Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystals of the title compounds were grown from their hydrous melts or solutions. The crystal structure of iron(III) trinitrate hexa­hydrate {hexa­aqua­iron(III) trinitrate, [Fe(H2O)6](NO3)3} is built up from [Fe(H2O)6]2+ octa­hedra and nitrate anions connected via hydrogen bonds. In iron(III) trinitrate penta­hydrate {penta­aqua­nitratoiron(III) dinitrate, [Fe(NO3)(H2O)5](NO3)2}, one water mol­ecule in the coordination octa­hedron of the FeIII atom is substituted by an O atom of a nitrate group. Iron(III) trinitrate tetra­hydrate {triaqua­dinitratoiron(III) nitrate monohydrate, [Fe(NO3)2(H2O)3]NO3·H2O} represents the first example of a simple iron(III) nitrate with penta­gonal-bipyramidal coordination geometry, where two bidentate nitrate anions and one water mol­ecule form a penta­gonal plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112015855/yp3012sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112015855/yp3012Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112015855/yp3012IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112015855/yp3012IIIsup4.hkl
Contains datablock III

Comment top

From aqueous solutions of iron(III) nitrate crystallizes the nonahydrate Fe(NO3)3·9H2O. Its crystal structure was reported by Hair & Beattie (1977). Because of the strong hygroscopicity and the tendency of iron(III) nitrate to hydrolyze and precipitate basic salts, neutral hydrates containing less than 9 mol water per mol salt do not crystallize from simple aqueous solutions. To prevent hydrolysis lower hydrates can be crystallized only in the presence of high concentrations of nitric acid. Reports on the existence and stability of lower hydrates are contradictory. According to Cameron & Robinson (1909) the hexahydrate crystallizes from a solution of nonahydrate in nitric acid. Malquori (1929a,b) proposed addition of N2O5. Hathaway & Underhill (1960) declared to have synthesized a dihydrate by means of a reaction of anhydrous iron(III) chloride in pure nitric acid. Rodenko & Panov (1994) performed solubility determinations at temperatures in the range 283–313 K in the system Fe(NO3)3–HNO3–H2O. Graphically presented solubility isotherms were interpreted as branches from hexa- and tetrahydrate at nitric acid concentrations of 56–77% HNO3 and 77–85% HNO3, respectively. El Goundali & Kaddami (2006, 2007, 2008) claimed the formation of an iron(III) nitrate hexahydrate within the system Fe(NO3)3–Co(NO3)2–HNO3 at 303 K. Addison (1980) and Addison & Chapman (1965) thoroughly investigated reactions of liquid N2O4 with hydrated nitrates and metals. Addison stated that iron(III) nitrate nonahydrate reacted with N2O4 to yield a yellow–brown pentahydrate (Addison & Chapman, 1965). The same authors supposed that the reaction product of metallic iron with an N2O4/HNO3 mixture was a dihydrate after 2 weeks' evacuation. For all these phases, no X-ray pattern was recorded. The chemical formulas were derived from chemical analyses of the wet solid residues.

Crystals of the title compounds were grown from their hydrous melts or solutions in highly concentrated nitric acid. Iron(III) nitrate pentahydrate, (II), was prepared through the reaction of liquid N2O4 with iron(III) nitrate nonahydrate. The hexa-, (I), and tetrahydrate, (III), were obtained by dissolving the pentahydrate in highly concentrated nitric acid and subsequent evaporation at reduced pressure. With the successful preparation of single crystals and their structure determination in this work, the existence and stoichiometry of at least three lower hydrates could [can] be confirmed unequivocally.

As expected, the crystal structure of the hexahydrate consists of Fe(H2O)6 octahedra (see Fig. 1a). The Fe(H2O)6 octahedra are connected via hydrogen bonds to nitrate ions, where every H atom of a water molecule is in contact with another nitrate group at distances of 1.89 Å, thus arranging 12 NO3- anions around an octahedron unit (Fig. 1b). The result is a complex but highly symmetric hydrogen-bond network, as shown in Fig. 2.

With a further decrease of the water content, nitrate ions enter the coordination sphere of iron. In Fe(NO3)3·5H2O, the FeIII atom is still coordinated by six ligands (see Fig. 3) completing the coordination sphere with a monodentate bound nitrate ligand. One of the other O atoms of the coordinated nitrate ion forms a hydrogen bond to a water molecule of an adjacent octahedron unit (Fig. 4). This yields two NO3- octahedral chains approximately in the [110] direction (Fig. 4). These chains are connected by the noncoordinated nitrate ions via hydrogen bonds, as shown in Fig. 5. Thereby two O atoms (O10, O11, O12 and O13) are connected with an edge of an octahedron and the third O atom (O9 and O14)e/newcifs combines to different chains. The result is a three-dimensional network (Fig. 6).

