Buy article online - an online subscription or single-article purchase is required to access this article.
Zirconium tetrachloride, ZrCl
4, is a strategic material with wide-ranging applications. Until now, only one crystallographic study on ZrCl
4 has been reported [Krebs (1970).
Z. Anorg. Allg. Chem. 378, 263–272] and that was more than 40 years ago. The compound used for the previous determination was prepared from ZrO
2 and Cl
2–CCl
4, and single-crystal X-ray diffraction (SCXRD) studies on ZrCl
4 obtained from Zr metal have not yet been reported. In this context, we prepared ZrCl
4 from the reaction of Zr metal and Cl
2 gas in a sealed tube and investigated its structure at 100, 150, 200, 250, and 300 K. At 300 K, the SCXRD analysis indicates that ZrCl
4 crystallizes in the orthorhombic space group
Pca2
1 [
a = 6.262 (9),
b = 7.402 (11),
c = 12.039 (17) Å, and
V = 558.0 (14) Å
3] and consists of infinite zigzag chains of edge-sharing ZrCl
6 octahedra. This chain motif is similar to that observed previously in ZrCl
4, but the structural parameters and space group differ. In the temperature range 100–300 K, no phase transformation was identified, while elongation of intra-chain Zr
Zr [3.950 (1) Å at 100 K and 3.968 (5) Å at 300 K] and inter-chain Cl
Cl [3.630 (3) Å at 100 K and 3.687 (9) Å at 300 K] distances occurred.
Supporting information
CCDC references: 1822239; 1822238; 1822237; 1822236; 1822235
For all structures, data collection: BIS (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: APEX3 (Bruker, 2016).
Zirconium tetrachloride (SMB_ZrCl4_b_100K)
top
Crystal data top
ZrCl4 | Dx = 2.849 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 2790 reflections |
a = 6.2199 (9) Å | θ = 2.8–27.9° |
b = 7.3301 (10) Å | µ = 3.82 mm−1 |
c = 11.9153 (16) Å | T = 100 K |
V = 543.25 (13) Å3 | Rectangular box, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 | |
Data collection top
Bruker D8 QUEST diffractometer | 924 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 877 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.050 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 3.4° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.63, Tmax = 0.81 | l = −14→14 |
5240 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.084 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 2.08 e Å−3 |
924 reflections | Δρmin = −0.53 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 394 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.05 (15) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collections were carried out on a Bruker APEXII system equipped with
graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow
Oxford Cryostream-700 was used to control the temperature. Data collections
were carried out in the order 100, 150, 200, 250, and 300 K on the same
crystal. Data reduction and cell refinement were performed using SAINT
and the APEX3 suite (Bruker, 2016). The structure was solved with
SHELXT (Sheldrick, 2015a) and an absorption correction was performed
with SADABS (Sheldrick, 1999). Structure refinements against F2
were carried out using the SHELXL refinement package in APEX3
(Bruker, 2016). The apparent space group for the structure at all five
temperatures was suggested to be orthorhombic Pca21 by XPREP,
which differs from that previously described (i.e. monoclinic,
P2/c (Krebs, 1970). The refinement yielded R factors
varying from 0.0345 at 100 K to 0.0534 at 300 K. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Zr1 | 0.42265 (13) | 0.33389 (11) | 0.49994 (14) | 0.0170 (3) | |
Cl1 | 0.5727 (4) | 0.1350 (3) | 0.6288 (2) | 0.0221 (6) | |
Cl2 | 0.0920 (4) | 0.3893 (3) | 0.61382 (19) | 0.0189 (6) | |
Cl3 | 0.2781 (4) | 0.1303 (3) | 0.3723 (2) | 0.0226 (6) | |
Cl4 | 0.7506 (4) | 0.3924 (3) | 0.38424 (18) | 0.0194 (6) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Zr1 | 0.0132 (4) | 0.0184 (5) | 0.0193 (5) | 0.0001 (4) | 0.0003 (4) | 0.0003 (6) |
Cl1 | 0.0211 (13) | 0.0236 (13) | 0.0217 (13) | 0.0026 (10) | −0.0024 (10) | 0.0043 (10) |
Cl2 | 0.0150 (12) | 0.0217 (12) | 0.0200 (14) | 0.0014 (9) | 0.0012 (9) | 0.0022 (10) |
Cl3 | 0.0208 (12) | 0.0238 (12) | 0.0231 (14) | −0.0017 (10) | −0.0020 (12) | −0.0022 (10) |
Cl4 | 0.0153 (11) | 0.0219 (12) | 0.0211 (14) | −0.0019 (10) | 0.0017 (11) | −0.0009 (10) |
Geometric parameters (Å, º) top
Zr1—Cl3 | 2.313 (3) | Zr1—Cl2i | 2.659 (3) |
Zr1—Cl1 | 2.314 (3) | Zr1—Cl4ii | 2.659 (2) |
Zr1—Cl2 | 2.497 (3) | Cl2—Zr1ii | 2.659 (3) |
Zr1—Cl4 | 2.499 (2) | Cl4—Zr1i | 2.659 (2) |
| | | |
Cl3—Zr1—Cl1 | 100.75 (9) | Cl4—Zr1—Cl2i | 80.05 (7) |
Cl3—Zr1—Cl2 | 98.17 (9) | Cl3—Zr1—Cl4ii | 89.40 (9) |
Cl1—Zr1—Cl2 | 94.25 (10) | Cl1—Zr1—Cl4ii | 169.03 (11) |
Cl3—Zr1—Cl4 | 93.74 (10) | Cl2—Zr1—Cl4ii | 80.08 (7) |
Cl1—Zr1—Cl4 | 98.34 (9) | Cl4—Zr1—Cl4ii | 85.01 (7) |
Cl2—Zr1—Cl4 | 160.75 (9) | Cl2i—Zr1—Cl4ii | 81.26 (7) |
Cl3—Zr1—Cl2i | 169.16 (11) | Zr1—Cl2—Zr1ii | 99.96 (9) |
Cl1—Zr1—Cl2i | 89.00 (10) | Zr1—Cl4—Zr1i | 99.90 (9) |
Cl2—Zr1—Cl2i | 85.69 (8) | | |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
Zirconium tetrachloride (SMB_ZrCl4a_a_150K)
top
Crystal data top
ZrCl4 | Dx = 2.829 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 2581 reflections |
a = 6.2311 (8) Å | θ = 2.8–27.9° |
b = 7.3497 (10) Å | µ = 3.79 mm−1 |
c = 11.9462 (15) Å | T = 150 K |
V = 547.10 (12) Å3 | Rectangular plate, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 | |
Data collection top
Bruker D8 QUEST diffractometer | 906 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 853 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.051 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 6.5° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.64, Tmax = 0.78 | l = −14→14 |
5124 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0514P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 2.08 e Å−3 |
906 reflections | Δρmin = −0.52 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 374 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.03 (14) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. Data collections were carried out on a Bruker APEXII system equipped with
graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow
Oxford Cryostream-700 was used to control the temperature. Data collections
were carried out in the order 100, 150, 200, 250, and 300 K on the same
crystal. Data reduction and cell refinement were performed using SAINT
and the APEX3 suite (Bruker, 2016). The structure was solved with
SHELXT (Sheldrick, 2015a) and an absorption correction was performed
with SADABS (Sheldrick, 1999). Structure refinements against F2
were carried out using the SHELXL refinement package in APEX3
(Bruker, 2016). The apparent space group for the structure at all five
temperatures was suggested to be orthorhombic Pca21 by XPREP,
which differs from that previously described (i.e. monoclinic,
P2/c (Krebs, 1970). The refinement yielded R factors
varying from 0.0345 at 100 K to 0.0534 at 300 K. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Zr1 | 0.42306 (12) | 0.33410 (10) | 0.50001 (13) | 0.0191 (3) | |
Cl1 | 0.5726 (4) | 0.1359 (3) | 0.6287 (2) | 0.0265 (6) | |
Cl2 | 0.0927 (4) | 0.3896 (3) | 0.61336 (18) | 0.0211 (6) | |
Cl3 | 0.2797 (4) | 0.1309 (3) | 0.3725 (2) | 0.0276 (6) | |
Cl4 | 0.7507 (4) | 0.3926 (3) | 0.38452 (18) | 0.0229 (6) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Zr1 | 0.0150 (4) | 0.0208 (5) | 0.0213 (5) | 0.0002 (4) | 0.0005 (4) | 0.0006 (5) |
Cl1 | 0.0252 (14) | 0.0281 (13) | 0.0262 (14) | 0.0041 (10) | −0.0028 (10) | 0.0042 (11) |
Cl2 | 0.0161 (12) | 0.0250 (12) | 0.0222 (13) | 0.0024 (9) | 0.0024 (9) | 0.0035 (10) |
Cl3 | 0.0273 (12) | 0.0279 (12) | 0.0277 (14) | −0.0030 (11) | −0.0037 (13) | −0.0040 (10) |
Cl4 | 0.0184 (11) | 0.0254 (11) | 0.0247 (14) | −0.0022 (10) | 0.0018 (11) | −0.0029 (10) |
Geometric parameters (Å, º) top
Zr1—Cl3 | 2.313 (3) | Zr1—Cl2i | 2.660 (3) |
Zr1—Cl1 | 2.314 (3) | Zr1—Cl4ii | 2.663 (2) |
Zr1—Cl2 | 2.497 (2) | Cl2—Zr1ii | 2.660 (3) |
Zr1—Cl4 | 2.501 (2) | Cl4—Zr1i | 2.663 (2) |
| | | |
Cl3—Zr1—Cl1 | 100.76 (9) | Cl4—Zr1—Cl2i | 79.93 (7) |
Cl3—Zr1—Cl2 | 98.31 (9) | Cl3—Zr1—Cl4ii | 89.43 (10) |
Cl1—Zr1—Cl2 | 94.27 (9) | Cl1—Zr1—Cl4ii | 168.97 (10) |
Cl3—Zr1—Cl4 | 93.60 (10) | Cl2—Zr1—Cl4ii | 79.94 (7) |
Cl1—Zr1—Cl4 | 98.39 (9) | Cl4—Zr1—Cl4ii | 85.05 (7) |
Cl2—Zr1—Cl4 | 160.69 (9) | Cl2i—Zr1—Cl4ii | 81.27 (7) |
Cl3—Zr1—Cl2i | 169.05 (11) | Zr1—Cl2—Zr1ii | 100.15 (9) |
Cl1—Zr1—Cl2i | 88.99 (9) | Zr1—Cl4—Zr1i | 99.96 (9) |
Cl2—Zr1—Cl2i | 85.81 (8) | | |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
Zirconium tetrachloride (SMB_ZrCl4_b_200K)
top
Crystal data top
ZrCl4 | Dx = 2.813 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 2383 reflections |
a = 6.2389 (8) Å | θ = 2.8–28.4° |
b = 7.3667 (10) Å | µ = 3.77 mm−1 |
c = 11.9735 (16) Å | T = 200 K |
V = 550.30 (13) Å3 | Rectangular box, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 | |
Data collection top
Bruker D8 QUEST diffractometer | 934 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 864 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.049 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 3.4° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.64, Tmax = 0.82 | l = −14→14 |
5292 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3988P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 2.11 e Å−3 |
934 reflections | Δρmin = −0.54 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 386 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.18 (17) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collections were carried out on a Bruker APEXII system equipped with
graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow
Oxford Cryostream-700 was used to control the temperature. Data collections
were carried out in the order 100, 150, 200, 250, and 300 K on the same
crystal. Data reduction and cell refinement were performed using SAINT
and the APEX3 suite (Bruker, 2016). The structure was solved with
SHELXT (Sheldrick, 2015a) and an absorption correction was performed
with SADABS (Sheldrick, 1999). Structure refinements against F2
were carried out using the SHELXL refinement package in APEX3
(Bruker, 2016). The apparent space group for the structure at all five
temperatures was suggested to be orthorhombic Pca21 by XPREP,
which differs from that previously described (i.e. monoclinic,
P2/c (Krebs, 1970). The refinement yielded R factors
varying from 0.0345 at 100 K to 0.0534 at 300 K. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Zr1 | 0.42327 (15) | 0.33461 (12) | 0.50006 (16) | 0.0244 (3) | |
Cl1 | 0.5717 (5) | 0.1372 (4) | 0.6283 (3) | 0.0346 (8) | |
Cl2 | 0.0931 (4) | 0.3897 (4) | 0.6132 (2) | 0.0278 (7) | |
Cl3 | 0.2805 (5) | 0.1316 (4) | 0.3725 (3) | 0.0356 (7) | |
Cl4 | 0.7508 (4) | 0.3931 (4) | 0.3848 (2) | 0.0288 (7) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Zr1 | 0.0189 (5) | 0.0265 (5) | 0.0278 (6) | 0.0001 (4) | 0.0001 (5) | 0.0001 (7) |
Cl1 | 0.0329 (17) | 0.0368 (17) | 0.0340 (17) | 0.0042 (12) | −0.0045 (13) | 0.0074 (13) |
Cl2 | 0.0217 (14) | 0.0330 (15) | 0.0287 (16) | 0.0017 (11) | 0.0019 (11) | 0.0050 (12) |
Cl3 | 0.0344 (16) | 0.0359 (16) | 0.0365 (18) | −0.0042 (13) | −0.0012 (16) | −0.0048 (13) |
Cl4 | 0.0229 (13) | 0.0343 (14) | 0.0290 (16) | −0.0017 (12) | 0.0025 (13) | −0.0036 (12) |
Geometric parameters (Å, º) top
Zr1—Cl1 | 2.309 (3) | Zr1—Cl2i | 2.661 (3) |
Zr1—Cl3 | 2.316 (3) | Zr1—Cl4ii | 2.662 (3) |
Zr1—Cl2 | 2.499 (3) | Cl2—Zr1ii | 2.661 (3) |
Zr1—Cl4 | 2.503 (3) | Cl4—Zr1i | 2.662 (3) |
| | | |
Cl1—Zr1—Cl3 | 100.74 (11) | Cl4—Zr1—Cl2i | 79.87 (9) |
Cl1—Zr1—Cl2 | 94.15 (11) | Cl1—Zr1—Cl4ii | 168.98 (12) |
Cl3—Zr1—Cl2 | 98.37 (11) | Cl3—Zr1—Cl4ii | 89.38 (12) |
Cl1—Zr1—Cl4 | 98.49 (10) | Cl2—Zr1—Cl4ii | 79.94 (9) |
Cl3—Zr1—Cl4 | 93.52 (12) | Cl4—Zr1—Cl4ii | 85.10 (9) |
Cl2—Zr1—Cl4 | 160.72 (10) | Cl2i—Zr1—Cl4ii | 81.36 (8) |
Cl1—Zr1—Cl2i | 88.99 (11) | Zr1—Cl2—Zr1ii | 100.16 (11) |
Cl3—Zr1—Cl2i | 169.01 (13) | Zr1—Cl4—Zr1i | 100.02 (10) |
Cl2—Zr1—Cl2i | 85.88 (9) | | |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
Zirconium tetrachloride (SMB_ZrCl4_b_250K)
top
Crystal data top
Cl4Zr | Dx = 2.790 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 1861 reflections |
a = 6.253 (5) Å | θ = 2.8–25.8° |
b = 7.383 (6) Å | µ = 3.74 mm−1 |
c = 12.017 (9) Å | T = 250 K |
V = 554.8 (7) Å3 | Rectangualr plate, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 | |
Data collection top
Bruker D8 QUEST diffractometer | 934 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 815 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.063 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 4.3° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.63, Tmax = 0.81 | l = −14→14 |
5285 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0566P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.096 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 2.13 e Å−3 |
934 reflections | Δρmin = −0.48 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 351 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.01 (15) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collections were carried out on a Bruker APEXII system equipped with
graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow
Oxford Cryostream-700 was used to control the temperature. Data collections
were carried out in the order 100, 150, 200, 250, and 300 K on the same
crystal. Data reduction and cell refinement were performed using SAINT
and the APEX3 suite (Bruker, 2016). The structure was solved with
SHELXT (Sheldrick, 2015a) and an absorption correction was performed
with SADABS (Sheldrick, 1999). Structure refinements against F2
were carried out using the SHELXL refinement package in APEX3
(Bruker, 2016). The apparent space group for the structure at all five
temperatures was suggested to be orthorhombic Pca21 by XPREP,
which differs from that previously described (i.e. monoclinic,
P2/c (Krebs, 1970). The refinement yielded R factors
varying from 0.0345 at 100 K to 0.0534 at 300 K. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Zr1 | 0.42359 (16) | 0.33495 (13) | 0.50035 (17) | 0.0260 (4) | |
Cl2 | 0.0938 (5) | 0.3902 (4) | 0.3876 (2) | 0.0303 (8) | |
Cl3 | 0.2820 (5) | 0.1329 (4) | 0.6274 (3) | 0.0408 (9) | |
Cl1 | 0.5717 (6) | 0.1375 (5) | 0.3721 (3) | 0.0395 (9) | |
Cl4 | 0.7504 (5) | 0.3927 (4) | 0.6150 (2) | 0.0321 (8) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Zr1 | 0.0210 (5) | 0.0289 (6) | 0.0282 (6) | −0.0003 (5) | −0.0002 (6) | 0.0007 (7) |
Cl2 | 0.0239 (16) | 0.0373 (17) | 0.0296 (18) | 0.0021 (13) | −0.0020 (13) | −0.0062 (14) |
Cl3 | 0.0396 (19) | 0.0415 (18) | 0.041 (2) | −0.0060 (16) | 0.0054 (19) | 0.0064 (15) |
Cl1 | 0.041 (2) | 0.0397 (19) | 0.038 (2) | 0.0059 (15) | 0.0033 (15) | −0.0104 (15) |
Cl4 | 0.0263 (15) | 0.0374 (16) | 0.032 (2) | −0.0036 (14) | −0.0052 (15) | 0.0069 (14) |
Geometric parameters (Å, º) top
Zr1—Cl3 | 2.311 (4) | Zr1—Cl2i | 2.662 (4) |
Zr1—Cl1 | 2.315 (4) | Zr1—Cl4ii | 2.667 (3) |
Zr1—Cl2 | 2.501 (4) | Cl2—Zr1ii | 2.662 (4) |
Zr1—Cl4 | 2.501 (4) | Cl4—Zr1i | 2.667 (3) |
| | | |
Cl3—Zr1—Cl1 | 100.76 (13) | Cl4—Zr1—Cl2i | 79.85 (10) |
Cl3—Zr1—Cl2 | 98.46 (13) | Cl3—Zr1—Cl4ii | 89.41 (14) |
Cl1—Zr1—Cl2 | 94.12 (13) | Cl1—Zr1—Cl4ii | 168.86 (14) |
Cl3—Zr1—Cl4 | 93.40 (14) | Cl2—Zr1—Cl4ii | 79.76 (10) |
Cl1—Zr1—Cl4 | 98.47 (12) | Cl4—Zr1—Cl4ii | 85.33 (11) |
Cl2—Zr1—Cl4 | 160.79 (11) | Cl2i—Zr1—Cl4ii | 81.41 (11) |
Cl3—Zr1—Cl2i | 168.98 (14) | Zr1—Cl2—Zr1ii | 100.26 (12) |
Cl1—Zr1—Cl2i | 88.92 (14) | Zr1—Cl4—Zr1i | 100.12 (12) |
Cl2—Zr1—Cl2i | 85.96 (11) | | |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
Zirconium tetrachloride (SMB_ZrCl4_b_300K)
top
Crystal data top
ZrCl4 | Dx = 2.773 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 1130 reflections |
a = 6.262 (9) Å | θ = 2.8–24.5° |
b = 7.402 (11) Å | µ = 3.71 mm−1 |
c = 12.039 (17) Å | T = 300 K |
V = 558.0 (14) Å3 | Rectangular box, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 | |
Data collection top
Bruker D8 QUEST diffractometer | 949 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 737 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.093 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 3.4° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.55, Tmax = 0.81 | l = −14→14 |
5334 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.0788P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.138 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 2.59 e Å−3 |
949 reflections | Δρmin = −0.70 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 284 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.0 (3) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collections were carried out on a Bruker APEXII system equipped with
graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow
Oxford Cryostream-700 was used to control the temperature. Data collections
were carried out in the order 100, 150, 200, 250, and 300 K on the same
crystal. Data reduction and cell refinement were performed using SAINT
and the APEX3 suite (Bruker, 2016). The structure was solved with
SHELXT (Sheldrick, 2015a) and an absorption correction was performed
with SADABS (Sheldrick, 1999). Structure refinements against F2
were carried out using the SHELXL refinement package in APEX3
(Bruker, 2016). The apparent space group for the structure at all five
temperatures was suggested to be orthorhombic Pca21 by XPREP,
which differs from that previously described (i.e. monoclinic,
P2/c (Krebs, 1970). The refinement yielded R factors
varying from 0.0345 at 100 K to 0.0534 at 300 K. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Zr1 | 0.4239 (2) | 0.3354 (2) | 0.5000 (3) | 0.0356 (5) | |
Cl1 | 0.5702 (8) | 0.1380 (7) | 0.6280 (4) | 0.0515 (15) | |
Cl2 | 0.0942 (7) | 0.3905 (7) | 0.6127 (4) | 0.0391 (12) | |
Cl3 | 0.2829 (9) | 0.1339 (7) | 0.3731 (5) | 0.0536 (14) | |
Cl4 | 0.7504 (7) | 0.3930 (6) | 0.3853 (4) | 0.0407 (12) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Zr1 | 0.0273 (8) | 0.0381 (9) | 0.0413 (10) | 0.0009 (8) | 0.0001 (10) | 0.0002 (12) |
Cl1 | 0.047 (3) | 0.054 (3) | 0.053 (4) | 0.006 (3) | −0.005 (3) | 0.011 (3) |
Cl2 | 0.032 (3) | 0.046 (3) | 0.040 (3) | 0.004 (2) | 0.004 (2) | 0.007 (2) |
Cl3 | 0.054 (3) | 0.050 (3) | 0.056 (3) | −0.006 (3) | −0.004 (3) | −0.009 (3) |
Cl4 | 0.033 (2) | 0.046 (3) | 0.043 (3) | −0.004 (2) | 0.007 (2) | −0.007 (2) |
Geometric parameters (Å, º) top
Zr1—Cl3 | 2.310 (6) | Zr1—Cl2i | 2.664 (5) |
Zr1—Cl1 | 2.313 (6) | Zr1—Cl4ii | 2.670 (5) |
Zr1—Cl4 | 2.504 (6) | Cl2—Zr1ii | 2.664 (5) |
Zr1—Cl2 | 2.504 (6) | Cl4—Zr1i | 2.670 (5) |
| | | |
Cl3—Zr1—Cl1 | 100.6 (2) | Cl2—Zr1—Cl2i | 85.99 (17) |
Cl3—Zr1—Cl4 | 93.3 (2) | Cl3—Zr1—Cl4ii | 89.4 (2) |
Cl1—Zr1—Cl4 | 98.73 (19) | Cl1—Zr1—Cl4ii | 169.0 (2) |
Cl3—Zr1—Cl2 | 98.5 (2) | Cl4—Zr1—Cl4ii | 85.34 (17) |
Cl1—Zr1—Cl2 | 93.9 (2) | Cl2—Zr1—Cl4ii | 79.76 (16) |
Cl4—Zr1—Cl2 | 160.82 (17) | Cl2i—Zr1—Cl4ii | 81.54 (17) |
Cl3—Zr1—Cl2i | 169.0 (2) | Zr1—Cl2—Zr1ii | 100.26 (19) |
Cl1—Zr1—Cl2i | 89.0 (2) | Zr1—Cl4—Zr1i | 100.08 (19) |
Cl4—Zr1—Cl2i | 79.89 (16) | | |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
Selected bond lengths (Å) in MCl4
M = Zr (present work), Hf (Niewa & Jacobs, 1995), and Tc (Elder
&
Penfold, 1966). Cl···Cl is the shortest distance between two chains. top | ZrCl4 | HfCl4 | TcCl4 |
M···M1 | 3.968 | 3.921 | 3.62 |
Avg. M—Cl(bri1) | 2.667 | 2.626 | 2.492 |
AVg. M—Cl(bri2) | 2.504 | 2.477 | 2.382 |
Avg. M—Cl(ter) | 2.312 | 2.298 | 2.242 |
Cl···Cl | 3.687 | 3.743 | 3.56 |
Unit-cell parameters (Å), volume (Å3), and selected bond lengths (Å)
and angles (°) in ZrCl4 obtained here and in Krebs (1970) top | Present work | Krebs (1970) |
Space group | Pca21 | P2/c |
Z | 4 | 2 |
T (K) | 300 | 293 |
a (Å) | 6.262 (9) | 6.361 (4) |
b (Å) | 7.402 (11) | 7.407 (4) |
c (Å) | 12.039 (17) | 6.256 (4) |
α/β/γ (°) | 90/90/90 | 90/109.30 (4)/90 |
V (Å3) | 558.0 (14) | 278.2 |
Avg. Zr1—Cl(ter) | 2.312 | 2.307 |
Avg. Zr1– Cl(bri2) | 2.504 | 2.498 |
Avg. Zr1—Cl(bri1) | 2.667 | 2.655 |
Zr1···Zr1ii | 3.965 (1) | 3.962 (2) |
Cl1—Zr1—Cl3 | 100.6 (2) | 100.7 (1) |
Cl1—Zr1—Cl4 | 98.73 (19) | 98.5 (1) |
Cl2—Zr1—Cl3 | 98.5 (2) | |
Cl4—Zr1—Cl2ii | 79.89 (16) | 79.5 (1) |
Cl4—Zr1ii—Cl2ii | 79.76 (16) | |
Cl2ii—Zr1—Cl4i | 81.54 (17) | 81.5 (1) |
Cl2—Zr1—Cl4 | 160.82 (17) | 160.7 (1) |
Cl1—Zr1—Cl4i | 168.9 (2) | 168.9 (1) |
Cl3—Zr1—Cl2ii | 168.9 (2) | |
Cl4—Zr1—Cl3 | 93.3 (2) | 93.8 (1) |
Cl2—Zr1—Cl1 | 93.9 (2) | |
Symmetry operation: (i) x-1/2, -y+1, z;
(ii) x+1/2, -y+1, z. |
Selected bond lengths (Å) in ZrCl4 at 150, 200, 250, and 300 K top | 300 K | 250 K | 200 K | 150 K | 100 K |
Zr—Cl1 | 2.313 (6) | 2.315 (4) | 2.309 (3) | 2.314 (3) | 2.314 (3) |
Zr1—Cl2 | 2.504 (6) | 2.501 (4) | 2.499 (3) | 2.497 (2) | 2.497 (3) |
Zr1—Cl3 | 2.310 (6) | 2.311 (4) | 2.316 (3) | 2.313 (3) | 2.313 (3) |
Zr1—Cl4 | 2.504 (6) | 2.501 (4) | 2.503 (3) | 2.501 (2) | 2.499 (2) |
Zr1—Cl2ii | 2.664 (5) | 2.662 (4) | 2.661 (3) | 2.660 (3) | 2.659 (3) |
Zr1—Cl4i | 2.670 (5) | 2.667 (3) | 2.662 (3) | 2.663 (2) | 2.659 (2) |
Zr1 ···Zr1ii | 3.968 (5) | 3.964 (3) | 3.958 (1) | 3.957 (1) | 3.950 (1) |
Avg. Zr1—Cl(ter) | 2.312[6] | 2.313[4] | 2.313[5] | 2.314[3] | 2.314[3] |
Avg. Zr1—Cl(bri2) | 2.504[6] | 2.501[4] | 2.501[3] | 2.499[2] | 2.498[3] |
avg. Zr1—Cl(bri1) | 2.667[5] | 2.665[4] | 2.662[3] | 2.662[3] | 2.659[3] |
Cl1···Cl3* | 3.687 (9) | 3.679 (5) | 3.658 (5) | 3.647 (3) | 3.630 (3) |
Symmetry codes: (i) x-1/2, -y+1, z;
(ii) x+1/2, -y+1, z;
(*) -x+1/2, y, z+1/2 (interchain distance). |
Selected bond angles (°) in ZrCl4 at 150, 200, 250, and 300 K top | 300 K | 250 K | 200 K | 150 K | 100 K |
Cl1—Zr1—Cl3 | 100.6 (2) | 100.76 (13) | 100.74 (11) | 100.76 (9) | 100.75 (9) |
Cl1—Zr1—Cl4 | 98.73 (19) | 98.47 (12) | 98.49 (10) | 98.39 (9) | 98.34 (9) |
Cl2ii—Zr1—Cl4i | 81.54 (17) | 81.41 (11) | 81.36 (8) | 81.27 (7) | 81.26 (7) |
Cl2—Zr1—Cl3 | 98.5 (2) | 98.46 (13) | 98.37 (11) | 98.31 (9) | 98.17 (9) |
Cl2—Zr1—Cl4 | 160.82 (17) | 160.79 (11) | 160.72 (10) | 160.69 (9) | 160.75 (9) |
Zr1—Cl4—Zr1ii | 100.08 (19) | 100.12 (12) | 100.02 (10) | 99.96 (9) | 99.90 (9) |
Zr1—Cl2ii—Zr1ii | 100.26 (19) | 100.26 (12) | 100.16 (11) | 100.15 (9) | 99.96 (9) |
Cl4—Zr1—Cl2ii | 79.89 (16) | 79.85 (10) | 79.87 (9) | 79.93 (7) | 80.05 (7) |
Cl4—Zr1ii—Cl2ii | 79.76 (16) | 79.76 (10) | 79.94 (9) | 79.94 (7) | 80.08 (7) |
Avg. Cl4—Zr1—Cl2 | 79.8[2] | 79.8[1] | 79.9[9] | 79.94[7] | 80.06[7] |
Symmetry codes: (i) x-1/2, -y+1, z;
(ii) x+1/2, -y+1, z. |
Lattice parameters of ZrCl4 as measured at the given temperatures top | 300 K | 250 K | 200 K | 150 K | 100 K |
a (Å) | 6.262 (9) | 6.253 (5) | 6.2389 (8) | 6.2311 (8) | 6.2199 (9) |
b (Å) | 7.402 (11) | 7.383 (6) | 7.3667 (10) | 7.3497 (10) | 7.3301 (10) |
c (Å) | 12.039 (17) | 12.017 (9) | 11.9735 (16) | 11.9462 (15) | 11.9153 (16) |
α = β = γ (°) | 90 | 90 | 90 | 90 | 90 |
V (Å3) | 558.0 (14) | 554.8 (7) | 550.30 (13) | 547.10 (12) | 543.25 (13) |
Z | 4 | 4 | 4 | 4 | 4 |
R factor | 5.33% | 3.82% | 3.76% | 3.34% | 3.45% |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.