Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The novel title organic salt, 4C5H7N2+·C24H8O84−·8H2O, was obtained from the reaction of perylene-3,4,9,10-tetra­carb­oxy­lic acid (H4ptca) with 4-amino­pyridine (4-ap). The asymmetric unit contains half a perylene-3,4,9,10-tetra­carboxyl­ate (ptca4−) anion with twofold symmetry, two 4-amino­pyridinium (4-Hap+) cations and four water mol­ecules. Strong N—H...O hydrogen bonds connect each ptca4− anion with four 4-Hap+ cations to form a one-dimensional linear chain along the [010] direction, decorated by additional 4-Hap+ cations attached by weak N—H...O hydrogen bonds to the ptca4− anions. Inter­molecular O—H...O inter­actions of water mol­ecules with ptca4− and 4-Hap+ ions complete the three-dimensional hydrogen-bonding network. From the viewpoint of topology, each ptca4− anion acts as a 16-connected node by hydrogen bonding to six 4-Hap+ cations and ten water mol­ecules to yield a highly connected hydrogen-bonding framework. π–π inter­actions between 4-Hap+ cations, and between 4-Hap+ cations and ptca4− anions, further stabilize the three-dimensional hydrogen-bonding network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614012947/yf3064sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614012947/yf3064Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614012947/yf3064Isup3.cml
Supplementary material

CCDC reference: 1006659

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tetrakis(4-aminopyridinium) perylene-3,4,9,10-tetracarboxylate octahydrate top
Crystal data top
4C5H7N2+·C24H8O84·8H2OF(000) = 2000
Mr = 948.94Dx = 1.388 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1793 reflections
a = 17.771 (3) Åθ = 2.5–25.9°
b = 19.703 (3) ŵ = 0.11 mm1
c = 14.210 (3) ÅT = 296 K
β = 114.097 (6)°Block, red
V = 4541.8 (14) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4696 independent reflections
Radiation source: fine-focus sealed tube2381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
φ and ω scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2218
Tmin = 0.612, Tmax = 0.7459k = 2424
14116 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.001P]
where P = (Fo2 + 2Fc2)/3
4696 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9710 (2)0.32278 (13)0.6368 (2)0.0290 (7)
C20.96368 (16)0.39818 (12)0.6530 (2)0.0232 (6)
C31.00000.43261 (17)0.75000.0215 (8)
C41.00000.50553 (16)0.75000.0196 (8)
C50.96691 (15)0.54217 (12)0.65490 (19)0.0206 (6)