Surprisingly, in Fe(NO3)3·4H2O, the coordination number of iron(III) is enhanced to seven in the form of a pentagonal bipyramid (Fig. 7). Two bidentate coordinating nitrate ions and one water molecule (O2) are arranged nearly exactly in a pentagonal plane. The other two coordinated water molecules in axial positions are nearly perpendicular to this plane. The noncoordinated water molecule is hydrogen bonded to an axial water molecule of one complex and to the equatorial water of another complex, thus forming binary complex units with the equatorial water molecules directed to each other (Fig. 8). These double units are interconnected via hydrogen bonds by the noncoordinated nitrate ions. As illustrated in Fig. 9, every water molecule of the complex unit is connected to a nitrate ion. Thereby one O atom of the nitrate (O12) ion connects two complex units through their axial water molecules approximately in the direction of the b axis. The second O atom (O11) is connected with the equatorial water molecule of the complex. Altogether, a hydrogen-bond network arises with dominating bonds along the b and a axes, as shown in Fig. 10. The third O atom of the nitrate ions is not involved in hydrogen bonds, because its bond distance to the nearest H atom is greater than 2.3 Å.

There are examples in the literature of salts with tetranitratoferrate anions, [Fe(NO3)4]-, where the nitrate groups coordinate in a bidentate fashion, resulting in a coordination number of eight for FeIII (Addison & Chapman, 1965; Tikhomirov et al., 2002; Blackwell et al., 1975; Fedorova et al., 2002). However, the pentagonal–bipyramidal coordination of FeIII has only been observed before for metal–organic FeIII complexes (Andjelkovica et al., 2002; Bonardi et al., 1991). The reported structure for the iron(III) nitrate tetrahydrate represents the first simple iron(III) salt with such a coordination geometry.

Related literature top

For related literature, see: Addison & Chapman (1965); Blackwell et al. (1975); Bonardi et al. (1991); Cameron & Robinson (1909); El Goundali & Kaddami (2006); Fedorova et al. (2002); Hair & Beattie (1977); Hathaway & Underhill (1960); Malquori (1929a,b); Rodenko & Panov (1994); Tikhomirov et al. (2002).

Experimental top

Iron(III) nitrate hexahydrate, (I), was prepared by recrystallizing Fe(NO3)3·5H2O (2 g) in pure nitric acid (1 ml of 96.2% HNO3) and concentrating the liquid by evaporation at reduced pressure. Colourless cubic crystals of 2–4 mm size were obtained after 14 d. The selected crystal was cut and embedded in perfluorinated ether for single-crystal diffraction experiments.

Iron(III) nitrate pentahydrate, (II), was prepared according to the method of Addison & Chapman (1965). Fe(NO3)3·9H2O (10 g) reacted under vigorous stirring in an excess of liquid N2O4 (30 ml) for 3–5 d at room temperature to form a pale-yellow powder of the pentahydrate. To gain bigger crystals the N2O4 was removed under vacuum and the remaining mixture was recrystallized in sealed glass tubes by warming up and subsequent cooling to room temperature. A piece of the 1 mm-sized crystal was cut and embedded in perfluorether to prevent contact with the air humidity before being mounted on the single-crystal diffractometer.

Iron(III) nitrate tetrahydrate, (III), was prepared using a method analogous to that used for the hexahydrate using Fe(NO3)3·5H2O (2 g) in pure nitric acid (1 ml of 96.2% HNO3). Brown, needle-shaped crystals with a size of approximately 5 × 0.2 mm were obtained after 14 d. One piece of a crystal was cut and embedded in perfluorether before being mounted on the single-crystal diffractometer.

