Buy article online - an online subscription or single-article purchase is required to access this article.
Synthetic biologists demonstrate their command over natural biology by reproducing the behaviors of natural living systems on synthetic biomolecular platforms. For nucleic acids, this is being done stepwise, first by adding replicable nucleotides to DNA, and then removing its standard nucleotides. This challenge has been met in vitro with `six-letter' DNA and RNA, where the Watson–Crick pairing `concept' is recruited to increase the number of independently replicable nucleotides from four to six. The two nucleobases most successfully added so far are Z and P, which present a donor–donor–acceptor and an acceptor–acceptor–donor pattern, respectively. This pair of nucleobases are part of an `artificially expanded genetic information system' (AEGIS). The Z nucleobase has been already crystallized, characterized, and published in this journal [Matsuura et al. (2016). Acta Cryst. C72, 952–959]. More recently, variants of Taq polymerase have been crystallized with the pair P:Z trapped in the active site. Here we report the crystal structure of the nucleobase 2-aminoimidazo[1,2-a][1,3,5]triazin-4-one (trivially named P) as the monohydrate, C5H5N5O·H2O. The nucleobase P was crystallized from water and characterized by X-ray diffraction. Interestingly, the crystal structure shows two tautomers of P packed in a Watson–Crick fashion that cocrystallized in a 1:1 ratio.
Supporting information
CCDC reference: 1881877
Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b) and ShelXle (Hübschle et
al.,
2011); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).
2-Aminoimidazo[1,2-
a][1,3,5]triazin-4(3
H)-one monohydrate
top
Crystal data top
C5H5N5O·H2O | F(000) = 704 |
Mr = 169.16 | Dx = 1.663 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.357 (13) Å | Cell parameters from 9591 reflections |
b = 3.712 (3) Å | θ = 2.6–26.3° |
c = 22.723 (19) Å | µ = 0.13 mm−1 |
β = 101.72 (3)° | T = 100 K |
V = 1350.9 (19) Å3 | Very thin needle, colourless |
Z = 8 | 0.40 × 0.10 × 0.10 mm |
Data collection top
Bruker D8 VENTURE diffractometer | 1086 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.089 |
φ and ω scans | θmax = 26.4°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −20→20 |
| k = −4→4 |
33557 measured reflections | l = −28→28 |
1397 independent reflections | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.166 | w = 1/[σ2(Fo2) + (0.0742P)2 + 4.2384P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
1397 reflections | Δρmax = 0.27 e Å−3 |
112 parameters | Δρmin = −0.56 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was solved and refined using the Bruker SHELXTL software
package (Bruker, 2014; Hübschle et al., 2011; Sheldrick, 2015b), in
the space group C2/c, with Z = 8 for the formula unit,
C5H7N5O2. The final anisotropic full-matrix least-squares refinement
on F2 with 116 variables converged at R1 = 7.14%, for the
observed data and wR2 = 19.41% for all data. The goodness-of-fit was
1.089. The largest peak in the final difference electron density was
0.269 e Å-3 and the largest hole was -0.562 e Å-3 with an r.m.s.
deviation of 0.086 e Å-3. On the basis of the final model, the calculated
density was 1.663 Mg m-3 and F(000) = 704 e. All H atoms bound to C atoms were positioned geometrically ( C—H = 0.93/1.00 Å) and allowed to ride with Uiso(H)= 1.2/1.5Ueq(C). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
O2 | 0.6958 (3) | 0.6401 (14) | 0.23204 (16) | 0.0541 (13) | 0.75 |
H2Y | 0.730670 | 0.854966 | 0.242044 | 0.081* | 0.75 |
H2X | 0.667110 | 0.607746 | 0.265584 | 0.081* | 0.75 |
O2' | 0.7846 (9) | 0.953 (4) | 0.2572 (6) | 0.0541 (13) | 0.25 |
H2W | 0.774086 | 1.213329 | 0.255700 | 0.081* | 0.25 |
H2Z | 0.752094 | 0.765008 | 0.232740 | 0.081* | 0.25 |
O1 | 0.61373 (11) | 0.3616 (5) | 0.51107 (8) | 0.0169 (5) | |
N1 | 0.64639 (13) | 0.5857 (6) | 0.34214 (9) | 0.0136 (5) | |
N2 | 0.77095 (14) | 0.8537 (6) | 0.38555 (10) | 0.0156 (6) | |
H2A | 0.780006 | 0.902557 | 0.349521 | 0.019* | |
H2B | 0.807740 | 0.918339 | 0.417693 | 0.019* | |
C9 | 0.57886 (16) | 0.4099 (7) | 0.35240 (11) | 0.0123 (6) | |
N8 | 0.51426 (13) | 0.2871 (6) | 0.31270 (10) | 0.0152 (5) | |
H8 | 0.506724 | 0.304919 | 0.273345 | 0.018* | 0.5 |
C7 | 0.46028 (17) | 0.1238 (8) | 0.34504 (12) | 0.0164 (6) | |
H7 | 0.408713 | 0.013066 | 0.327525 | 0.020* | |
C6 | 0.49153 (16) | 0.1454 (8) | 0.40446 (12) | 0.0156 (6) | |
H6 | 0.467115 | 0.056609 | 0.436123 | 0.019* | |
N3 | 0.69230 (13) | 0.6152 (6) | 0.44912 (9) | 0.0140 (5) | |
H3 | 0.730825 | 0.692018 | 0.479352 | 0.017* | 0.5 |
C4 | 0.62514 (16) | 0.4336 (7) | 0.46086 (12) | 0.0132 (6) | |
N5 | 0.56777 (13) | 0.3267 (6) | 0.40962 (9) | 0.0127 (5) | |
C2 | 0.70163 (16) | 0.6820 (7) | 0.39144 (11) | 0.0124 (6) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O2 | 0.050 (2) | 0.087 (4) | 0.0280 (18) | 0.019 (2) | 0.0143 (17) | 0.0103 (19) |
O2' | 0.050 (2) | 0.087 (4) | 0.0280 (18) | 0.019 (2) | 0.0143 (17) | 0.0103 (19) |
O1 | 0.0200 (10) | 0.0225 (11) | 0.0088 (9) | −0.0018 (8) | 0.0047 (7) | 0.0009 (8) |
N1 | 0.0149 (11) | 0.0170 (12) | 0.0082 (11) | 0.0019 (9) | 0.0007 (9) | 0.0000 (9) |
N2 | 0.0163 (12) | 0.0230 (13) | 0.0076 (11) | −0.0035 (10) | 0.0025 (9) | 0.0007 (9) |
C9 | 0.0143 (13) | 0.0118 (13) | 0.0107 (13) | 0.0045 (10) | 0.0021 (10) | −0.0002 (10) |
N8 | 0.0129 (11) | 0.0185 (12) | 0.0135 (11) | 0.0021 (9) | 0.0006 (9) | −0.0022 (9) |
C7 | 0.0143 (13) | 0.0166 (14) | 0.0178 (14) | 0.0019 (11) | 0.0020 (11) | −0.0023 (11) |
C6 | 0.0148 (13) | 0.0163 (14) | 0.0170 (14) | 0.0008 (11) | 0.0063 (11) | −0.0001 (11) |
N3 | 0.0136 (11) | 0.0183 (12) | 0.0096 (11) | 0.0010 (9) | 0.0014 (9) | 0.0005 (9) |
C4 | 0.0146 (13) | 0.0137 (13) | 0.0108 (13) | 0.0046 (11) | 0.0015 (10) | −0.0019 (10) |
N5 | 0.0129 (11) | 0.0153 (12) | 0.0096 (11) | 0.0024 (9) | 0.0016 (9) | 0.0009 (9) |
C2 | 0.0144 (13) | 0.0126 (13) | 0.0104 (13) | 0.0046 (11) | 0.0029 (10) | 0.0012 (10) |
Geometric parameters (Å, º) top
O2—H2Y | 0.9800 | C9—N5 | 1.384 (3) |
O2—H2X | 0.9802 | N8—C7 | 1.397 (4) |
O2'—H2W | 0.9800 | N8—H8 | 0.8800 |
O2'—H2Z | 0.9800 | C7—C6 | 1.345 (4) |
O1—C4 | 1.223 (3) | C7—H7 | 0.9500 |
N1—C2 | 1.337 (3) | C6—N5 | 1.401 (4) |
N1—C9 | 1.343 (4) | C6—H6 | 0.9500 |
N2—C2 | 1.331 (4) | N3—C4 | 1.361 (4) |
N2—H2A | 0.8800 | N3—C2 | 1.373 (3) |
N2—H2B | 0.8800 | N3—H3 | 0.8800 |
C9—N8 | 1.323 (4) | C4—N5 | 1.396 (3) |
| | | |
H2Y—O2—H2X | 105.5 | C7—C6—N5 | 105.2 (2) |
H2W—O2'—H2Z | 127.7 | C7—C6—H6 | 127.4 |
C2—N1—C9 | 115.1 (2) | N5—C6—H6 | 127.4 |
C2—N2—H2A | 120.0 | C4—N3—C2 | 121.8 (2) |
C2—N2—H2B | 120.0 | C4—N3—H3 | 119.1 |
H2A—N2—H2B | 120.0 | C2—N3—H3 | 119.1 |
N8—C9—N1 | 128.3 (2) | O1—C4—N3 | 125.0 (2) |
N8—C9—N5 | 108.9 (2) | O1—C4—N5 | 120.8 (2) |
N1—C9—N5 | 122.7 (2) | N3—C4—N5 | 114.2 (2) |
C9—N8—C7 | 107.1 (2) | C9—N5—C4 | 121.7 (2) |
C9—N8—H8 | 126.5 | C9—N5—C6 | 108.2 (2) |
C7—N8—H8 | 126.5 | C4—N5—C6 | 130.0 (2) |
C6—C7—N8 | 110.5 (2) | N2—C2—N1 | 119.2 (2) |
C6—C7—H7 | 124.7 | N2—C2—N3 | 116.4 (2) |
N8—C7—H7 | 124.7 | N1—C2—N3 | 124.4 (2) |
| | | |
C2—N1—C9—N8 | 179.2 (3) | N1—C9—N5—C6 | 179.9 (2) |
C2—N1—C9—N5 | −1.4 (4) | O1—C4—N5—C9 | 179.0 (2) |
N1—C9—N8—C7 | 179.9 (3) | N3—C4—N5—C9 | −1.5 (4) |
N5—C9—N8—C7 | 0.4 (3) | O1—C4—N5—C6 | 2.3 (4) |
C9—N8—C7—C6 | −0.1 (3) | N3—C4—N5—C6 | −178.2 (2) |
N8—C7—C6—N5 | −0.2 (3) | C7—C6—N5—C9 | 0.5 (3) |
C2—N3—C4—O1 | 179.0 (2) | C7—C6—N5—C4 | 177.5 (3) |
C2—N3—C4—N5 | −0.4 (4) | C9—N1—C2—N2 | 179.2 (2) |
N8—C9—N5—C4 | −177.9 (2) | C9—N1—C2—N3 | −0.6 (4) |
N1—C9—N5—C4 | 2.5 (4) | C4—N3—C2—N2 | −178.3 (2) |
N8—C9—N5—C6 | −0.6 (3) | C4—N3—C2—N1 | 1.6 (4) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2Y···O2i | 0.98 | 1.62 | 2.582 (6) | 166 |
O2—H2X···N1 | 0.98 | 1.84 | 2.788 (5) | 162 |
O2′—H2W···O2′i | 0.98 | 1.30 | 2.164 (15) | 143 |
O2′—H2Z···O2′ii | 0.98 | 1.34 | 2.164 (15) | 137 |
N3—H3···N3iii | 0.88 | 1.98 | 2.853 (5) | 174 |
N2—H2A···O2i | 0.88 | 2.16 | 3.026 (5) | 168 |
N2—H2A···O2′ | 0.88 | 2.12 | 2.993 (12) | 170 |
N2—H2B···O1iii | 0.88 | 2.02 | 2.897 (3) | 172 |
N8—H8···N8iv | 0.88 | 1.92 | 2.792 (5) | 173 |
C7—H7···O2v | 0.95 | 2.39 | 3.315 (5) | 163 |
C6—H6···O1vi | 0.95 | 2.50 | 3.396 (4) | 158 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, −y+3/2, −z+1; (iv) −x+1, y, −z+1/2; (v) −x+1, y−1, −z+1/2; (vi) −x+1, −y, −z+1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.