Buy article online - an online subscription or single-article purchase is required to access this article.
research papers
3-(Pyridin-4-yl)acetylacetone (HacacPy) acts as a pyridine-type ligand towards CdII and HgII halides. With CdBr2, the one-dimensional polymer [Cd(μ-Br)2(HacacPy)Cd(μ-Br)2(HacacPy)2]∞ is obtained in which five- and six-coordinated CdII cations alternate in the chain direction. Reaction of HacacPy with HgBr2 results in [Hg(μ-Br)Br(HacacPy)]∞, a polymer in which each HgII centre is tetracoordinated. In both compounds, each metal(II) cation is N-coordinated by at least one HacacPy ligand. Equimolar reaction between these CdII and HgII derivatives, either conducted in ethanol as solvent or via grinding in the solid state, leads to ligand redistribution and the formation of the well-ordered bimetallic polymer catena-poly[[bromidomercury(II)]-μ-bromido-[aquabis[4-hydroxy-3-(pyridin-4-yl)pent-3-en-2-one]cadmium(II)]-di-μ-bromido], [CdHgBr4(C10H11NO2)2(H2O)]n or [{HgBr}(μ-Br){(HacacPy)2Cd(H2O)}(μ-Br)2]∞. HgII and CdII cations alternate in the [100] direction. The HacacPy ligands do not bind to the HgII cations, which are tetracoordinated by three bridging and one terminal bromide ligand. The CdII centres adopt an only slightly distorted octahedral coordination. Three bromide ligands link them in a (2 + 1) pattern to neighbouring HgII atoms; two HacacPy ligands in a cis configuration, acting as N-atom donors, and a terminal aqua ligand complete the coordination sphere. Classical O—HBr hydrogen bonds stabilize the polymeric chain. O—HO hydrogen bonds between aqua H atoms and the uncoordinated carbonyl group of an HacacPy ligand in a neighbouring strand in the c direction link the chains into layers in the (010) plane.