C60.92824 (16)0.50641 (12)0.5652 (2)0.0286 (7)
H60.90250.52970.50340.034*
C70.92681 (17)0.43610 (12)0.5651 (2)0.0289 (7)
H70.89970.41370.50270.035*
C80.97470 (15)0.61650 (12)0.65513 (19)0.0219 (6)
C91.00000.65332 (17)0.75000.0202 (8)
C101.00000.72572 (17)0.75000.0212 (9)
C110.97895 (16)0.75952 (12)0.65388 (19)0.0234 (6)
C120.96146 (17)0.72232 (12)0.5663 (2)0.0301 (7)
H120.95160.74480.50480.036*
C130.95803 (17)0.65224 (12)0.5662 (2)0.0286 (7)
H130.94410.62890.50450.034*
C140.96652 (19)0.83524 (13)0.6386 (2)0.0293 (7)
C150.1790 (2)0.55143 (19)0.7441 (3)0.0503 (9)
H150.14300.54650.67530.060*
C160.19905 (19)0.61441 (18)0.7813 (3)0.0504 (9)
H160.17810.65230.73970.061*
C170.2536 (2)0.62123 (17)0.8870 (3)0.0531 (9)
C180.2828 (2)0.56314 (17)0.9438 (3)0.0565 (10)
H180.31880.56641.01290.068*
C190.2593 (2)0.5000 (2)0.8992 (3)0.0680 (11)
H190.27970.46120.93860.082*
C200.0109 (2)0.05439 (16)0.6115 (3)0.0508 (9)
H200.03450.05130.54870.061*
C210.0386 (2)0.11590 (15)0.6509 (2)0.0435 (8)
H210.01240.15470.61530.052*
C220.10709 (19)0.12177 (14)0.7457 (2)0.0356 (7)
C230.1449 (2)0.06081 (14)0.7944 (2)0.0419 (8)
H230.19110.06220.85670.050*
C240.1139 (2)0.00069 (16)0.7508 (3)0.0503 (9)
H240.13920.03920.78360.060*
N10.20815 (18)0.49415 (15)0.8013 (3)0.0610 (8)
H10.19800.45160.77630.092*
N20.27533 (19)0.68099 (14)0.9274 (2)0.0746 (10)
H2A0.30870.68490.99110.089*
H2B0.25630.71670.89040.089*
N30.04715 (19)0.00305 (13)0.6604 (2)0.0522 (8)
H30.02820.04480.63700.078*
N40.13400 (16)0.18156 (11)0.7888 (2)0.0492 (7)
H4A0.10940.21810.75870.059*
H4B0.17610.18390.84700.059*
O10.90681 (12)0.29259 (9)0.57955 (15)0.0388 (5)
O21.04202 (12)0.29812 (9)0.67590 (14)0.0344 (5)
O31.00914 (13)0.86639 (9)0.60088 (15)0.0409 (5)
O40.91029 (13)0.86101 (9)0.65815 (15)0.0400 (5)
O50.79773 (13)0.79637 (11)0.71060 (18)0.0617 (7)
H5A0.81210.78840.77220.093*
H5B0.83040.81110.68820.093*
O60.74939 (13)0.34649 (10)0.50149 (18)0.0602 (7)
H6A0.71640.33140.52310.090*
H6B0.79660.33180.52240.090*
O70.86557 (14)0.20037 (11)0.42567 (18)0.0667 (7)
H7A0.90340.17860.42150.100*
H7B0.87450.23290.46480.100*
O80.16710 (13)0.38081 (10)0.69289 (17)0.0580 (7)
H8A0.12870.35830.69430.087*
H8B0.20310.36340.67880.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.0192 (15)0.0270 (16)0.0003 (15)0.0207 (15)0.0008 (13)
C20.0262 (17)0.0153 (14)0.0288 (16)0.0006 (12)0.0119 (13)0.0040 (12)
C30.024 (2)0.018 (2)0.024 (2)0.0000.0112 (17)0.000
C40.019 (2)0.0154 (19)0.026 (2)0.0000.0111 (17)0.000
C50.0233 (16)0.0158 (13)0.0231 (15)0.0024 (11)0.0099 (12)0.0005 (11)
C60.0386 (18)0.0210 (15)0.0221 (15)0.0008 (13)0.0081 (13)0.0026 (12)
C70.0395 (18)0.0205 (15)0.0222 (15)0.0006 (13)0.0080 (13)0.0033 (12)
C80.0248 (16)0.0194 (14)0.0216 (15)0.0006 (12)0.0095 (12)0.0009 (11)
C90.022 (2)0.020 (2)0.019 (2)0.0000.0079 (17)0.000
C100.025 (2)0.018 (2)0.022 (2)0.0000.0117 (18)0.000
C110.0282 (17)0.0157 (14)0.0247 (15)0.0017 (12)0.0092 (13)0.0012 (12)
C120.045 (2)0.0219 (15)0.0230 (15)0.0009 (13)0.0141 (14)0.0043 (12)
C130.0449 (19)0.0201 (15)0.0203 (15)0.0013 (13)0.0129 (13)0.0024 (12)
C140.046 (2)0.0183 (15)0.0173 (15)0.0007 (14)0.0059 (14)0.0015 (12)
C150.043 (2)0.063 (2)0.043 (2)0.0052 (19)0.0156 (17)0.0030 (19)
C160.037 (2)0.059 (2)0.050 (2)0.0034 (17)0.0137 (18)0.0041 (18)
C170.045 (2)0.049 (2)0.063 (3)0.0059 (18)0.0190 (19)0.000 (2)
C180.061 (3)0.049 (2)0.043 (2)0.0147 (19)0.0050 (18)0.0026 (18)
C190.059 (3)0.079 (3)0.059 (3)0.001 (2)0.018 (2)0.013 (2)
C200.061 (3)0.044 (2)0.049 (2)0.0063 (19)0.0248 (18)0.0028 (18)
C210.055 (2)0.0307 (18)0.045 (2)0.0007 (16)0.0208 (18)0.0023 (15)
C220.047 (2)0.0264 (17)0.042 (2)0.0002 (14)0.0275 (17)0.0002 (14)
C230.055 (2)0.0241 (17)0.051 (2)0.0057 (15)0.0261 (17)0.0061 (15)
C240.071 (3)0.033 (2)0.060 (3)0.0059 (18)0.040 (2)0.0086 (17)
N10.054 (2)0.062 (2)0.075 (2)0.0158 (16)0.0331 (18)0.0170 (18)
N20.087 (3)0.050 (2)0.070 (2)0.0023 (18)0.0148 (19)0.0086 (17)
N30.079 (2)0.0310 (16)0.064 (2)0.0195 (16)0.0467 (18)0.0145 (15)
N40.063 (2)0.0238 (14)0.0520 (18)0.0036 (13)0.0143 (14)0.0024 (13)
O10.0424 (13)0.0225 (11)0.0444 (13)0.0087 (10)0.0105 (10)0.0101 (10)
O20.0394 (13)0.0221 (11)0.0401 (12)0.0072 (9)0.0146 (10)0.0002 (9)
O30.0702 (16)0.0190 (10)0.0424 (13)0.0064 (10)0.0321 (12)0.0021 (9)
O40.0482 (14)0.0295 (12)0.0433 (13)0.0111 (10)0.0196 (11)0.0029 (10)
O50.0542 (16)0.0649 (16)0.0703 (17)0.0008 (12)0.0297 (13)0.0008 (13)
O60.0433 (15)0.0573 (15)0.0714 (17)0.0034 (12)0.0145 (13)0.0078 (13)
O70.0576 (16)0.0742 (17)0.0740 (18)0.0203 (13)0.0328 (13)0.0405 (14)
O80.0482 (15)0.0538 (15)0.0726 (17)0.0064 (12)0.0253 (12)0.0186 (13)
Geometric parameters (Å, º) top
C1—O11.248 (3)C17—N21.298 (4)
C1—O21.251 (3)C17—C181.374 (4)
C1—C21.517 (3)C18—C191.381 (5)
C2—C71.371 (3)C18—H180.9300
C2—C31.432 (3)C19—N11.320 (4)
C3—C2i1.432 (3)C19—H190.9300
C3—C41.437 (4)C20—C211.341 (4)
C4—C5i1.430 (3)C20—N31.347 (4)
C4—C51.430 (3)C20—H200.9300
C5—C61.370 (3)C21—C221.404 (4)
C5—C81.471 (3)C21—H210.9300
C6—C71.386 (3)C22—N41.324 (3)
C6—H60.9300C22—C231.412 (4)
C7—H70.9300C23—C241.346 (4)
C8—C131.369 (3)C23—H230.9300
C8—C91.432 (3)C24—N31.348 (4)
C9—C101.427 (5)C24—H240.9300
C9—C8i1.432 (3)N1—H10.9001
C10—C11i1.425 (3)N2—H2A0.8600
C10—C111.425 (3)N2—H2B0.8600
C11—C121.366 (3)N3—H30.9001
C11—C141.511 (3)N4—H4A0.8600
C12—C131.382 (3)N4—H4B0.8600
C12—H120.9300O5—H5A0.8204
C13—H130.9300O5—H5B0.8202
C14—O41.249 (3)O6—H6A0.8203
C14—O31.253 (3)O6—H6B0.8202
C15—C161.339 (4)O7—H7A0.8202
C15—N11.364 (4)O7—H7B0.8202
C15—H150.9300O8—H8A0.8204
C16—C171.423 (5)O8—H8B0.8200
C16—H160.9300
O1—C1—O2126.3 (2)N1—C15—H15118.1
O1—C1—C2117.0 (3)C15—C16—C17117.5 (3)
O2—C1—C2116.5 (3)C15—C16—H16121.3
C7—C2—C3118.6 (2)C17—C16—H16121.3
C7—C2—C1115.7 (2)N2—C17—C18121.6 (4)
C3—C2—C1125.3 (2)N2—C17—C16120.3 (3)
C2—C3—C2i123.4 (3)C18—C17—C16118.2 (3)
C2—C3—C4118.28 (16)C17—C18—C19120.7 (3)
C2i—C3—C4118.28 (16)C17—C18—H18119.7
C5i—C4—C5119.3 (3)C19—C18—H18119.7
C5i—C4—C3120.33 (15)N1—C19—C18120.8 (4)
C5—C4—C3120.33 (15)N1—C19—H19119.6
C6—C5—C4118.4 (2)C18—C19—H19119.6
C6—C5—C8121.7 (2)C21—C20—N3121.8 (3)
C4—C5—C8119.9 (2)C21—C20—H20119.1
C5—C6—C7121.2 (2)N3—C20—H20119.1
C5—C6—H6119.4C20—C21—C22120.1 (3)
C7—C6—H6119.4C20—C21—H21120.0
C2—C7—C6122.8 (3)C22—C21—H21120.0
C2—C7—H7118.6N4—C22—C21121.7 (3)
C6—C7—H7118.6N4—C22—C23121.4 (3)
C13—C8—C9118.3 (2)C21—C22—C23116.9 (3)
C13—C8—C5121.7 (2)C24—C23—C22120.0 (3)
C9—C8—C5120.0 (2)C24—C23—H23120.0
C10—C9—C8120.43 (15)C22—C23—H23120.0
C10—C9—C8i120.43 (15)C23—C24—N3121.5 (3)
C8—C9—C8i119.1 (3)C23—C24—H24119.3
C9—C10—C11i117.85 (16)N3—C24—H24119.3
C9—C10—C11117.85 (16)C19—N1—C15119.1 (3)
C11i—C10—C11124.3 (3)C19—N1—H1116.0
C12—C11—C10119.7 (2)C15—N1—H1124.7
C12—C11—C14115.7 (2)C17—N2—H2A120.0
C10—C11—C14124.4 (2)C17—N2—H2B120.0
C11—C12—C13122.0 (2)H2A—N2—H2B120.0
C11—C12—H12119.0C20—N3—C24119.7 (3)
C13—C12—H12119.0C20—N3—H3123.3
C8—C13—C12121.4 (3)C24—N3—H3117.0
C8—C13—H13119.3C22—N4—H4A120.0
C12—C13—H13119.3C22—N4—H4B120.0
O4—C14—O3125.0 (3)H4A—N4—H4B120.0
O4—C14—C11116.9 (3)H5A—O5—H5B121.3
O3—C14—C11117.8 (3)H6A—O6—H6B121.3
C16—C15—N1123.8 (3)H7A—O7—H7B121.3
C16—C15—H15118.1H8A—O8—H8B121.3
O1—C1—C2—C751.5 (3)C8—C9—C10—C113.70 (17)
O2—C1—C2—C7123.3 (3)C8i—C9—C10—C11176.30 (17)
O1—C1—C2—C3136.0 (2)C9—C10—C11—C121.4 (3)
O2—C1—C2—C349.2 (3)C11i—C10—C11—C12178.6 (3)
C7—C2—C3—C2i176.7 (3)C9—C10—C11—C14172.6 (2)
C1—C2—C3—C2i11.0 (2)C11i—C10—C11—C147.4 (2)
C7—C2—C3—C43.3 (3)C10—C11—C12—C134.4 (4)
C1—C2—C3—C4169.0 (2)C14—C11—C12—C13170.1 (3)
C2—C3—C4—C5i177.92 (17)C9—C8—C13—C123.1 (4)
C2i—C3—C4—C5i2.08 (17)C5—C8—C13—C12176.7 (2)
C2—C3—C4—C52.08 (17)C11—C12—C13—C82.1 (5)
C2i—C3—C4—C5177.92 (17)C12—C11—C14—O4113.4 (3)
C5i—C4—C5—C6173.7 (3)C10—C11—C14—O460.9 (4)
C3—C4—C5—C66.3 (3)C12—C11—C14—O361.8 (4)
C5i—C4—C5—C86.16 (16)C10—C11—C14—O3123.9 (3)
C3—C4—C5—C8173.84 (16)N1—C15—C16—C170.4 (5)
C4—C5—C6—C75.2 (4)C15—C16—C17—N2180.0 (3)
C8—C5—C6—C7175.0 (2)C15—C16—C17—C180.6 (5)
C3—C2—C7—C64.7 (4)N2—C17—C18—C19179.7 (4)
C1—C2—C7—C6168.3 (3)C16—C17—C18—C190.3 (5)
C5—C6—C7—C20.3 (4)C17—C18—C19—N10.2 (6)
C6—C5—C8—C1312.5 (4)N3—C20—C21—C220.1 (5)
C4—C5—C8—C13167.7 (2)C20—C21—C22—N4177.2 (3)
C6—C5—C8—C9167.3 (2)C20—C21—C22—C231.3 (5)
C4—C5—C8—C912.6 (3)N4—C22—C23—C24177.2 (3)
C13—C8—C9—C105.9 (3)C21—C22—C23—C241.3 (4)
C5—C8—C9—C10173.84 (16)C22—C23—C24—N30.2 (5)
C13—C8—C9—C8i174.1 (3)C18—C19—N1—C150.3 (5)
C5—C8—C9—C8i6.16 (16)C16—C15—N1—C190.0 (5)
C8—C9—C10—C11i176.30 (17)C21—C20—N3—C241.1 (5)
C8i—C9—C10—C11i3.70 (17)C23—C24—N3—C201.0 (5)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O80.901.772.641 (4)163
N2—H2A···O4ii0.862.493.281 (3)153
N2—H2B···O5iii0.862.082.936 (4)174
N3—H3···O3iv0.901.822.706 (3)170
N4—H4A···O2v0.862.042.895 (3)174
N4—H4B···O6vi0.862.132.930 (4)154
O5—H5A···O7vii0.822.002.791 (3)160
O5—H5B···O40.821.912.720 (3)167
O6—H6A···O7viii0.821.982.797 (4)177
O6—H6B···O10.821.952.766 (3)176
O7—H7A···O3ix0.821.932.742 (4)174
O7—H7B···O10.821.902.704 (3)167
O8—H8A···O2v0.821.882.686 (3)169
O8—H8B···O5x0.822.042.783 (3)151
C18—H18···O4ii0.932.493.318 (4)148
C19—H19···O6iii0.932.543.368 (4)148
Symmetry codes: (ii) x1/2, y+3/2, z+1/2; (iii) x+1, y, z+3/2; (iv) x1, y1, z; (v) x1, y, z; (vi) x1/2, y+1/2, z+1/2; (vii) x, y+1, z+1/2; (viii) x+3/2, y+1/2, z+1; (ix) x+2, y+1, z+1; (x) x1/2, y1/2, z.
Weak ππ intermolecular interactions in (I) (Å, °) top
CgICgJCg–CgαCgIperpCgJperp
Cg3Cg233.778 (2)16.28 (15)-3.1330 (10)3.5850 (16)
Cg23Cg243.730 (2)14.32 (18)3.5028 (16)3.7110 (15)
Cg24Cg243.519 (2)2-3.4796 (15)-3.4796 (15)
CgI and CgJ are the centroids of rings I and J, defined below; α is the dihedral angle between the planes of rings I and J (°), Cg–Cg is the distance between ring centroids (Å); CgIperp is the perpendicular distance of CgI from ring J (Å); CgJperp is the perpendicular distance of CgJ from ring I (Å); Cg3 is the centroid of ring C4/C5/C8/C9/C5i/C8i [symmetry code: (i) -x + 2, y, -z + 3/2; Cg23 is the centroid of ring N1/C15–C19; and Cg24 is the centroid of ring N3/C20–C24.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds