428 (4) |
C5—O5 | 1.134 (3) | C14—H14 | 0.9300 |
C5—Fe2 | 1.809 (3) | C15—C16 | 1.339 (3) |
C6—O6 | 1.149 (3) | C15—H15 | 0.9300 |
C6—Fe1 | 2.802 (2) | C16—N2 | 1.394 (3) |
C6—Fe3 | 1.787 (2) | C16—H16 | 0.9300 |
C7—O7 | 1.140 (3) | Fe1—S2 | 2.2406 (7) |
C7—Fe3 | 1.796 (3) | Fe1—S1 | 2.2437 (6) |
C8—O8 | 1.141 (3) | Fe1—Fe2 | 3.4050 (6) |
C8—Fe3 | 1.793 (2) | Fe1—Fe3 | 2.6319 (5) |
C9—N1 | 1.354 (3) | Fe2—S2 | 2.2456 (6) |
C9—N2 | 1.371 (2) | Fe2—S1 | 2.2473 (7) |
C9—Fe1 | 1.944 (2) | Fe2—Fe3 | 2.5846 (5) |
C10—C11 | 1.480 (3) | Fe3—S2 | 2.2505 (6) |
C10—H10A | 0.9600 | Fe3—S1 | 2.2719 (7) |
C10—H10B | 0.9600 | N1—H1N | 0.86 (3) |
O1—C1—Fe1 | 178.9 (2) | S1—Fe1—Fe3 | 54.850 (17) |
O2—C2—Fe1 | 177.2 (2) | C3—Fe2—C5 | 99.42 (12) |
O3—C3—Fe2 | 177.7 (2) | C3—Fe2—C4 | 98.80 (11) |
O4—C4—Fe2 | 179.1 (2) | C5—Fe2—C4 | 92.05 (10) |
O5—C5—Fe2 | 178.8 (3) | C3—Fe2—S2 | 96.58 (8) |
O6—C6—Fe3 | 172.1 (2) | C5—Fe2—S2 | 91.21 (7) |
O7—C7—Fe3 | 178.3 (3) | C4—Fe2—S2 | 163.53 (7) |
O8—C8—Fe3 | 177.6 (2) | C3—Fe2—S1 | 101.03 (9) |
N1—C9—N2 | 102.41 (17) | C5—Fe2—S1 | 158.50 (8) |
N1—C9—Fe1 | 126.24 (14) | C4—Fe2—S1 | 91.32 (7) |
N2—C9—Fe1 | 130.37 (16) | S2—Fe2—S1 | 79.95 (2) |
C11—C10—H10A | 109.5 | C3—Fe2—Fe3 | 143.35 (8) |
C11—C10—H10B | 109.5 | C5—Fe2—Fe3 | 103.38 (8) |
H10A—C10—H10B | 109.5 | C4—Fe2—Fe3 | 108.57 (7) |
C11—C10—H10C | 109.5 | S2—Fe2—Fe3 | 55.001 (17) |
H10A—C10—H10C | 109.5 | S1—Fe2—Fe3 | 55.565 (18) |
H10B—C10—H10C | 109.5 | C6—Fe3—C8 | 99.40 (11) |
C12—C11—N1 | 105.01 (19) | C6—Fe3—C7 | 95.81 (12) |
C12—C11—C10 | 130.7 (2) | C8—Fe3—C7 | 95.94 (12) |
N1—C11—C10 | 124.2 (2) | C6—Fe3—S2 | 118.87 (8) |
C11—C12—N2 | 106.24 (17) | C8—Fe3—S2 | 141.52 (8) |
C11—C12—C13 | 134.6 (2) | C7—Fe3—S2 | 84.66 (9) |
N2—C12—C13 | 119.2 (2) | C6—Fe3—S1 | 99.32 (8) |
C14—C13—C12 | 119.4 (2) | C8—Fe3—S1 | 91.40 (8) |
C14—C13—H13 | 120.3 | C7—Fe3—S1 | 161.87 (9) |
C12—C13—H13 | 120.3 | S2—Fe3—S1 | 79.33 (2) |
C13—C14—C15 | 120.3 (2) | C6—Fe3—Fe2 | 153.00 (8) |
C13—C14—H14 | 119.9 | C8—Fe3—Fe2 | 89.34 (7) |
C15—C14—H14 | 119.9 | C7—Fe3—Fe2 | 108.72 (8) |
C16—C15—C14 | 121.6 (2) | S2—Fe3—Fe2 | 54.822 (16) |
C16—C15—H15 | 119.2 | S1—Fe3—Fe2 | 54.672 (17) |
C14—C15—H15 | 119.2 | C6—Fe3—Fe1 | 76.04 (8) |
C15—C16—N2 | 119.3 (2) | C8—Fe3—Fe1 | 142.49 (9) |
C15—C16—H16 | 120.3 | C7—Fe3—Fe1 | 121.48 (9) |
N2—C16—H16 | 120.3 | S2—Fe3—Fe1 | 53.950 (18) |
C1—Fe1—C2 | 91.72 (11) | S1—Fe3—Fe1 | 53.854 (17) |
C1—Fe1—C9 | 95.87 (10) | Fe2—Fe3—Fe1 | 81.492 (15) |
C2—Fe1—C9 | 99.14 (10) | C9—N1—C11 | 114.84 (18) |
C1—Fe1—S2 | 167.63 (8) | C9—N1—H1N | 123.7 (17) |
C2—Fe1—S2 | 94.02 (8) | C11—N1—H1N | 121.3 (17) |
C9—Fe1—S2 | 94.02 (7) | C9—N2—C16 | 128.35 (19) |
C1—Fe1—S1 | 91.33 (8) | C9—N2—C12 | 111.49 (17) |
C2—Fe1—S1 | 163.43 (8) | C16—N2—C12 | 120.16 (18) |
C9—Fe1—S1 | 96.75 (6) | Fe1—S1—Fe2 | 98.60 (2) |
S2—Fe1—S1 | 80.14 (2) | Fe1—S1—Fe3 | 71.297 (19) |
C1—Fe1—Fe3 | 113.41 (8) | Fe2—S1—Fe3 | 69.763 (19) |
C2—Fe1—Fe3 | 109.23 (8) | Fe1—S2—Fe2 | 98.75 (2) |
C9—Fe1—Fe3 | 137.75 (6) | Fe1—S2—Fe3 | 71.75 (2) |
S2—Fe1—Fe3 | 54.301 (16) | Fe2—S2—Fe3 | 70.177 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S1i | 0.86 (3) | 2.59 (3) | 3.4404 (19) | 168 (2) |
C16—H16···O5ii | 0.93 | 2.51 | 3.359 (3) | 151 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z+2. |
Experimental details
(1) | (2) | |
Crystal data | ||
Chemical formula | [Fe3(C3H6N2)S2(CO)8] | [Fe3(C8H8N2)S2(CO)8] |
Mr | 525.87 | 587.93 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 296 | 296 |
a, b, c (Å) | 8.7679 (3), 10.0811 (3), 11.8549 (15) | 8.9723 (12), 11.1249 (11), 12.0611 (16) |
α, β, γ (°) | 78.4565 (14), 72.7596 (13), 67.3315 (14) | 108.477 (5), 107.608 (2), 96.455 (8) |
V (Å3) | 919.07 (12) | 1059.1 (2) |
Z | 2 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 2.60 | 2.27 |
Crystal size (mm) | 0.18 × 0.13 × 0.13 | 0.17 × 0.13 × 0.13 |
Data collection | ||
Diffractometer | Bruker APEXII CCD area-detector | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.651, 0.708 | 0.697, 0.741 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7989, 4141, 3710 | 9290, 4784, 4073 |
Rint | 0.032 | 0.032 |
(sin θ/λ)max (Å−1) | 0.650 | 0.650 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.080, 1.07 | 0.028, 0.081, 1.06 |
No. of reflections | 4141 | 4784 |
No. of parameters | 244 | 285 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.47, −0.30 | 0.32, −0.29 |
Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008b), PLATON (Spek, 2009) and WinGX (Farrugia, 2012), publCIF (Westrip, 2010).
C6—Fe1 | 2.686 (3) | Fe1—Fe3 | 2.6176 (4) |
C9—N2 | 1.322 (3) | Fe2—S2 | 2.2479 (6) |
C9—N1 | 1.323 (3) | Fe2—S1 | 2.2494 (6) |
C9—Fe1 | 1.925 (2) | Fe2—Fe3 | 2.5876 (4) |
Fe1—S1 | 2.2418 (6) | Fe3—S1 | 2.2645 (5) |
Fe1—S2 | 2.2428 (5) | Fe3—S2 | 2.2704 (6) |
Fe1—Fe2 | 3.4111 (6) | ||
O6—C6—Fe3 | 171.1 (2) | N1—C9—Fe1 | 127.06 (15) |
O7—C7—Fe3 | 179.5 (3) | Fe2—Fe3—Fe1 | 81.885 (12) |
N2—C9—N1 | 107.11 (19) | Fe1—S1—Fe2 | 98.84 (2) |
N2—C9—Fe1 | 125.81 (16) | Fe1—S2—Fe2 | 98.85 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O6i | 0.97 | 2.59 | 3.391 (3) | 140.5 |
N1—H1N···S2ii | 0.85 (3) | 2.87 (3) | 3.707 (2) | 170 (2) |
N2—H2N···S1iii | 0.84 (3) | 2.64 (3) | 3.442 (2) | 162 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2. |
C6—Fe1 | 2.802 (2) | Fe1—Fe3 | 2.6319 (5) |
C9—N1 | 1.354 (3) | Fe2—S2 | 2.2456 (6) |
C9—N2 | 1.371 (2) | Fe2—S1 | 2.2473 (7) |
C9—Fe1 | 1.944 (2) | Fe2—Fe3 | 2.5846 (5) |
Fe1—S2 | 2.2406 (7) | Fe3—S2 | 2.2505 (6) |
Fe1—S1 | 2.2437 (6) | Fe3—S1 | 2.2719 (7) |
Fe1—Fe2 | 3.4050 (6) | ||
O6—C6—Fe3 | 172.1 (2) | N2—C9—Fe1 | 130.37 (16) |
O7—C7—Fe3 | 178.3 (3) | Fe2—Fe3—Fe1 | 81.492 (15) |
N1—C9—N2 | 102.41 (17) | Fe1—S1—Fe2 | 98.60 (2) |
N1—C9—Fe1 | 126.24 (14) | Fe1—S2—Fe2 | 98.75 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S1i | 0.86 (3) | 2.59 (3) | 3.4404 (19) | 168 (2) |
C16—H16···O5ii | 0.93 | 2.51 | 3.359 (3) | 151.2 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z+2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register