Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
3-(Pyridin-4-yl)acetyl­acetone (HacacPy) acts as a pyridine-type ligand towards CdII and HgII halides. With CdBr2, the one-dimensional polymer [Cd(μ-Br)2(HacacPy)Cd(μ-Br)2(HacacPy)2] is obtained in which five- and six-coordinated CdII cations alternate in the chain direction. Reaction of HacacPy with HgBr2 results in [Hg(μ-Br)Br(HacacPy)], a polymer in which each HgII centre is tetra­coordinated. In both compounds, each metal(II) cation is N-coordinated by at least one HacacPy ligand. Equimolar reaction between these CdII and HgII derivatives, either conducted in ethanol as solvent or via grinding in the solid state, leads to ligand redistribution and the formation of the well-ordered bimetallic polymer catena-poly[[bromido­mercury(II)]-μ-bromido-[aqua­bis­[4-hy­droxy-3-(pyridin-4-yl)pent-3-en-2-one]cadmium(II)]-di-μ-bromido], [CdHgBr4(C10H11NO2)2(H2O)]n or [{HgBr}(μ-Br){(HacacPy)2Cd(H2O)}(μ-Br)2]. HgII and CdII cations alternate in the [100] direction. The HacacPy ligands do not bind to the HgII cations, which are tetra­coordinated by three bridging and one terminal bromide ligand. The CdII centres adopt an only slightly distorted octa­hedral coordination. Three bromide ligands link them in a (2 + 1) pattern to neighbouring HgII atoms; two HacacPy ligands in a cis configuration, acting as N-atom donors, and a terminal aqua ligand complete the coordination sphere. Classical O—H...Br hydrogen bonds stabilize the polymeric chain. O—H...O hydrogen bonds between aqua H atoms and the uncoordinated carbonyl group of an HacacPy ligand in a neighbouring strand in the c direction link the chains into layers in the (010) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617011408/yf3124sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617011408/yf3124Isup2.hkl
Contains datablock I

CCDC reference: 1566341

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXS2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

catena-Poly[[bromidomercury(II)]-µ-bromido-[aquabis[4-hydroxy-3-(pyridin-4-yl)pent-3-en-2-one]cadmium(II)]-di-µ-bromido] top
Crystal data top
[CdHgBr4(C10H11NO2)2(H2O)]F(000) = 1864
Mr = 1005.04Dx = 2.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.3985 (4) ÅCell parameters from 8666 reflections
b = 16.4980 (9) Åθ = 2.5–29.8°
c = 22.9089 (13) ŵ = 12.12 mm1
β = 98.3739 (10)°T = 100 K
V = 2766.5 (3) Å3Block, colourless
Z = 40.25 × 0.25 × 0.22 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
6965 reflections with I > 2σ(I)
Radiation source: microsourceRint = 0.077
/w scansθmax = 30.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.152, Tmax = 0.176k = 2323
41116 measured reflectionsl = 3132
8192 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + 2.393P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
8192 reflectionsΔρmax = 2.46 e Å3
314 parametersΔρmin = 2.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Intensity data were collected on a Bruker D8 goniometer with APEX CCD area detector in ω scan mode using Mo Kα radiation (λ = 0.71073 Å) from an Incoatec microsource with multilayer optics. A temperature of 100 (2) K was maintained with the help of an Oxford Cryostream 700 instrument. Data were integrated with SAINT-Plus (Bruker, 2009) and corrected for absorption by multi-scan methods with SADABS (Bruker, 2008). The structure was solved by direct methods using SHELXS97 (Sheldrick, 2008). Full-matrix least-square refinements based on F2 were performed with SHELXL15 (Sheldrick, 2013; Sheldrick, 2015). Non-hydrogen atoms were assigned anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.68524 (4)0.17451 (2)0.22881 (2)0.01122 (7)
Hg10.22664 (2)0.07782 (2)0.21609 (2)0.01756 (5)
Br10.54434 (6)0.03216 (2)0.27445 (2)0.01554 (9)
Br20.34237 (6)0.20703 (3)0.16500 (2)0.01677 (9)
Br30.02521 (6)0.14092 (3)0.29030 (2)0.01538 (9)
Br40.06595 (6)0.03192 (3)0.15085 (2)0.02262 (11)
O10.4826 (4)0.42594 (19)0.54933 (13)0.0187 (7)
O20.1736 (4)0.3680 (2)0.51344 (14)0.0196 (7)
H2A0.244 (6)0.405 (2)0.527 (2)0.024*
O31.2651 (4)0.53508 (18)0.04863 (13)0.0161 (6)
O40.9732 (4)0.60551 (18)0.04417 (14)0.0171 (6)
H4A1.078 (4)0.587 (3)0.041 (2)0.021*
O50.7288 (4)0.0970 (2)0.14901 (14)0.0215 (7)
H5D0.812 (6)0.062 (3)0.151 (2)0.026*
H5E0.646 (6)0.085 (3)0.1214 (18)0.026*
N10.6150 (5)0.2469 (2)0.30959 (15)0.0138 (7)
N20.8038 (5)0.2825 (2)0.18219 (16)0.0153 (7)
C10.7395 (6)0.4108 (3)0.4984 (2)0.0216 (10)
H1A0.79010.45490.52450.032*
H1B0.75020.42460.45740.032*
H1C0.80730.36070.50940.032*
C20.5425 (6)0.3988 (3)0.50437 (18)0.0150 (8)
C30.4233 (6)0.3552 (2)0.45993 (18)0.0130 (8)
C40.2434 (6)0.3410 (3)0.46707 (19)0.0148 (8)
C50.1121 (6)0.2926 (3)0.4263 (2)0.0190 (9)
H5A0.09260.24010.44440.028*
H5B0.16110.28390.38930.028*
H5C0.00430.32170.41820.028*
C60.4950 (6)0.3192 (3)0.40736 (18)0.0140 (8)
C70.4664 (7)0.3558 (3)0.35250 (19)0.0196 (9)
H70.40610.40670.34740.023*
C80.5268 (7)0.3175 (3)0.30474 (19)0.0192 (9)
H80.50410.34270.26710.023*
C90.6482 (6)0.2128 (3)0.36329 (18)0.0178 (9)
H90.71350.16310.36760.021*
C100.5915 (6)0.2471 (3)0.41226 (18)0.0159 (8)
H100.61870.22130.44960.019*
C111.3212 (6)0.4032 (3)0.0893 (2)0.0202 (9)
H11A1.42280.40590.06630.030*
H11B1.24980.35400.07880.030*
H11C1.36940.40220.13140.030*
C121.2011 (6)0.4761 (3)0.07605 (18)0.0142 (8)
C131.0228 (6)0.4790 (2)0.09139 (17)0.0126 (8)
C140.9127 (6)0.5463 (3)0.07306 (18)0.0146 (8)
C150.7178 (6)0.5540 (3)0.0834 (2)0.0186 (9)
H15A0.68870.61120.08860.028*
H15B0.70050.52360.11900.028*
H15C0.63690.53200.04940.028*
C160.9488 (6)0.4107 (3)0.12313 (18)0.0132 (8)
C170.9903 (6)0.4013 (3)0.18402 (19)0.0185 (9)
H171.06920.43880.20660.022*
C180.9170 (6)0.3377 (3)0.21124 (19)0.0183 (9)
H180.94770.33230.25280.022*
C190.7655 (7)0.2911 (3)0.1238 (2)0.0256 (11)
H190.68820.25220.10220.031*
C200.8325 (8)0.3536 (3)0.0932 (2)0.0280 (12)
H200.79910.35750.05170.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01266 (14)0.01237 (14)0.00929 (13)0.00074 (11)0.00379 (11)0.00038 (10)
Hg10.01380 (9)0.01914 (9)0.01978 (9)0.00108 (6)0.00262 (7)0.00211 (6)
Br10.0132 (2)0.01363 (19)0.0191 (2)0.00017 (15)0.00026 (16)0.00325 (15)
Br20.0140 (2)0.0188 (2)0.0174 (2)0.00166 (16)0.00197 (16)0.00562 (16)
Br30.01242 (19)0.0220 (2)0.01179 (19)0.00235 (16)0.00190 (15)0.00032 (15)
Br40.0205 (2)0.0214 (2)0.0244 (2)0.00285 (18)0.00176 (18)0.00940 (18)
O10.0154 (15)0.0303 (18)0.0109 (14)0.0003 (13)0.0036 (12)0.0047 (12)
O20.0132 (15)0.0296 (19)0.0167 (16)0.0016 (13)0.0042 (12)0.0026 (13)
O30.0164 (15)0.0186 (15)0.0141 (14)0.0055 (12)0.0049 (12)0.0011 (12)
O40.0209 (16)0.0120 (14)0.0195 (16)0.0009 (13)0.0064 (13)0.0022 (12)
O50.0157 (16)0.0338 (19)0.0138 (15)0.0110 (14)0.0016 (13)0.0081 (14)
N10.0162 (18)0.0157 (17)0.0101 (16)0.0008 (14)0.0037 (13)0.0008 (13)
N20.0141 (17)0.0181 (18)0.0144 (17)0.0032 (14)0.0038 (14)0.0015 (14)
C10.013 (2)0.032 (3)0.020 (2)0.0016 (18)0.0034 (18)0.0038 (19)
C20.018 (2)0.015 (2)0.0119 (19)0.0009 (17)0.0030 (16)0.0002 (16)
C30.015 (2)0.0147 (19)0.0099 (18)0.0017 (16)0.0046 (15)0.0013 (15)
C40.015 (2)0.015 (2)0.015 (2)0.0032 (16)0.0010 (16)0.0009 (16)
C50.016 (2)0.017 (2)0.023 (2)0.0047 (17)0.0014 (18)0.0014 (17)
C60.0112 (19)0.016 (2)0.015 (2)0.0028 (16)0.0046 (16)0.0015 (16)
C70.028 (2)0.017 (2)0.014 (2)0.0071 (19)0.0071 (18)0.0016 (16)
C80.032 (3)0.016 (2)0.011 (2)0.0028 (18)0.0074 (18)0.0032 (16)
C90.021 (2)0.019 (2)0.013 (2)0.0052 (18)0.0009 (17)0.0013 (16)
C100.020 (2)0.019 (2)0.0093 (19)0.0045 (17)0.0025 (16)0.0016 (16)
C110.018 (2)0.019 (2)0.024 (2)0.0012 (18)0.0047 (18)0.0005 (18)
C120.015 (2)0.015 (2)0.0122 (19)0.0017 (16)0.0010 (16)0.0045 (15)
C130.0128 (19)0.0156 (19)0.0092 (18)0.0048 (16)0.0007 (15)0.0006 (15)
C140.016 (2)0.016 (2)0.0120 (19)0.0016 (17)0.0037 (16)0.0029 (16)
C150.016 (2)0.021 (2)0.019 (2)0.0008 (18)0.0022 (17)0.0034 (18)
C160.0113 (19)0.016 (2)0.0134 (19)0.0003 (15)0.0051 (16)0.0002 (15)
C170.026 (2)0.015 (2)0.013 (2)0.0051 (18)0.0005 (18)0.0016 (16)
C180.024 (2)0.017 (2)0.013 (2)0.0061 (18)0.0012 (17)0.0018 (16)
C190.032 (3)0.032 (3)0.013 (2)0.016 (2)0.0004 (19)0.0013 (19)
C200.043 (3)0.029 (3)0.011 (2)0.018 (2)0.001 (2)0.0019 (18)
Geometric parameters (Å, º) top
Cd1—O52.292 (3)C5—H5A0.9800
Cd1—N22.315 (4)C5—H5B0.9800
Cd1—N12.324 (3)C5—H5C0.9800
Cd1—Br3i2.7542 (5)C6—C101.382 (6)
Cd1—Br22.7892 (5)C6—C71.383 (6)
Cd1—Br12.8306 (5)C7—C81.392 (6)
Hg1—Br42.5312 (5)C7—H70.9500
Hg1—Br32.6330 (5)C8—H80.9500
Hg1—Br22.6342 (5)C9—C101.376 (6)
Hg1—Br12.6390 (4)C9—H90.9500
Br3—Cd1ii2.7542 (5)C10—H100.9500
O1—C21.261 (5)C11—C121.500 (6)
O2—C41.324 (5)C11—H11A0.9800
O2—H2A0.829 (19)C11—H11B0.9800
O3—C121.285 (5)C11—H11C0.9800
O4—C141.295 (5)C12—C131.414 (6)
O4—H4A0.843 (19)C13—C141.405 (6)
O5—H5D0.846 (19)C13—C161.488 (6)
O5—H5E0.838 (19)C14—C151.500 (6)
N1—C81.332 (5)C15—H15A0.9800
N1—C91.342 (5)C15—H15B0.9800
N2—C191.335 (5)C15—H15C0.9800
N2—C181.345 (5)C16—C201.388 (6)
C1—C21.497 (6)C16—C171.393 (6)
C1—H1A0.9800C17—C181.372 (6)
C1—H1B0.9800C17—H170.9500
C1—H1C0.9800C18—H180.9500
C2—C31.438 (6)C19—C201.378 (6)
C3—C41.384 (6)C19—H190.9500
C3—C61.507 (6)C20—H200.9500
C4—C51.480 (6)
O5—Cd1—N287.41 (13)H5A—C5—H5C109.5
O5—Cd1—N1174.61 (13)H5B—C5—H5C109.5
N2—Cd1—N196.64 (12)C10—C6—C7117.3 (4)
O5—Cd1—Br3i94.12 (8)C10—C6—C3120.8 (4)
N2—Cd1—Br3i90.67 (9)C7—C6—C3121.9 (4)
N1—Cd1—Br3i89.41 (9)C6—C7—C8119.5 (4)
O5—Cd1—Br284.95 (8)C6—C7—H7120.3
N2—Cd1—Br289.25 (9)C8—C7—H7120.3
N1—Cd1—Br291.53 (9)N1—C8—C7122.7 (4)
Br3i—Cd1—Br2179.063 (17)N1—C8—H8118.6
O5—Cd1—Br186.21 (9)C7—C8—H8118.6
N2—Cd1—Br1173.61 (9)N1—C9—C10122.6 (4)
N1—Cd1—Br189.72 (9)N1—C9—H9118.7
Br3i—Cd1—Br190.128 (15)C10—C9—H9118.7
Br2—Cd1—Br189.851 (15)C9—C10—C6120.2 (4)
Br4—Hg1—Br3113.746 (16)C9—C10—H10119.9
Br4—Hg1—Br2118.138 (17)C6—C10—H10119.9
Br3—Hg1—Br2102.595 (15)C12—C11—H11A109.5
Br4—Hg1—Br1113.707 (15)C12—C11—H11B109.5
Br3—Hg1—Br1109.382 (15)H11A—C11—H11B109.5
Br2—Hg1—Br197.638 (14)C12—C11—H11C109.5
Hg1—Br1—Cd185.690 (14)H11A—C11—H11C109.5
Hg1—Br2—Cd186.626 (14)H11B—C11—H11C109.5
Hg1—Br3—Cd1ii108.057 (16)O3—C12—C13121.3 (4)
C4—O2—H2A104 (4)O3—C12—C11117.1 (4)
C14—O4—H4A99 (3)C13—C12—C11121.5 (4)
Cd1—O5—H5D122 (4)C14—C13—C12118.2 (4)
Cd1—O5—H5E124 (4)C14—C13—C16120.4 (4)
H5D—O5—H5E109 (5)C12—C13—C16121.3 (4)
C8—N1—C9117.7 (4)O4—C14—C13121.4 (4)
C8—N1—Cd1123.1 (3)O4—C14—C15115.4 (4)
C9—N1—Cd1118.8 (3)C13—C14—C15123.2 (4)
C19—N2—C18116.8 (4)C14—C15—H15A109.5
C19—N2—Cd1120.3 (3)C14—C15—H15B109.5
C18—N2—Cd1122.9 (3)H15A—C15—H15B109.5
C2—C1—H1A109.5C14—C15—H15C109.5
C2—C1—H1B109.5H15A—C15—H15C109.5
H1A—C1—H1B109.5H15B—C15—H15C109.5
C2—C1—H1C109.5C20—C16—C17116.7 (4)
H1A—C1—H1C109.5C20—C16—C13121.2 (4)
H1B—C1—H1C109.5C17—C16—C13122.0 (4)
O1—C2—C3120.2 (4)C18—C17—C16119.7 (4)
O1—C2—C1119.3 (4)C18—C17—H17120.1
C3—C2—C1120.4 (4)C16—C17—H17120.1
C4—C3—C2120.1 (4)N2—C18—C17123.5 (4)
C4—C3—C6118.9 (4)N2—C18—H18118.3
C2—C3—C6120.8 (4)C17—C18—H18118.3
O2—C4—C3122.1 (4)N2—C19—C20123.3 (4)
O2—C4—C5113.0 (4)N2—C19—H19118.4
C3—C4—C5124.8 (4)C20—C19—H19118.4
C4—C5—H5A109.5C19—C20—C16120.0 (4)
C4—C5—H5B109.5C19—C20—H20120.0
H5A—C5—H5B109.5C16—C20—H20120.0
C4—C5—H5C109.5
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.83 (2)1.80 (4)2.504 (4)141 (4)
O4—H4A···O30.84 (2)1.62 (4)2.441 (4)165 (5)
O5—H5D···Br4i0.85 (2)2.44 (5)3.274 (3)175 (4)
O5—H5E···O1iii0.84 (2)1.91 (4)2.732 (4)168 (4)
Symmetry codes: (i) x+1, y, z; (iii) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds