Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title one-dimensional ZnII coordination polymer, [Zn(C10H8O4)0.5Cl(C12H12N6)]n, the asymmetric unit consists of a ZnII cation, a 1,3-bis­[(1H-1,2,4-triazol-1-yl)methyl]benzene ligand and half of a fully deprotonated centrosymmetric 1,4-phenyl­ene­di­acetic acid ligand. The crystal structure shows a one-dimensional rotaxane-like structure. This coordination polymer is reinforced by C—H...O and C—H...Cl hydrogen bonds and π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614022177/wq3075sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614022177/wq3075Isup2.hkl
Contains datablock I

CCDC reference: 1027994

Introduction top

The rational design and synthesis of coordination polymers is of great inter­est in modern inorganic chemistry not only because of their diverse topologies and intriguing structures but also due to their potential applications in luminescence, gas storage, molecular adsorption, molecular recognition and catalysis (Cao et al., 1992; Dinca et al., 2006; Plabst et al., 2009). The structure adopted by a coordination polymer is largely affected by a combination of a small number of factors, including the solvent system, temperature, organic ligands and metal atoms (Kan et al., 2012; Liu et al., 2012). Among these factors, the organic ligands play a key role in determining the final architecture. The versatile multi­carboxyl­ate ligands have been extensively used as multifunctional organic linkers to construct coordination polymers because of their excellent coordination capability and flexible coordination patterns. As an important multidentate O-donor ligand, 1,4-phenyl­enedi­acetic acid (1,4-H2phda) has been used extensively in the construction of a variety of coordination polymers (Farnum et al., 2013; Jia et al., 2013; Liu et al., 2013; Wu et al., 2013). 1,3-Bis[(1H-1,2,4-triazol-1-yl)methyl]­benzene (mbtz), a flexible bis­(triazole) ligand, has been widely used in the construction of coordination polymers, because it can adopt different conformations with varying relative orientations of its –CH2– groups (Ge et al., 2012; Peng et al., 2006). We have selected 1,4-H2phda and mbtz as organic linkers, generating the title ZnII coordination polymer, [Zn(1,4-phda)0.5Cl(mbtz)]n, (I), the crystal structure of which we now report.

Experimental top

1,3-Bis[(1H-1,2,4-triazol-1-yl)methyl]­benzene (mbtz) was synthesized according to the literature procedure of Peng et al. (2006). All other reagents and solvents used in the experiment were purchased from commercial sources and used without further purification. The IR spectra were recorded from KBr pellets in the range 4000–400 cm-1 on a VECTOR 22 spectrometer. Elemental analysis was carried out using a Perkin–Elmer 240C elemental analyser.

Synthesis and crystallization top

A mixture of ZnCl2·4H2O (0.0208 g, 0.100 mmol), 1,4-H2phda (0.0388 g, 0.200 mmol), mbtz (0.0240 g, 0.100 mmol) and KOH (0.00800 g, 0.200 mmol) in H2O (10 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated at 423 K for 72 h. After cooling to room temperature, colourless block-shaped crystals of (I) were collected by filtration and washed several times in water and ethanol (yield 12.4%, based on mbtz). Elemental analysis for C17H16ClN6O2Zn: C 46.70, H 3.69, N 19.22%; found: C 46.80, H 3.70, N 19.28%. IR (KBr, cm-1): 3401 (w), 3112 (m), 2342 (w), 2312 (w), 1628 (m), 1387 (s), 745 (w), 663 (w), 565 (w).

Refinement top

C-bound H atoms were placed in calculated positions and treated using a riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms.

Results and discussion top

[Zn(1,4-phda)0.5Cl(mbtz)]n, (I) (Fig. 1), crystallizes in the triclinic space group P1, with an asymmetric unit consisting of a ZnII cation, an mbtz ligand, an anionic chloride ligand and half of a fully deprotonated 1,4-H2phda ligand, viz. 1,4-phenyl­enedi­acetate (1,4-phda2-). The ZnII cation is coordinated by one chloride ligand [Zn1—Cl1 = 2.2563 (16) Å], one O atom from a monodentate carboxyl­ate group of a 1,4-phda2- ligand [Zn1—O1 = 1.980 (3) Å] and two N atoms from two different mbtz ligands [Zn1—N1 = 2.020 (4) Å and Zn1—N6vi = 2.010 (4) Å; symmetry code: (vi) -x + 1, -y + 1, -z + 1] to give a distorted ZnN2ClO tetra­hedral coordination environment having a ι4 parameter of 0.91 (ι4 is 0 for an idealized square-planar geometry or 1 for an idealized tetra­hedral geometry; Yang et al., 2007).

In (I), each 1,4-phda2- ligand links two ZnII cations through its two carboxyl­ate groups in a µ2-κ2O:O'-coordination mode. The dihedral angle between the plane of the carboxyl­ate group at C1 and that of the adjacent benzene ring is 70.5 (2)°. The mbtz ligand adopts a gauche conformation. The dihedral angles between the planes of triazole rings N1–N3/C6/C7 and N4–N6/C16/C17 and that of the benzene ring are 42.9 (2), 196.8 (1)and 73.1 (2)°, respectively. Two crystallographically equivalent ZnII cations are bridged by two mbtz ligands to form a [Zn2(mbtz)2] rhomboid subunit (24-membered macrocycle). The Zn···Zn through-space distance across the dinuclear unit is 9.398 (2) Å. The rhomboid [Zn2(mbtz)2] subunits are further bridged by 1,4-phda2- ligands to form an infinite ladder (Fig. 2) arranged parallel to the a axis. The Zn···Zn contact distance through the 1,4-phda2- ligand is 12.662 (1) Å. Strikingly, two of these one-dimensional chains inter­penetrate each other, with each ring section of one chain ([Zn2(mbtz)2]) penetrated by a `bond' of the other chain (1,4-phda2- ligand), giving a one-dimensional rotaxane-like structure (Fig. 3).

The structure of (I) is further stabilized by weak but extensive inter- and intra­molecular C—H···O and C—H···Cl hydrogen bonds connecting the one-dimensional chains into an extensive three-dimensional hydrogen-bond network (Table 3). This coordination polymer is reinforced by ππ inter­actions between the benzene and triazole rings, with a Cg1···Cg2vii separation of 3.760 (3) Å [Cg1 and Cg2 are the centroids of the N4–N6/C16/C17 and C3–C5/C3viii–C5viii rings, respectively; symmetry code: (vii) x - 1, y, z; (viii) -x - 1, -y + 1, -z + 1], ππ inter­actions between the triazole rings, with a Cg3···Cg3iv separation of 3.648 (4) Å [Cg3 is the centroid of the N1–N3/C6/C7 ring; symmetry code: (iv) -x, -y + 2, -z + 1] and ππ inter­actions between the benzene rings, with a Cg4···Cg4ix separation of 3.709 (3) Å [Cg4 is the centroid of the C9–C14 ring; symmetry code: (ix) -x + 1, -y + 2, -z + 2].

In conclusion, we have successfully synthesized a new zincII coordination polymer based on 1,4-phenyl­enedi­acetic acid and 1,3-bis­[(1H-1,2,4-triazol-1-yl)methyl]­benzene, which has been characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction analysis. The crystal structure of (I) shows a novel one-dimensional rotaxane-like structure. This coordination polymer is reinforced by C—H···O and C—H···Cl hydrogen bonds and ππ inter­actions.

Related literature top

For related literature, see: Cao et al. (1992); Dinca et al. (2006); Farnum et al. (2013); Ge et al. (2012); Jia et al. (2013); Kan et al. (2012); Liu et al. (2012, 2013); Peng et al. (2006); Plabst et al. (2009); Wu et al. (2013); Yang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the ZnII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (vi) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. A view of the one-dimensional chain of (I), arranged parallel to the a axis.
[Figure 3] Fig. 3. A view of the one-dimensional rotaxane-like structure of (I).
Poly[dichlorido(µ2-1,4-phenylenediacetato-κ2O:O')bis{µ2-1,3-bis[(1H-1,2,4-triazol-1-yl)methyl]benzene-κ2N3:N3'}dizinc(II)] top
Crystal data top
[Zn(C10H8O4)0.5Cl(C12H12N6)]V = 891.1 (4) Å3
Mr = 437.20Z = 2
Triclinic, P1F(000) = 446
Hall symbol: -P 1Dx = 1.629 Mg m3
a = 8.929 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.982 (2) ŵ = 1.55 mm1
c = 11.777 (3) ÅT = 296 K
α = 99.926 (3)°Block, colourless
β = 106.081 (3)°0.21 × 0.19 × 0.17 mm
γ = 91.596 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3317 independent reflections
Radiation source: fine-focus sealed tube2100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.736, Tmax = 0.778k = 1010
6555 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
3267 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C10H8O4)0.5Cl(C12H12N6)]γ = 91.596 (3)°
Mr = 437.20V = 891.1 (4) Å3
Triclinic, P1Z = 2
a = 8.929 (2) ÅMo Kα radiation
b = 8.982 (2) ŵ = 1.55 mm1
c = 11.777 (3) ÅT = 296 K
α = 99.926 (3)°0.21 × 0.19 × 0.17 mm
β = 106.081 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3317 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2100 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.778Rint = 0.060
6555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.98Δρmax = 0.39 e Å3
3267 reflectionsΔρmin = 0.39 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2374 (6)0.5944 (6)0.3110 (4)0.0323 (12)
C20.4102 (6)0.5860 (7)0.2984 (5)0.0462 (15)
H2A0.46260.51370.22580.055*
H2B0.44760.68430.28740.055*
C30.4589 (5)0.5414 (6)0.4015 (4)0.0343 (13)
C40.4537 (6)0.3945 (7)0.4219 (5)0.0416 (14)
H40.42110.32110.36990.050*
C50.5047 (6)0.6465 (7)0.4831 (5)0.0441 (14)
H50.50740.74710.47370.053*
C60.1268 (6)0.8000 (7)0.5381 (5)0.0408 (14)
H60.08480.71600.55860.049*
C70.2013 (7)0.9472 (7)0.4441 (5)0.0487 (16)
H70.21970.98660.38080.058*
C80.2018 (6)0.9695 (7)0.7426 (4)0.0447 (15)
H8A0.10050.94960.75450.054*
H8B0.23041.07760.76780.054*
C90.3211 (6)0.8857 (6)0.8210 (4)0.0306 (12)
C100.2761 (6)0.7881 (6)0.8851 (5)0.0406 (14)
H100.17040.76980.87740.049*
C110.3840 (7)0.7167 (7)0.9604 (5)0.0469 (15)
H110.35130.64941.00220.056*
C120.5412 (7)0.7452 (6)0.9740 (5)0.0421 (14)
H120.61450.70001.02750.050*
C130.5910 (6)0.8407 (6)0.9085 (4)0.0346 (13)
C140.4808 (6)0.9127 (6)0.8343 (4)0.0328 (12)
H140.51310.98010.79240.039*
C150.7609 (6)0.8649 (6)0.9190 (5)0.0402 (14)
H15A0.78160.96450.90270.048*
H15B0.82160.86241.00080.048*
C160.8511 (6)0.6126 (6)0.8487 (5)0.0373 (13)
H160.85900.57120.91700.045*
C170.8508 (6)0.6439 (6)0.6754 (5)0.0414 (14)
H170.85920.62540.59730.050*
Cl10.10373 (18)0.76885 (18)0.13296 (13)0.0545 (4)
N10.1318 (5)0.8090 (5)0.4287 (4)0.0352 (11)
N20.2422 (6)1.0240 (6)0.5551 (4)0.0576 (14)
N30.1894 (5)0.9260 (5)0.6146 (4)0.0362 (11)
N40.8117 (5)0.7506 (5)0.8362 (4)0.0336 (10)
N50.8109 (5)0.7728 (5)0.7253 (4)0.0464 (12)
N60.8781 (5)0.5413 (5)0.7471 (4)0.0367 (11)
O10.1968 (4)0.6496 (4)0.2292 (3)0.0392 (9)
O20.1405 (4)0.5509 (4)0.3936 (3)0.0418 (9)
Zn10.03445 (7)0.66230 (7)0.27292 (5)0.0373 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.030 (3)0.030 (3)0.003 (2)0.013 (2)0.000 (2)
C20.036 (3)0.060 (4)0.043 (3)0.005 (3)0.012 (3)0.009 (3)
C30.026 (3)0.041 (4)0.032 (3)0.001 (2)0.010 (2)0.004 (3)
C40.043 (3)0.039 (4)0.041 (3)0.002 (3)0.022 (3)0.013 (3)
C50.044 (3)0.036 (3)0.054 (4)0.000 (3)0.019 (3)0.005 (3)
C60.045 (3)0.043 (4)0.035 (3)0.003 (3)0.012 (3)0.009 (3)
C70.080 (4)0.038 (4)0.033 (3)0.000 (3)0.021 (3)0.010 (3)
C80.049 (3)0.055 (4)0.028 (3)0.014 (3)0.008 (2)0.004 (3)
C90.038 (3)0.029 (3)0.023 (3)0.003 (2)0.012 (2)0.004 (2)
C100.042 (3)0.042 (4)0.037 (3)0.000 (3)0.015 (3)0.001 (3)
C110.057 (4)0.048 (4)0.043 (3)0.002 (3)0.022 (3)0.016 (3)
C120.051 (4)0.035 (3)0.035 (3)0.010 (3)0.005 (3)0.002 (3)
C130.040 (3)0.032 (3)0.031 (3)0.003 (2)0.010 (2)0.002 (2)
C140.049 (3)0.024 (3)0.028 (3)0.002 (2)0.020 (2)0.002 (2)
C150.039 (3)0.035 (3)0.041 (3)0.004 (3)0.009 (3)0.004 (3)
C160.039 (3)0.039 (4)0.037 (3)0.006 (3)0.011 (2)0.015 (3)
C170.054 (4)0.039 (4)0.034 (3)0.003 (3)0.018 (3)0.005 (3)
Cl10.0677 (10)0.0580 (11)0.0445 (9)0.0004 (8)0.0244 (8)0.0145 (8)
N10.038 (2)0.039 (3)0.029 (2)0.003 (2)0.0087 (19)0.006 (2)
N20.078 (4)0.047 (3)0.046 (3)0.005 (3)0.014 (3)0.011 (3)
N30.039 (2)0.036 (3)0.032 (2)0.009 (2)0.008 (2)0.004 (2)
N40.033 (2)0.036 (3)0.029 (2)0.007 (2)0.0072 (19)0.004 (2)
N50.050 (3)0.043 (3)0.048 (3)0.004 (2)0.014 (2)0.014 (3)
N60.041 (3)0.035 (3)0.033 (2)0.006 (2)0.012 (2)0.000 (2)
O10.040 (2)0.045 (2)0.036 (2)0.0003 (18)0.0140 (17)0.0104 (18)
O20.036 (2)0.055 (3)0.038 (2)0.0056 (18)0.0135 (17)0.0122 (19)
Zn10.0385 (4)0.0400 (4)0.0336 (4)0.0060 (3)0.0126 (3)0.0036 (3)
Geometric parameters (Å, º) top
C1—O21.237 (6)C10—H100.9300
C1—O11.286 (6)C11—C121.379 (8)
C1—C21.507 (7)C11—H110.9300
C2—C31.508 (7)C12—C131.387 (7)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.380 (7)
C3—C41.382 (7)C13—C151.494 (7)
C3—C51.382 (7)C14—H140.9300
C4—C5i1.374 (7)C15—N41.462 (6)
C4—H40.9300C15—H15A0.9700
C5—C4i1.374 (7)C15—H15B0.9700
C5—H50.9300C16—N41.319 (6)
C6—N11.317 (6)C16—N61.343 (6)
C6—N31.319 (6)C16—H160.9300
C6—H60.9300C17—N51.311 (7)
C7—N21.315 (7)C17—N61.337 (6)
C7—N11.333 (7)C17—H170.9300
C7—H70.9300Cl1—Zn12.2563 (16)
C8—N31.463 (6)N1—Zn12.020 (4)
C8—C91.514 (7)N2—N31.364 (6)
C8—H8A0.9700N4—N51.352 (6)
C8—H8B0.9700N6—Zn1ii2.010 (4)
C9—C101.370 (7)O1—Zn11.980 (3)
C9—C141.400 (7)Zn1—N6ii2.010 (4)
C10—C111.372 (8)
O2—C1—O1121.9 (5)C13—C12—H12119.7
O2—C1—C2122.8 (5)C14—C13—C12118.7 (5)
O1—C1—C2115.3 (4)C14—C13—C15121.0 (5)
C1—C2—C3116.4 (4)C12—C13—C15120.3 (5)
C1—C2—H2A108.2C13—C14—C9121.0 (5)
C3—C2—H2A108.2C13—C14—H14119.5
C1—C2—H2B108.2C9—C14—H14119.5
C3—C2—H2B108.2N4—C15—C13112.6 (4)
H2A—C2—H2B107.3N4—C15—H15A109.1
C4—C3—C5116.6 (5)C13—C15—H15A109.1
C4—C3—C2121.6 (5)N4—C15—H15B109.1
C5—C3—C2121.8 (5)C13—C15—H15B109.1
C5i—C4—C3122.0 (5)H15A—C15—H15B107.8
C5i—C4—H4119.0N4—C16—N6109.3 (5)
C3—C4—H4119.0N4—C16—H16125.4
C4i—C5—C3121.4 (5)N6—C16—H16125.4
C4i—C5—H5119.3N5—C17—N6113.8 (5)
C3—C5—H5119.3N5—C17—H17123.1
N1—C6—N3110.9 (5)N6—C17—H17123.1
N1—C6—H6124.6C6—N1—C7102.7 (5)
N3—C6—H6124.6C6—N1—Zn1128.8 (4)
N2—C7—N1115.4 (5)C7—N1—Zn1128.2 (4)
N2—C7—H7122.3C7—N2—N3101.9 (5)
N1—C7—H7122.3C6—N3—N2109.2 (5)
N3—C8—C9113.0 (4)C6—N3—C8129.9 (5)
N3—C8—H8A109.0N2—N3—C8120.9 (5)
C9—C8—H8A109.0C16—N4—N5109.7 (4)
N3—C8—H8B109.0C16—N4—C15128.8 (5)
C9—C8—H8B109.0N5—N4—C15121.3 (4)
H8A—C8—H8B107.8C17—N5—N4103.7 (4)
C10—C9—C14118.6 (5)C17—N6—C16103.6 (4)
C10—C9—C8120.8 (5)C17—N6—Zn1ii131.2 (4)
C14—C9—C8120.5 (5)C16—N6—Zn1ii124.7 (4)
C9—C10—C11121.3 (5)C1—O1—Zn1107.2 (3)
C9—C10—H10119.4O1—Zn1—N6ii113.31 (16)
C11—C10—H10119.4O1—Zn1—N1111.81 (16)
C10—C11—C12119.7 (5)N6ii—Zn1—N1117.20 (17)
C10—C11—H11120.1O1—Zn1—Cl1106.69 (11)
C12—C11—H11120.1N6ii—Zn1—Cl1102.11 (13)
C11—C12—C13120.6 (5)N1—Zn1—Cl1104.19 (14)
C11—C12—H12119.7
O2—C1—C2—C38.2 (8)N1—C6—N3—C8176.5 (5)
O1—C1—C2—C3172.2 (4)C7—N2—N3—C61.8 (6)
C1—C2—C3—C472.6 (7)C7—N2—N3—C8176.2 (5)
C1—C2—C3—C5104.6 (6)C9—C8—N3—C672.7 (7)
C5—C3—C4—C5i1.5 (8)C9—C8—N3—N2109.8 (6)
C2—C3—C4—C5i178.8 (5)N6—C16—N4—N50.4 (6)
C4—C3—C5—C4i1.5 (8)N6—C16—N4—C15175.0 (4)
C2—C3—C5—C4i178.8 (4)C13—C15—N4—C1682.1 (6)
N3—C8—C9—C10115.3 (6)C13—C15—N4—N591.9 (6)
N3—C8—C9—C1468.0 (6)N6—C17—N5—N40.5 (6)
C14—C9—C10—C110.4 (8)C16—N4—N5—C170.0 (6)
C8—C9—C10—C11177.1 (5)C15—N4—N5—C17175.0 (5)
C9—C10—C11—C121.1 (8)N5—C17—N6—C160.7 (6)
C10—C11—C12—C132.6 (8)N5—C17—N6—Zn1ii171.9 (4)
C11—C12—C13—C143.3 (8)N4—C16—N6—C170.7 (6)
C11—C12—C13—C15176.9 (5)N4—C16—N6—Zn1ii172.5 (3)
C12—C13—C14—C92.6 (7)O2—C1—O1—Zn14.5 (6)
C15—C13—C14—C9177.6 (4)C2—C1—O1—Zn1175.9 (4)
C10—C9—C14—C131.2 (7)C1—O1—Zn1—N6ii70.9 (3)
C8—C9—C14—C13177.9 (5)C1—O1—Zn1—N164.2 (3)
C14—C13—C15—N493.5 (6)C1—O1—Zn1—Cl1177.5 (3)
C12—C13—C15—N486.7 (6)C6—N1—Zn1—O165.3 (5)
N3—C6—N1—C70.2 (6)C7—N1—Zn1—O1106.0 (5)
N3—C6—N1—Zn1172.8 (3)C6—N1—Zn1—N6ii67.9 (5)
N2—C7—N1—C61.0 (7)C7—N1—Zn1—N6ii120.7 (5)
N2—C7—N1—Zn1174.1 (4)C6—N1—Zn1—Cl1179.9 (4)
N1—C7—N2—N31.7 (7)C7—N1—Zn1—Cl18.8 (5)
N1—C6—N3—N21.3 (6)
Symmetry codes: (i) x1, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2iii0.932.383.303 (7)173
C15—H15B···Cl1iv0.972.813.617 (5)142
C15—H15A···Cl1v0.972.723.680 (6)169
C8—H8B···O1vi0.972.473.383 (7)156
C6—H6···O2vii0.932.593.381 (7)144
C6—H6···O20.932.593.120 (7)117
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+2, z+1; (vi) x, y+2, z+1; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C10H8O4)0.5Cl(C12H12N6)]
Mr437.20
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.929 (2), 8.982 (2), 11.777 (3)
α, β, γ (°)99.926 (3), 106.081 (3), 91.596 (3)
V3)891.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.736, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
6555, 3317, 2100
Rint0.060
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.146, 0.98
No. of reflections3267
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.39

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected geometric parameters (Å, º) top
Cl1—Zn12.2563 (16)O1—Zn11.980 (3)
N1—Zn12.020 (4)Zn1—N6i2.010 (4)
O1—Zn1—N6i113.31 (16)O1—Zn1—Cl1106.69 (11)
O1—Zn1—N1111.81 (16)N6i—Zn1—Cl1102.11 (13)
N6i—Zn1—N1117.20 (17)N1—Zn1—Cl1104.19 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2ii0.932.383.303 (7)172.9
C15—H15B···Cl1iii0.972.813.617 (5)141.7
C15—H15A···Cl1iv0.972.723.680 (6)169.3
C8—H8B···O1v0.972.473.383 (7)156.2
C6—H6···O2vi0.932.593.381 (7)143.8
C6—H6···O20.932.593.120 (7)116.9
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+2, z+1; (v) x, y+2, z+1; (vi) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds