Buy article online - an online subscription or single-article purchase is required to access this article.
research papers
The comparison of theory and experiment remains a cornerstone of scientific inquiry. Various levels of such comparison applicable to charge-density analysis are discussed, including static and dynamic electron densities, topological properties, d-orbital occupancies and electrostatic moments. The advantages and drawbacks of the pseudoatom multipole are discussed, as are the experimentally constrained wavefunctions introduced by Jayatilaka and co-workers, which combine energy minimization with the requirement to provide a reasonable fit to the X-ray structure factors. The transferability of atomic densities can be exploited through construction of a pseudoatom databank, which may be based on analysis of ab initio molecular electron densities, and can be used to evaluate a host of physical properties. Partitioning of theoretical energies with the Morokuma-Ziegler energy decomposition scheme allows direct comparison with electrostatic interaction energies obtained from electron densities represented by the pseudoatom formalism. Compared with the Buckingham expression for the interaction between non-overlapping densities, the agreement with theory is much improved when a newly developed hybrid EP/MM (exact potential/multipole model) method is employed.
Keywords: charge density.