Refinement top

All water H atoms were initially located in difference Fourier maps and then their positions were refined with O—H and H···H distance restraints of 0.820 (5) and 1.30 (2) Å.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. (a) The asymmetric unit and symmetry-related atoms of Fe(NO3)3·6H2O. Displacement ellipsoids are drawn at the 50% probability level and H atoms are not labelled. [Symmetry codes: (i) -y + 1, -z + 1, -x + 1; (ii) -z + 1, -x + 1, -y + 1; (iii) y, z, x; (iv) z, x, y; (v) -x + 1, -y + 1, -z + 1; (vi) x, -y + 1, -z + 1/2.] (b) The [Fe(H2O)6]3+ octahedron with hydrogen bonds to NO3- in iron(III) nitrate hexahydrate (black, dashed).
[Figure 2] Fig. 2. 2 × 2 × 2 unit cells of Fe(NO3)3·6H2O, viewed in the a-axis direction.
[Figure 3] Fig. 3. The asymmetric unit and symmetry-related atoms of Fe(NO3)3·5H2O. Displacement ellipsoids are drawn at the 50% probability level and H atoms are not labelled.
[Figure 4] Fig. 4. Chain structure in Fe(NO3)3·5H2O based on hydrogen bonds of the monodentate coordinating NO3-.
[Figure 5] Fig. 5. Noncoordinated nitrate groups connecting chains via hydrogen bonds in Fe(NO3)3·5H2O. Atoms O10/O11 and O12/O13 are bound to water molecules of a ledge of an octahedron, and O9 and O14 join different chains at the corner.
[Figure 6] Fig. 6. Three-dimensional hydrogen-bond network in Fe(NO3)3·5H2O.
[Figure 7] Fig. 7. The asymmetric unit and symmetry-related atoms of Fe(NO3)3·4H2O. Displacement ellipsoids are drawn at the 50% probability level and H atoms are not labelled.
[Figure 8] Fig. 8. Noncoordinated water molecules in Fe(NO3)3·4H2O connecting two pentagonal–bipyramidal [Fe(NO3)2(H2O)3]+ complexes via hydrogen bonds.
[Figure 9] Fig. 9. Interconnection of the structure units of Fe(NO3)3·4H2O illustrated in Fig. 8 by noncoordinated nitrate ions.
[Figure 10] Fig. 10. Hydrogen-bond network in Fe(NO3)3·4H2O, with dominating bonds along the b axis. For clarity, only the Fe—OH2 bonds (green thick lines) of the complex units are shown.
(I) hexaaquairon(III) trinitrate top
Crystal data top
[Fe(H2O)6](NO3)3Melting point: 317.68 K
Mr = 349.98Mo Kα radiation, λ = 0.71073 Å
Cubic, Ia3Cell parameters from 692 reflections
Hall symbol: -I 2b 2c 3θ = 1.8–27.5°
a = 13.7962 (2) ŵ = 1.23 mm1
V = 2625.90 (7) Å3T = 190 K
Z = 8Cuboid, colourless
F(000) = 14320.43 × 0.35 × 0.29 mm
Dx = 1.771 Mg m3
Data collection top
Bruker X8 Kappa APEXII
diffractometer
505 independent reflections
Radiation source: fine-focus sealed tube432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 27.4°, θmin = 3.0°
Absorption correction: numerical
(APEX2; Bruker, 2005)
h = 1717
Tmin = 0.623, Tmax = 0.715k = 1717
9913 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.042P)2 + 3.9345P]
where P = (Fo2 + 2Fc2)/3
505 reflections(Δ/σ)max < 0.001
39 parametersΔρmax = 0.58 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Fe(H2O)6](NO3)3Z = 8
Mr = 349.98Mo Kα radiation
Cubic, Ia3µ = 1.23 mm1
a = 13.7962 (2) ÅT = 190 K
V = 2625.90 (7) Å30.43 × 0.35 × 0.29 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
505 independent reflections
Absorption correction: numerical
(APEX2; Bruker, 2005)
432 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.715Rint = 0.027
9913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.081All H-atom parameters refined
S = 1.09Δρmax = 0.58 e Å3
505 reflectionsΔρmin = 0.38 e Å3
39 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.0153 (2)
N10.71342 (19)0.50000.25000.0328 (6)
O10.62559 (9)0.56088 (9)0.46368 (9)0.0219 (3)
O20.62608 (19)0.50000.25000.0756 (11)
O30.75797 (11)0.51865 (15)0.32635 (12)0.0472 (5)
H10.6352 (19)0.6180 (6)0.4750 (18)0.050 (8)*
H20.6602 (16)0.5431 (18)0.4193 (14)0.055 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0153 (2)0.0153 (2)0.0153 (2)0.00036 (11)0.00036 (11)0.00036 (11)
N10.0236 (13)0.0520 (16)0.0228 (12)0.0000.0000.0045 (10)
O10.0201 (6)0.0200 (6)0.0256 (7)0.0039 (5)0.0063 (5)0.0039 (5)
O20.0237 (12)0.167 (4)0.0363 (14)0.0000.0000.0196 (17)
O30.0278 (8)0.0827 (14)0.0311 (9)0.0146 (7)0.0091 (6)0.0213 (8)
Geometric parameters (Å, º) top
Fe1—O1i1.9896 (12)Fe1—O1v1.9896 (12)
Fe1—O11.9896 (12)N1—O21.205 (4)
Fe1—O1ii1.9896 (12)N1—O31.246 (2)
Fe1—O1iii1.9896 (12)N1—O3vi1.246 (2)
Fe1—O1iv1.9896 (12)
O1i—Fe1—O187.60 (5)O1iii—Fe1—O1iv180.00 (6)
O1i—Fe1—O1ii180.0O1i—Fe1—O1v92.40 (5)
O1—Fe1—O1ii92.40 (5)O1—Fe1—O1v180.00 (6)
O1i—Fe1—O1iii87.60 (5)O1ii—Fe1—O1v87.60 (5)
O1—Fe1—O1iii87.60 (5)O1iii—Fe1—O1v92.40 (5)
O1ii—Fe1—O1iii92.40 (5)O1iv—Fe1—O1v87.60 (5)
O1i—Fe1—O1iv92.40 (5)O2—N1—O3119.55 (13)
O1—Fe1—O1iv92.40 (5)O2—N1—O3vi119.55 (13)
O1ii—Fe1—O1iv87.60 (5)O3—N1—O3vi120.9 (3)
Symmetry codes: (i) y, z, x; (ii) y+1, z+1, x+1; (iii) z, x, y; (iv) z+1, x+1, y+1; (v) x+1, y+1, z+1; (vi) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···O30.82 (1)1.89 (1)2.695 (2)169 (3)
O1—H1···O3vii0.82 (1)1.89 (1)2.6946 (19)169 (3)
Symmetry code: (vii) z+1, x+3/2, y.
(II) pentaaquanitratoiron dinitrate top
Crystal data top
[Fe(NO3)(H2O)5](NO3)2Z = 2
Mr = 331.96F(000) = 338
Triclinic, P1Dx = 2.125 Mg m3
Hall symbol: -P 1Melting point: 321.34 K
a = 6.7693 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0692 (4) ÅCell parameters from 756 reflections
c = 11.6734 (6) Åθ = 1.8–27.5°
α = 85.568 (2)°µ = 1.55 mm1
β = 80.655 (1)°T = 100 K
γ = 70.279 (2)°Parallelepiped, yellow
V = 518.72 (5) Å30.47 × 0.35 × 0.23 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω and ϕ scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 88
Tmin = 0.528, Tmax = 0.716k = 99
9108 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2256P]
where P = (Fo2 + 2Fc2)/3
2373 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.46 e Å3
14 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Fe(NO3)(H2O)5](NO3)2γ = 70.279 (2)°
Mr = 331.96V = 518.72 (5) Å3
Triclinic, P1Z = 2
a = 6.7693 (4) ÅMo Kα radiation
b = 7.0692 (4) ŵ = 1.55 mm1
c = 11.6734 (6) ÅT = 100 K
α = 85.568 (2)°0.47 × 0.35 × 0.23 mm
β = 80.655 (1)°
Data collection top
Bruker X8 Kappa APEXII
diffractometer
2373 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2293 reflections with I > 2σ(I)
Tmin = 0.528, Tmax = 0.716Rint = 0.017
9108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01914 restraints
wR(F2) = 0.059All H-atom parameters refined
S = 1.02Δρmax = 0.46 e Å3
2373 reflectionsΔρmin = 0.30 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Short inter D···A contact of 2.82 Angstroem for O7 and O9: Nitrate oxygen atoms O7 and O9 are not directly connected via hydrogen bond, but via water hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.27910 (3)0.72465 (2)0.252494 (14)0.00802 (7)
N10.64486 (17)0.34386 (16)0.22605 (9)0.0095 (2)
N20.21421 (17)0.28547 (16)0.03571 (9)0.0110 (2)
N30.26584 (18)0.22095 (16)0.46374 (9)0.0104 (2)
O10.21908 (16)0.79284 (14)0.08948 (8)0.01410 (19)
O20.06635 (16)0.58186 (15)0.28405 (9)0.0159 (2)
O30.04208 (15)0.97229 (13)0.30303 (8)0.01167 (18)
O40.50110 (15)0.85616 (14)0.22573 (8)0.01217 (19)
O50.33240 (15)0.69201 (15)0.41828 (8)0.01303 (19)
O60.46892 (14)0.45797 (13)0.19217 (8)0.01159 (18)
O70.71829 (15)0.39903 (14)0.30153 (8)0.01362 (19)
O80.73077 (15)0.17968 (14)0.17749 (8)0.01314 (19)
O90.28024 (15)0.31797 (15)0.54734 (8)0.0148 (2)
O100.08770 (15)0.21098 (15)0.45452 (8)0.0151 (2)
O110.42580 (16)0.14084 (15)0.39382 (8)0.0147 (2)
O120.23681 (16)0.44044 (14)0.01346 (8)0.0150 (2)
O130.14044 (16)0.27776 (14)0.14008 (8)0.0151 (2)
O140.26678 (16)0.12656 (14)0.02350 (8)0.0154 (2)
H10.0471 (18)0.615 (3)0.3272 (15)0.030 (5)*
H20.070 (3)0.497 (3)0.2443 (17)0.033 (6)*
H30.240 (3)0.8862 (19)0.0494 (14)0.028 (5)*
H40.230 (4)0.704 (2)0.0456 (14)0.037 (6)*
H50.037 (2)1.038 (2)0.2578 (13)0.025 (5)*
H60.055 (4)1.052 (3)0.3462 (15)0.042 (6)*
H70.579 (3)0.858 (3)0.1647 (10)0.030 (5)*
H80.487 (3)0.9567 (19)0.2603 (15)0.031 (5)*
H90.4433 (17)0.688 (3)0.4387 (16)0.032 (5)*
H100.248 (3)0.674 (3)0.4724 (12)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00843 (11)0.00710 (11)0.00873 (11)0.00283 (8)0.00120 (7)0.00029 (7)
N10.0088 (5)0.0093 (5)0.0101 (5)0.0032 (4)0.0000 (4)0.0005 (4)
N20.0100 (5)0.0113 (5)0.0122 (5)0.0040 (4)0.0017 (4)0.0011 (4)
N30.0134 (5)0.0086 (5)0.0096 (5)0.0040 (4)0.0018 (4)0.0003 (4)
O10.0216 (5)0.0107 (4)0.0107 (4)0.0053 (4)0.0046 (4)0.0002 (3)
O20.0139 (5)0.0143 (5)0.0208 (5)0.0084 (4)0.0056 (4)0.0080 (4)
O30.0129 (4)0.0095 (4)0.0115 (4)0.0010 (3)0.0041 (3)0.0013 (3)
O40.0150 (5)0.0126 (4)0.0108 (4)0.0083 (4)0.0019 (4)0.0031 (3)
O50.0099 (4)0.0184 (5)0.0100 (4)0.0042 (4)0.0006 (3)0.0014 (4)
O60.0093 (4)0.0100 (4)0.0142 (4)0.0005 (3)0.0034 (3)0.0015 (3)
O70.0134 (5)0.0143 (4)0.0145 (5)0.0045 (4)0.0041 (4)0.0048 (4)
O80.0131 (4)0.0093 (4)0.0152 (5)0.0004 (3)0.0022 (4)0.0048 (3)
O90.0151 (5)0.0190 (5)0.0118 (4)0.0067 (4)0.0006 (4)0.0074 (4)
O100.0124 (4)0.0185 (5)0.0158 (5)0.0060 (4)0.0018 (4)0.0052 (4)
O110.0150 (5)0.0164 (5)0.0121 (4)0.0061 (4)0.0037 (4)0.0051 (4)
O120.0208 (5)0.0118 (4)0.0142 (5)0.0087 (4)0.0015 (4)0.0014 (3)
O130.0200 (5)0.0161 (5)0.0103 (4)0.0091 (4)0.0028 (4)0.0024 (4)
O140.0224 (5)0.0116 (4)0.0126 (5)0.0077 (4)0.0028 (4)0.0041 (3)
Geometric parameters (Å, º) top
Fe1—O31.9859 (9)N1—O61.2965 (14)
Fe1—O41.9914 (9)N2—O121.2411 (14)
Fe1—O61.9944 (9)N2—O131.2439 (14)
Fe1—O21.9950 (9)N2—O141.2793 (14)
Fe1—O11.9989 (9)N3—O111.2369 (14)
Fe1—O52.0076 (9)N3—O101.2536 (14)
N1—O71.2255 (14)N3—O91.2695 (14)
N1—O81.2432 (14)
O3—Fe1—O495.20 (4)O2—Fe1—O592.48 (4)
O3—Fe1—O6167.88 (4)O1—Fe1—O5173.03 (4)
O4—Fe1—O695.73 (4)O7—N1—O8123.45 (11)
O3—Fe1—O286.72 (4)O7—N1—O6120.51 (10)
O4—Fe1—O2177.06 (4)O8—N1—O6116.04 (10)
O6—Fe1—O282.57 (4)O12—N2—O13122.98 (11)
O3—Fe1—O188.65 (4)O12—N2—O14118.80 (10)
O4—Fe1—O190.62 (4)O13—N2—O14118.21 (10)
O6—Fe1—O186.01 (4)O11—N3—O10122.07 (10)
O2—Fe1—O191.66 (4)O11—N3—O9119.57 (11)
O3—Fe1—O585.99 (4)O10—N3—O9118.37 (10)
O4—Fe1—O585.44 (4)N1—O6—Fe1128.16 (8)
O6—Fe1—O5100.08 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O9i0.82 (1)1.93 (1)2.7339 (14)169 (2)
O2—H2···O130.78 (2)1.93 (2)2.6933 (14)169 (2)
O1—H3···O14ii0.82 (1)1.89 (1)2.7027 (13)171 (2)
O1—H4···O120.82 (1)2.02 (1)2.8069 (13)161 (2)
O3—H5···O8iii0.82 (1)1.90 (1)2.7062 (13)168 (2)
O3—H5···N1iii0.82 (1)2.54 (1)3.2543 (14)147 (2)
O3—H5···O7iii0.82 (1)2.57 (2)3.0736 (13)121 (2)
O3—H6···O10ii0.82 (1)1.84 (1)2.6571 (13)174 (2)
O4—H7···O14iv0.82 (1)1.82 (1)2.6338 (13)175 (2)
O4—H8···O11ii0.82 (1)2.01 (1)2.7844 (13)159 (2)
O5—H9···O9v0.82 (1)1.89 (1)2.6934 (14)168 (2)
O5—H10···O10i0.82 (1)2.19 (1)2.8691 (13)142 (2)
O5—H10···O90.82 (1)2.55 (2)3.0377 (14)120 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+1, z+1.
(III) triaquadinitratoiron(III) nitrate monohydrate top
Crystal data top
[Fe(NO3)2(H2O)3]NO3·H2OF(000) = 636
Mr = 313.94Dx = 2.073 Mg m3
Monoclinic, P21/nMelting point: 335.39 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.0696 (7) ÅCell parameters from 1424 reflections
b = 15.1917 (16) Åθ = 1.8–27.5°
c = 9.4264 (7) ŵ = 1.58 mm1
β = 96.508 (3)°T = 100 K
V = 1005.86 (16) Å3Prism, brown
Z = 40.5 × 0.4 × 0.3 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
2303 independent reflections
Radiation source: fine-focus sealed tube1985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 99
Tmin = 0.451, Tmax = 0.602k = 1919
11328 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.2256P]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.26 e Å3
12 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Fe(NO3)2(H2O)3]NO3·H2OV = 1005.86 (16) Å3
Mr = 313.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0696 (7) ŵ = 1.58 mm1
b = 15.1917 (16) ÅT = 100 K
c = 9.4264 (7) Å0.5 × 0.4 × 0.3 mm
β = 96.508 (3)°
Data collection top
Bruker X8 Kappa APEXII
diffractometer
2303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1985 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.602Rint = 0.031
11328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02212 restraints
wR(F2) = 0.055All H-atom parameters refined
S = 1.07Δρmax = 0.26 e Å3
2303 reflectionsΔρmin = 0.26 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Short inter D···A contact of 2.82 Angstroem for O5 and O11: Nitrate oxygen atoms O5 and O11 are not directly connected via hydrogen bond, but via water hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.32508 (3)0.404152 (14)0.21984 (2)0.01392 (7)
N10.01759 (19)0.38468 (9)0.32872 (15)0.0208 (3)
N20.87740 (18)0.61678 (9)0.24763 (15)0.0190 (3)
N30.49724 (19)0.34257 (9)0.01723 (14)0.0194 (3)
O10.43710 (17)0.30869 (7)0.34377 (13)0.0209 (2)
O20.49853 (16)0.49024 (7)0.33518 (13)0.0200 (2)
O30.20267 (17)0.49726 (8)0.08999 (13)0.0217 (2)
O40.39942 (17)0.65649 (8)0.39764 (13)0.0218 (3)
O50.56613 (16)0.40451 (7)0.09934 (12)0.0225 (3)
O60.33141 (15)0.31698 (7)0.04514 (12)0.0208 (2)
O70.57804 (18)0.31173 (8)0.07625 (13)0.0295 (3)
O80.14734 (16)0.44070 (8)0.37318 (12)0.0224 (3)
O90.05611 (16)0.34221 (8)0.21746 (12)0.0223 (3)
O100.12433 (17)0.37336 (9)0.38499 (15)0.0327 (3)
O110.80194 (16)0.54484 (8)0.20639 (13)0.0247 (3)
O121.04023 (15)0.63524 (7)0.20676 (13)0.0228 (3)
O130.80185 (18)0.66812 (9)0.32247 (14)0.0326 (3)
H10.443 (3)0.2564 (5)0.326 (2)0.048 (7)*
H20.496 (3)0.3181 (13)0.4217 (11)0.037 (6)*
H30.210 (3)0.4992 (14)0.0045 (7)0.047 (7)*
H40.153 (3)0.5409 (8)0.1197 (19)0.035 (6)*
H50.454 (3)0.5354 (8)0.365 (2)0.038 (6)*
H60.5966 (19)0.5046 (14)0.303 (2)0.054 (8)*
H70.452 (3)0.6857 (13)0.3409 (19)0.046 (7)*
H80.2855 (10)0.6669 (16)0.382 (3)0.069 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01516 (12)0.01231 (11)0.01506 (12)0.00097 (8)0.00511 (8)0.00068 (8)
N10.0182 (6)0.0203 (7)0.0253 (8)0.0029 (5)0.0087 (6)0.0070 (6)
N20.0169 (6)0.0183 (7)0.0221 (7)0.0016 (5)0.0029 (5)0.0024 (6)
N30.0229 (7)0.0176 (7)0.0188 (7)0.0007 (5)0.0069 (6)0.0012 (6)
O10.0285 (6)0.0136 (6)0.0195 (6)0.0014 (5)0.0018 (5)0.0015 (5)
O20.0199 (6)0.0176 (6)0.0236 (6)0.0030 (5)0.0076 (5)0.0070 (5)
O30.0277 (6)0.0195 (6)0.0188 (6)0.0055 (5)0.0068 (5)0.0044 (5)
O40.0217 (6)0.0219 (6)0.0219 (6)0.0024 (5)0.0036 (5)0.0024 (5)
O50.0222 (6)0.0221 (6)0.0247 (6)0.0076 (5)0.0090 (5)0.0096 (5)
O60.0207 (6)0.0196 (6)0.0235 (6)0.0052 (5)0.0078 (5)0.0041 (5)
O70.0350 (7)0.0308 (7)0.0257 (7)0.0019 (6)0.0166 (5)0.0109 (5)
O80.0230 (6)0.0206 (6)0.0254 (6)0.0008 (5)0.0107 (5)0.0027 (5)
O90.0209 (6)0.0230 (6)0.0237 (6)0.0032 (5)0.0063 (5)0.0001 (5)
O100.0228 (6)0.0366 (7)0.0421 (8)0.0013 (5)0.0188 (6)0.0102 (6)
O110.0246 (6)0.0203 (6)0.0303 (7)0.0088 (5)0.0074 (5)0.0039 (5)
O120.0167 (5)0.0165 (6)0.0362 (7)0.0025 (4)0.0077 (5)0.0013 (5)
O130.0316 (7)0.0305 (7)0.0381 (8)0.0020 (5)0.0148 (6)0.0122 (6)
Geometric parameters (Å, º) top
Fe1—O11.9711 (12)N1—O81.2862 (18)
Fe1—O32.0019 (12)N1—O91.2865 (17)
Fe1—O22.0233 (11)N2—O131.2153 (18)
Fe1—O82.0949 (11)N2—O111.2582 (18)
Fe1—O62.1176 (11)N2—O121.2855 (17)
Fe1—O92.1194 (11)N3—O71.1986 (17)
Fe1—O52.1524 (11)N3—O51.2791 (17)
N1—O101.1992 (17)N3—O61.2902 (17)
O1—Fe1—O3177.43 (5)O2—Fe1—O579.29 (4)
O1—Fe1—O288.79 (5)O8—Fe1—O5159.42 (4)
O3—Fe1—O293.75 (5)O6—Fe1—O560.23 (4)
O1—Fe1—O891.04 (5)O9—Fe1—O5139.34 (4)
O3—Fe1—O889.03 (5)O10—N1—O8123.52 (14)
O2—Fe1—O880.35 (5)O10—N1—O9123.62 (15)
O1—Fe1—O687.61 (5)O8—N1—O9112.85 (12)
O3—Fe1—O690.70 (5)O13—N2—O11122.54 (13)
O2—Fe1—O6139.22 (4)O13—N2—O12120.09 (13)
O8—Fe1—O6140.31 (4)O11—N2—O12117.36 (13)
O1—Fe1—O988.81 (5)O7—N3—O5123.50 (14)
O3—Fe1—O988.97 (5)O7—N3—O6123.49 (14)
O2—Fe1—O9141.35 (5)O5—N3—O6113.00 (12)
O8—Fe1—O961.14 (4)N3—O5—Fe192.72 (8)
O6—Fe1—O979.17 (4)N3—O6—Fe194.00 (8)
O1—Fe1—O591.47 (5)N1—O8—Fe193.51 (8)
O3—Fe1—O589.36 (5)N1—O9—Fe192.37 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O12i0.82 (1)1.87 (1)2.6858 (16)177 (2)
O1—H2···O4ii0.81 (1)1.82 (1)2.6304 (17)173 (2)
O3—H3···O11iii0.81 (1)2.09 (1)2.8627 (17)158 (2)
O3—H3···O5iii0.81 (1)2.44 (2)2.9572 (16)122 (2)
O3—H4···O12iv0.82 (1)1.87 (1)2.6852 (17)174 (2)
O2—H5···O40.82 (1)1.91 (1)2.7036 (16)163 (2)
O2—H6···O110.82 (1)1.90 (1)2.7117 (16)172 (2)
O4—H7···O9v0.82 (1)2.44 (2)3.0518 (17)133 (2)
O4—H7···O7iii0.82 (1)2.48 (2)3.0896 (17)132 (2)
O4—H7···O130.82 (1)2.51 (2)3.0140 (17)121 (2)
O4—H8···O12iv0.82 (1)2.31 (2)2.9587 (17)137 (2)
O4—H8···O6v0.82 (1)2.55 (2)3.0163 (16)118 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Fe(H2O)6](NO3)3[Fe(NO3)(H2O)5](NO3)2[Fe(NO3)2(H2O)3]NO3·H2O
Mr349.98331.96313.94
Crystal system, space groupCubic, Ia3Triclinic, P1Monoclinic, P21/n
Temperature (K)190100100
a, b, c (Å)13.7962 (2), 13.7962 (2), 13.7962 (2)6.7693 (4), 7.0692 (4), 11.6734 (6)7.0696 (7), 15.1917 (16), 9.4264 (7)
α, β, γ (°)90, 90, 9085.568 (2), 80.655 (1), 70.279 (2)90, 96.508 (3), 90
V3)2625.90 (7)518.72 (5)1005.86 (16)
Z824
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.231.551.58
Crystal size (mm)0.43 × 0.35 × 0.290.47 × 0.35 × 0.230.5 × 0.4 × 0.3
Data collection
DiffractometerBruker X8 Kappa APEXII
diffractometer
Bruker X8 Kappa APEXII
diffractometer
Bruker X8 Kappa APEXII
diffractometer
Absorption correctionNumerical
(APEX2; Bruker, 2005)
Multi-scan
(SADABS; Bruker, 2006)
Multi-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.623, 0.7150.528, 0.7160.451, 0.602
No. of measured, independent and
observed [I > 2σ(I)] reflections
9913, 505, 432 9108, 2373, 2293 11328, 2303, 1985
Rint0.0270.0170.031
(sin θ/λ)max1)0.6480.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.09 0.019, 0.059, 1.02 0.022, 0.055, 1.07
No. of reflections50523732303
No. of parameters39203186
No. of restraints31412
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.58, 0.380.46, 0.300.26, 0.26

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H2···O30.815 (5)1.891 (8)2.695 (2)169 (3)
O1—H1···O3i0.815 (5)1.889 (7)2.6946 (19)169 (3)
Symmetry code: (i) z+1, x+3/2, y.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O9i0.818 (5)1.927 (7)2.7339 (14)169 (2)
O2—H2···O130.777 (18)1.927 (18)2.6933 (14)169 (2)
O1—H3···O14ii0.818 (5)1.891 (6)2.7027 (13)171.2 (19)
O1—H4···O120.817 (5)2.021 (8)2.8069 (13)161.4 (19)
O3—H5···O8iii0.818 (5)1.902 (7)2.7062 (13)167.5 (19)
O3—H5···N1iii0.818 (5)2.538 (11)3.2543 (14)146.9 (17)
O3—H5···O7iii0.818 (5)2.569 (16)3.0736 (13)121.2 (15)
O3—H6···O10ii0.819 (5)1.841 (6)2.6571 (13)174 (2)
O4—H7···O14iv0.817 (5)1.819 (6)2.6338 (13)175 (2)
O4—H8···O11ii0.815 (5)2.009 (8)2.7844 (13)158.9 (19)
O5—H9···O9v0.816 (5)1.890 (6)2.6934 (14)168.1 (19)
O5—H10···O10i0.815 (5)2.186 (14)2.8691 (13)142 (2)
O5—H10···O90.815 (5)2.547 (19)3.0377 (14)120.1 (18)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O12i0.815 (5)1.872 (6)2.6858 (16)177 (2)
O1—H2···O4ii0.814 (5)1.820 (6)2.6304 (17)173 (2)
O3—H3···O11iii0.814 (5)2.090 (9)2.8627 (17)158 (2)
O3—H3···O5iii0.814 (5)2.44 (2)2.9572 (16)122 (2)
O3—H4···O12iv0.815 (5)1.873 (6)2.6852 (17)173.9 (19)
O2—H5···O40.817 (5)1.912 (8)2.7036 (16)162.9 (19)
O2—H6···O110.817 (5)1.900 (6)2.7117 (16)172 (2)
O4—H7···O9v0.815 (5)2.440 (17)3.0518 (17)132.7 (19)
O4—H7···O7iii0.815 (5)2.480 (17)3.0896 (17)132 (2)
O4—H7···O130.815 (5)2.514 (18)3.0140 (17)120.8 (17)
O4—H8···O12iv0.817 (5)2.308 (19)2.9587 (17)137 (2)
O4—H8···O6v0.817 (5)2.55 (2)3.0163 (16)118 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds