Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Reaction of cadmium nitrate with di­phenyl­phosphinic acid in di­methyl­formamide solvent yielded the one-dimensional coordination polymer catena-poly[[bis­(di­methyl­formamide-κO)cadmium(II)]-bis­(μ-di­phenyl­phosphinato-κ2O:O′)], [Cd(C12H10O2P)2(C3H7NO)2]n, (I). Addition of 4,4′-bi­pyridine to the synthesis afforded a two-dimensional extended structure, poly[[­(μ-4,4′-bi­pyridine-κ2N:N′)bis­(μ-di­phenyl­phos­phinato-κ2O:O′)cadmium(II)] di­methyl­formamide monosolvate], {[Cd(C12H10O2P)2(C10H8N2)]·C3H7NO}n, (II). In (II), the 4,4′-bi­pyridine mol­ecules link the CdII centers in the crystallographic a direction, while the phosphinate ligands link the CdII centers in the crystallographic b direction to complete a two-dimensional sheet structure. Consideration of additional π–π inter­actions of the phenyl rings in (II) produces a three-dimensional structure with channels that encapsulate di­methyl­formamide mol­ecules as solvent of crystallization. Both compounds were characterized by single-crystal X-ray diffraction and FT–IR analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614022256/yp3082sup1.cif
Contains datablocks CompoundI, CompoundII, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614022256/yp3082CompoundIsup2.hkl
Contains datablock CompoundI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614022256/yp3082CompoundIIsup3.hkl
Contains datablock CompoundII

CCDC references: 1028208; 1028209

Introduction top

In the field of hybrid materials, coordination polymers have garnered much inter­est in recent decades. The structural diversity of this class of materials makes them attractive for a variety of potential applications that include small-molecule storage, optics, and separation science (Furukawa et al., 2013, and references therein; Czaja et al., 2009; Dinča & Long, 2008). The seemingly endless combination of metal ions and organic molecules has created a vast array of structural topologies (Li et al., 2014; Stock & Biswas, 2012; Zhao et al., 2011). By far, the most common systems that have been investigated are metal carboxyl­ates (ror selected reviews, see Farha & Hupp, 2010; Horike & Kitagawa, 2011; Tranchemontagne et al., 2009; James, 2003).

In order to recognize the full potential of this exciting field, extensions to other classes of organic molecules have been explored. While such classes have varied, largely speaking, phospho­nates and sulfonates have received the most attention. In general, sulfonates tend to show relatively weak coordination to metals and therefore lead to structures with less than desirable materials applications such as low thermal stability and a lack of porosity (Côte & Shimizu, 2003; Videnova-Adrabinska, 2007). Phospho­nates have been used for robust crystalline materials that are capable of being characterized by single-crystal X-ray diffraction (Liang & Shimizu, 2007; Konar et al., 2007; Clearfield, 2008). Challenges with phospho­nate chemistry historically have included rapid precipitation due to the formation of dense, layered phases which often form intra­cta­ble solids that are difficult to characterize. Furthermore, compared to carboxyl­ates, phospho­nates offer many more bridging modes to metals, making the establishment of structural motifs for the design of specific materials less predi­cta­ble (Shimizu et al., 2009).

Our inter­est lies in exploring phosphinates (R2PO2-) as less conventional organic linker molecules that could be useful in the synthesis of coordination polymers. Relative to the classes of materials discussed previously, less attention has been given to phosphinates in extended materials (Al-Shboul et al., 2012; Rood et al., 2014). Compared to metal phospho­nates, the acid–base chemistry of metal phosphinates may more closely resemble that of metal carboxyl­ates. Such behavior could lead to precipitation rates that are slower than that of metal phospho­nates and off a route to isolating new materials that can be more readily characterized by single-crystal X-ray diffraction. The structures of metal di­phenyl­phosphinate compounds have been well studied for copper (Bino & Sassman, 1987), nickel (Annan et al., 1991), and manganese (Ruettinger et al., 1999; Du et al., 1991). Orlandini and co-workers have expanded the area to include studies on diphosphinates with transition metals (Costantino, Ienco et al., 2008; Bataille et al., 2008; Costantino Midollini & Orlandini, 2008; Midollini & Orlandini, 2006; Ciattini et al., 2005; Midollini et al., 2004; Cecconi et al., 2004; Berti et al., 2002) and p-block metals (Cecconi et al., 2003; Beckman et al., 2004, 2005). As part of our investigations in this area, we isolated one- and two-dimensional cadmium(II) coordination polymers incorporating di­phenyl­phosphinate ligands. We report here on the synthesis and crystal structures of [Cd(O2PPh2)(DMF)2]n (DMF is di­methyl­formamide), (I), and {[Cd(O2PPh2)(bipy)].DMF}n (bipy is 4,4'-bi­pyridine), (II).

Experimental top

Cadmium nitrate tetra­hydrate and di­methyl­formamide were obtained commercially and used as received. Di­phenyl­phosphinic acid (99%) was purchased from Alfa Aesar and used without further purification. IR spectra were obtained on a Nicolet Magna 760 FT–IR spectrometer. Reported yields are based on the first crop of crystals that were isolated from the reaction solution.

Synthesis and crystallization top

Preparation [Cd(O2PPh2)2(DMF)2], (I) top

A capped vial containing Cd(NO3)2.4H2O (77 mg, 0.25 mmol) and di­phenyl­phosphinic acid (109 mg, 0.5 mmol) dissolved in DMF (5 ml) was heated without stirring at 333 K for 3 d resulting in a colorless solution. The vial was transferred to a 278 K refrigerator for 2 d, resulting in the formation of colorless crystals (yield 0.043 g, 25% based on Cd). IR (KBr pellet, ν, cm-1): 3563 (w), 3388 (m), 3047 (w), 2941 (w), 1676 (m), 1604 (s), 1535 (m), 1485 (w), 1436 (m), 1414 (m), 1385 (w), 1345 (w), 1318 (w), 1221 (w), 1180 (s), 1129 (s), 1052 (s), 1024 (w), 991 (w), 942 (w), 910 (m), 867 (w), 809 (m), 754 (m), 721 (s), 698 (s).

Preparation [Cd(O2PPh2)2(bipy)].DMF, (II) top

Cd(NO3)2.4H2O (77 mg, 0.25 mmol), di­phenyl­phosphinic acid (109 mg, 0.5 mmol) and 4,4'-bi­pyridine (40 mg, 0.25 mmol) were added to a vial, along with DMF (10 ml). The vial was capped and heated to 333 K in a silicone oil bath for 7 d, during which time pale-pink crystals deposited on the walls of the vial (yield 0.103 g, 53% yield based on Cd). IR (KBr pellet, ν, cm-1): 3050 (w), 3006 (w), 2925 (w), 2359 (m), 2343 (m), 2179 (s), 1647 (s), 1485 (w), 1437 (s), 1417 (w), 1391 (s), 1314 (w), 1261 (w), 1192 (s), 1161 (m), 1131 (s), 1052 (s), 1023 (s), 998 (m), 925 (w), 756 (m), 723 (s), 696 (s), 677 (m).

Crystallography and refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystals were mounted on MiTeGen loops at 150 K using Paratone-N oil. Data were collected using a combination of ω and ϕ scans. Compound (I) was examined on a Bruker APEXII instrument. A data collection strategy requiring a minimum of fourfold redundancy was employed. Due to the diminutive size of the crystals of compound (II), intensity data were collected at 150 K on a D8 goniostat equipped with a Bruker APEXII CCD detector at Beamline 11.3.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory) using synchrotron radiation tuned to λ = 0.77490 Å. For data collection, frames were measured for a duration of 1 s at 0.3° inter­vals of ω with a maximum 2θ value of ~60°. The data frames were collected using the program APEX2 (Bruker, 2010) and processed using the program SAINT routine within APEX2. The data were corrected for absorption and beam corrections based on the multi-scan technique as implemented in SADABS. For compound (II), anomalous dispersion factors were calculated using the method of Brennan and Cowan in PLATON (Brennan & Cowan, 1992; Spek, 2009).

The structures of (I) and (II) were solved from partial data sets using the Autostructure option in APEX2 (Bruker, 2010). This option employs direct methods, Patterson synthesis and dual space routines of SHELXTL (Sheldrick, 2008a). H atoms were placed at calculated positions with Uiso(H) values set at 1.5Ueq(C) for methyl groups or at 1.2Ueq(C) otherwise. All crystallographic details are available in Table 1.

In the refinement of compound (I), the ratio of maximum to minimum electron density was 5.94. A three-electron peak resides at 1.75 Å from atom O1. Upon examination, there is possible twinning in the crystal that cannot be excised into separate components because the reflections are too close to the primary component. Reintegration of the data did not improve this and the structure solution is reported as such.

Both structures are achiral, however solutions in acentric space-group options yielded chemically reasonable models which fit better to the data. Similarly, an alternative potential space group of Pcca for (II) was abandoned because of poorer fit as opposed to the reported space group. Analysis of intensities of Friedel pairs of reflections through Flack's methodology (Parsons et al., 2013) and Hooft's Bayesian analysis (Hooft et al., 2008) also support the choice of acentric space groups. For (I), the null value with low errors, the Flack x parameter is 0.04 (2) and the Hooft y parameter is 0.04 (2), is indicative of the correct assignment of handedness. For (II), the fractional, but not half, value with low errors, the Flack x parameter = 0.30 (4) and the Hooft y parameter = 0.29 (2), is suggestive of racemic twinning.

Results and discussion top

Synthesis and spectroscopy top

Compounds (I) and (II) were prepared by the reaction of cadmium nitrate and the appropriate organic linker molecules. The compounds were crystallized from DMF solutions. The IR spectrum of each compound is consistent with the proposed formulations provided previously. In both compounds, strong P—O stretches from the phosphinate ligands were evident near 1200 cm-1. In (I), the C O stretch from the DMF ligands was observed at 1604 cm-1. Compound (II) displayed appropriate aryl stretches near 3000 cm-1 from 4,4'-bi­pyridine, as well as additional strong stretches at 1647, 1437, and 696 cm-1 resulting from this ligand.

Crystal structure of [Cd(O2PPh2)2(DMF)2], (I) top

As shown in Fig. 1, the structure of (I) revealed a one-dimensional chain motif that runs parallel to the crystallographic c axis. The compound crystallized in the monoclinic space group P21. Throughout the structure, the CdII centers reside in pseudo-o­cta­hedral geometries and are connected together by a single type of phosphinate bridging mode. A Cd—O—P—O—Cd motif is displayed throughout the chain. The o­cta­hedral geometry results from contacts to four O atoms from four separate phosphinate ligands plus two O atoms from two DMF ligands. The Cd—O bond lengths are in the range 2.236 (6)–2.323 (6) Å. The trans-O—Cd—O bond angles range from 174.3 (3) to 179.2 (3)°, while the cis-O—Cd—O angles range from 84.1 (3) to 95.3 (2)°. A complete list of bond lengths and angles involving the CdII centers is given in Table 2.

In an attempt to isolate a higher dimensionality structure using the di­phenyl­phosphinate anion, we employed a similar synthesis as described for (I) and added one equivalent of 4,4'-bi­pyridine. By displacing the DMF molecules from cadmium, the chains could be assembled into two-dimensional structures. Upon standing at 333 K for several days, small crystals suitable for synchrotron X-ray diffraction were obtained. Compound (II) formed a two-dimensional sheet structure where the cadmium(II) phosphinate chains were crosslinked by 4,4'-bi­pyridine. These sheets run along the crystallographic ac plane. Fig. 2 shows the local geometry around the CdII center. In (II), the Cd—O distances range from 2.276 (5) to 2.296 (5) Å and the Cd—N distances are 2.349 (4) and 2.402 (4) Å. The cis bond angles around the CdII center range from 85.0 (4) to 95.6 (4)°. The trans angles range from 171.03 (11) to 178.1 (8)°, with the N—Cd—N angle being widest. Fig. 3 illustrates portions of three cadmium(II) phosphinate chains running vertically and connected by 4,4'-bi­pyridine in the horizontal direction. A similar approach using 4,4'-bi­pyridine has been noted by Dong and co-workers. In their study, a mixed carboxyl­ate–phosphinate dianionic ligand generated chain structures with cadmium(II). Sheet-like structures similar to (II) were isolated upon addition of 4,4'-bi­pyridine. An inter­esting difference in this case was that each CdII center was bis-coordinated to phosphinate moieties, whereas (II) exhibits tetra-coordination to the phosphinates (Dong et al. 2012).

Upon closer inspection of the structure of (II), the two-dimensional sheets assemble into a three-dimensional architecture via parallel displaced ππ inter­actions between the phenyl rings of neighboring di­phenyl­phosphinate ligands on adjacent chains (Hunter & Sanders, 1990). The inter­planar separation of aligning C atoms are as follows: C2 and C16 at a distance of 3.637 (15) Å, C3 and C17 at a distance of 3.477 (9) Å, and C4 and C18 at a distance of 3.565 (15) Å. The periplanar angle formed by these phenyl and pyridyl rings is 9.73 (3)°. While weak, these inter­actions help the structure assemble pores parallel to the crystallographic c axis which encapsulate free DMF molecules as solvents of crystallization. The ππ inter­actions as viewed between C atoms and the expanded framework are illustrated in Fig. 4.

Conclusions top

One- and two-dimensional cadmium phosphinate coordination polymers have been synthesized and characterized in the solid state. The two-dimensional structure, (II), takes on a three-dimensional architecture when ππ inter­actions between phenyl rings of the di­phenyl­phoshinate ligands are considered. Both materials exhibit a single type of phosphinate bridging mode. This general M—O—P—O—M motif has been noted for other transition-metal phosphinates, as well as a series of alkaline-earth-metal phosphinates that we recently reported. In general, chains predominant the literature for most metal complexes incorporating di­phenyl­phosphinate ligands. This study has shown that additional neutral organic molecules, such as 4,4'-bi­pyridine, can be used to synthesize higher-dimensional structures beyond that of chains. Such findings prompt future studies aimed at isolating porous materials with potentially useful properties in materials applications.

Related literature top

For related literature, see: Al-Shboul, Volland, Görls, Krieck & Westerhausen (2012); Annan et al. (1991); Bataille et al. (2008); Beckman et al. (2004, 2005); Berti et al. (2002); Bino & Sassman (1987); Brennan & Cowan (1992); Bruker (2010); Côte & Shimizu (2003); Cecconi et al. (2003, 2004); Ciattini et al. (2005); Clearfield (2008); Costantino, Ienco, Midollini & Orlandini (2008); Costantino, Midollini & Orlandini (2008); Czaja et al. (2009); Dinča & Long (2008); Dong et al. (2012); Du et al. (1991); Farha & Hupp (2010); Furukawa et al. (2013); Hooft et al. (2008); Horike & Kitagawa (2011); Hunter & Sanders (1990); James (2003); Konar et al. (2007); Li et al. (2014); Liang & Shimizu (2007); Midollini & Orlandini (2006); Midollini et al. (2004); Parsons et al. (2013); Rood et al. (2014); Ruettinger et al. (1999); Sheldrick (2008a); Shimizu et al. (2009); Spek (2009); Stock & Biswas (2012); Tranchemontagne et al. (2009); Videnova-Adrabinska (2007); Zhao et al. (2011).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2010). Cell refinement: APEX2 and SAINT (Bruker, 2010) for CompoundI; SAINT (Bruker, 2010) for CompoundII. Data reduction: SAINT (Bruker, 2010) and XPREP (Sheldrick, 2008a) for CompoundI; SAINT (Bruker, 2010) for CompoundII. For both compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008a). Molecular graphics: XP in SHELXTL (Sheldrick, 2008a) and CrystalMaker (Palmer, 2010) for CompoundI; SHELXTL (Sheldrick, 2008a) and CrystalMaker (Palmer, 2010) for CompoundII. Software used to prepare material for publication: XCIF (Bruker, 2010) and enCIFer (CCDC, 2004) for CompoundI; SHELXTL (Sheldrick, 2008a) for CompoundII.

Figures top
[Figure 1] Fig. 1. A single chain observed in (I). H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, -y+1, z, (ii) x, y+1, z].
[Figure 2] Fig. 2. The geometry around a CdII center in (II). H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x-1/2, -y, z; (ii) -x+1/2, y, z+1/2; (iii) -x+1/2, y, z-1/2.]
[Figure 3] Fig. 3. A portion of a single two-dimensional sheet formed in (II). H atoms have been omitted for clarity.
[Figure 4] Fig. 4. An illustration of the ππ interactions between phenyl rings in (II) and the extended structure showing DMF molecules in the resulting channels. In the figure on the left, only the N atoms of 4,4'-bipyridine have been shown for clarity.
(CompoundI) catena-Poly[[bis(dimethylformamide-κO)cadmium(II)]-bis(µ-diphenylphosphinato-κ2O:O')] top
Crystal data top
[Cd(C12H10O2P)2(C3H7NO)2]F(000) = 708
Mr = 692.93Dx = 1.579 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 15.285 (3) ÅCell parameters from 2486 reflections
b = 5.7077 (11) Åθ = 2.4–22.2°
c = 16.907 (3) ŵ = 0.91 mm1
β = 98.912 (5)°T = 120 K
V = 1457.1 (5) Å3Rod, colorless
Z = 20.24 × 0.18 × 0.15 mm
Data collection top
Bruker X8 APEXII CCD
diffractometer
5731 independent reflections
Radiation source: fine-focus sealed tube4600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 8.33 pixels mm-1θmax = 26.5°, θmin = 1.2°
ϕ and ω scansh = 1918
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
k = 76
Tmin = 0.92, Tmax = 0.94l = 2021
15833 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5731 reflectionsΔρmax = 3.18 e Å3
374 parametersΔρmin = 0.54 e Å3
1 restraintAbsolute structure: Flack x determined using 1693 quotients [(I+)-(I&-&)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
[Cd(C12H10O2P)2(C3H7NO)2]V = 1457.1 (5) Å3
Mr = 692.93Z = 2
Monoclinic, P21Mo Kα radiation
a = 15.285 (3) ŵ = 0.91 mm1
b = 5.7077 (11) ÅT = 120 K
c = 16.907 (3) Å0.24 × 0.18 × 0.15 mm
β = 98.912 (5)°
Data collection top
Bruker X8 APEXII CCD
diffractometer
5731 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
4600 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.94Rint = 0.064
15833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.115Δρmax = 3.18 e Å3
S = 1.03Δρmin = 0.54 e Å3
5731 reflectionsAbsolute structure: Flack x determined using 1693 quotients [(I+)-(I&-&)]/[(I+)+(I-)] (Parsons et al., 2013)
374 parametersAbsolute structure parameter: 0.04 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.19261 (4)0.18695 (14)0.72123 (3)0.01222 (16)
O10.1296 (4)0.4926 (12)0.7730 (4)0.0175 (16)
O20.0870 (4)0.9237 (11)0.7429 (4)0.0165 (15)
O30.2691 (4)0.1035 (12)0.6671 (4)0.0165 (17)
O40.3001 (4)0.5428 (13)0.7010 (4)0.0184 (17)
O50.2671 (4)0.0952 (11)0.8478 (4)0.0190 (16)
O60.1125 (4)0.2837 (11)0.5991 (4)0.0162 (15)
N10.3365 (6)0.1926 (17)0.9255 (6)0.023 (2)
N20.1040 (6)0.5686 (16)0.5051 (5)0.013 (2)
P10.07575 (14)0.7027 (7)0.78742 (12)0.0133 (5)
P20.32813 (12)0.3125 (8)0.66868 (11)0.0143 (4)
C10.0968 (6)0.7584 (15)0.8946 (5)0.015 (2)
C20.0731 (6)0.9701 (18)0.9253 (6)0.019 (2)
H20.04631.08810.89000.022*
C30.0880 (6)1.0113 (18)1.0071 (6)0.021 (2)
H30.07091.15641.02760.025*
C40.1278 (7)0.8421 (19)1.0587 (6)0.025 (2)
H40.13760.86991.11480.030*
C50.1535 (6)0.6302 (18)1.0286 (5)0.024 (3)
H50.18210.51441.06390.029*
C60.1372 (6)0.5888 (16)0.9464 (6)0.019 (2)
H60.15390.44350.92580.023*
C70.0404 (6)0.6246 (14)0.7649 (5)0.014 (2)
C80.0665 (6)0.4061 (16)0.7320 (5)0.015 (2)
H80.02300.29250.72480.018*
C90.1559 (6)0.3542 (17)0.7098 (5)0.019 (2)
H90.17310.20610.68680.023*
C100.2197 (7)0.5162 (17)0.7209 (6)0.021 (2)
H100.28050.47960.70540.025*
C110.1955 (6)0.7323 (17)0.7546 (5)0.020 (3)
H110.23960.84350.76240.024*
C120.1063 (6)0.7859 (16)0.7770 (6)0.019 (2)
H120.08980.93340.80070.022*
C130.3520 (6)0.3608 (16)0.5683 (5)0.017 (3)
C140.3256 (6)0.5671 (17)0.5281 (6)0.020 (2)
H140.29620.68510.55370.024*
C150.3424 (6)0.6013 (19)0.4493 (6)0.025 (2)
H150.32370.74190.42170.030*
C160.3858 (7)0.431 (2)0.4120 (6)0.027 (3)
H160.39660.45490.35880.033*
C170.4136 (7)0.2266 (19)0.4524 (6)0.026 (3)
H170.44450.11090.42730.031*
C180.3961 (6)0.1909 (18)0.5303 (6)0.022 (2)
H180.41440.04950.55750.027*
C190.4344 (6)0.2360 (15)0.7290 (5)0.016 (2)
C200.4484 (6)0.0156 (17)0.7645 (5)0.018 (2)
H200.40460.10250.75250.022*
C210.5250 (7)0.0340 (18)0.8169 (6)0.025 (2)
H210.53280.18210.84270.030*
C220.5909 (7)0.1376 (19)0.8313 (6)0.026 (2)
H220.64400.10580.86690.031*
C230.5793 (6)0.352 (2)0.7940 (6)0.026 (3)
H230.62470.46710.80360.031*
C240.5015 (7)0.4013 (17)0.7424 (6)0.024 (2)
H240.49430.54900.71630.029*
C250.2902 (6)0.1099 (18)0.8601 (5)0.016 (2)
H250.27270.21830.81800.020*
C260.3643 (10)0.033 (2)0.9927 (7)0.058 (4)
H26A0.42370.02680.98930.087*
H26B0.36530.11801.04320.087*
H26C0.32260.09770.99030.087*
C270.3684 (8)0.434 (2)0.9320 (8)0.035 (3)
H27A0.33900.52480.88640.052*
H27B0.35510.50300.98190.052*
H27C0.43260.43570.93230.052*
C280.1175 (6)0.4939 (17)0.5806 (5)0.016 (2)
H280.13140.60590.62220.019*
C290.1208 (8)0.815 (2)0.4874 (7)0.019 (3)
H29A0.12540.90720.53680.029*
H29B0.07190.87510.44830.029*
H29C0.17630.82720.46540.029*
C300.0834 (7)0.4068 (16)0.4372 (5)0.020 (2)
H30A0.06250.25760.45600.031*
H30B0.13680.37980.41300.031*
H30C0.03720.47510.39720.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0117 (3)0.0116 (3)0.0133 (3)0.0007 (4)0.00152 (19)0.0004 (4)
O10.014 (4)0.020 (4)0.020 (4)0.003 (3)0.006 (3)0.006 (3)
O20.016 (4)0.016 (4)0.018 (4)0.006 (3)0.003 (3)0.002 (3)
O30.017 (4)0.014 (4)0.018 (4)0.001 (3)0.002 (3)0.001 (3)
O40.011 (4)0.021 (4)0.025 (4)0.002 (3)0.008 (3)0.003 (3)
O50.019 (4)0.020 (4)0.015 (3)0.000 (3)0.004 (3)0.002 (3)
O60.017 (3)0.014 (4)0.016 (3)0.000 (3)0.003 (3)0.001 (3)
N10.020 (5)0.018 (5)0.025 (5)0.006 (4)0.009 (4)0.004 (4)
N20.017 (5)0.010 (4)0.013 (4)0.004 (4)0.000 (4)0.001 (4)
P10.0142 (10)0.0129 (13)0.0130 (10)0.0012 (17)0.0033 (8)0.0006 (16)
P20.0119 (10)0.0144 (11)0.0168 (10)0.0001 (19)0.0028 (8)0.0014 (19)
C10.012 (5)0.014 (6)0.019 (5)0.002 (3)0.006 (4)0.005 (4)
C20.016 (5)0.022 (6)0.018 (5)0.003 (4)0.002 (4)0.001 (4)
C30.022 (6)0.020 (5)0.022 (5)0.003 (4)0.005 (4)0.009 (4)
C40.031 (6)0.031 (7)0.014 (5)0.004 (5)0.009 (5)0.008 (5)
C50.025 (5)0.038 (9)0.008 (4)0.005 (5)0.002 (4)0.003 (4)
C60.018 (5)0.013 (5)0.026 (6)0.002 (4)0.007 (4)0.002 (4)
C70.022 (5)0.016 (6)0.005 (4)0.003 (4)0.003 (3)0.002 (3)
C80.021 (5)0.014 (5)0.011 (5)0.002 (4)0.004 (4)0.003 (4)
C90.024 (6)0.016 (5)0.018 (5)0.006 (4)0.001 (4)0.000 (4)
C100.022 (6)0.018 (5)0.021 (5)0.010 (4)0.000 (4)0.010 (4)
C110.021 (5)0.015 (8)0.025 (5)0.005 (4)0.007 (4)0.008 (4)
C120.017 (5)0.014 (5)0.025 (5)0.003 (4)0.004 (4)0.003 (4)
C130.011 (4)0.017 (8)0.024 (5)0.000 (4)0.002 (4)0.005 (4)
C140.020 (5)0.017 (6)0.023 (5)0.002 (4)0.004 (4)0.001 (4)
C150.021 (6)0.031 (7)0.022 (5)0.004 (5)0.000 (4)0.005 (5)
C160.028 (6)0.036 (7)0.020 (6)0.010 (5)0.007 (5)0.002 (5)
C170.022 (6)0.037 (7)0.020 (5)0.001 (4)0.009 (5)0.001 (5)
C180.015 (5)0.024 (6)0.027 (6)0.002 (4)0.005 (4)0.001 (5)
C190.011 (5)0.019 (6)0.018 (5)0.000 (3)0.005 (4)0.004 (4)
C200.012 (5)0.019 (6)0.023 (5)0.004 (4)0.003 (4)0.001 (4)
C210.029 (6)0.021 (6)0.024 (6)0.005 (5)0.000 (5)0.003 (4)
C220.017 (6)0.038 (7)0.019 (5)0.009 (5)0.007 (4)0.010 (5)
C230.008 (4)0.035 (10)0.033 (5)0.003 (5)0.003 (4)0.004 (5)
C240.025 (6)0.027 (6)0.021 (5)0.002 (4)0.009 (4)0.003 (4)
C250.015 (5)0.023 (6)0.013 (5)0.003 (4)0.005 (4)0.001 (4)
C260.097 (12)0.034 (8)0.030 (7)0.008 (8)0.031 (8)0.000 (6)
C270.032 (8)0.031 (7)0.039 (7)0.005 (6)0.004 (6)0.009 (6)
C280.013 (5)0.020 (6)0.016 (5)0.001 (4)0.003 (4)0.001 (4)
C290.021 (6)0.014 (6)0.022 (6)0.000 (5)0.000 (5)0.003 (5)
C300.034 (6)0.012 (5)0.014 (5)0.004 (4)0.001 (4)0.002 (4)
Geometric parameters (Å, º) top
Cd1—O12.236 (6)C17—C181.398 (14)
Cd1—O2i2.275 (7)C19—C241.386 (12)
Cd1—O32.298 (7)C19—C201.396 (13)
Cd1—O62.299 (6)C20—C211.383 (13)
Cd1—O4ii2.317 (7)C21—C221.399 (14)
Cd1—O52.323 (6)C22—C231.375 (16)
O1—P11.496 (8)C23—C241.390 (13)
O2—P11.493 (8)C2—H20.9500
O2—Cd1ii2.276 (6)C3—H30.9500
O3—P21.494 (8)C4—H40.9500
O4—P21.511 (8)C5—H50.9500
O4—Cd1i2.317 (7)C6—H60.9500
O5—C251.231 (11)C8—H80.9500
O6—C281.245 (11)C9—H90.9500
N1—C251.305 (13)C10—H100.9500
N1—C271.459 (12)C11—H110.9500
N1—C261.465 (14)C12—H120.9500
N2—C281.332 (12)C14—H140.9500
N2—C291.468 (11)C15—H150.9500
N2—C301.469 (12)C16—H160.9500
P1—C71.812 (9)C17—H170.9500
P1—C11.818 (9)C18—H180.9500
P2—C131.811 (9)C20—H200.9500
P2—C191.832 (9)C21—H210.9500
C1—C61.385 (12)C22—H220.9500
C1—C21.386 (13)C23—H230.9500
C2—C31.386 (13)C24—H240.9500
C3—C41.378 (14)C25—H250.9500
C4—C51.392 (14)C26—H26A0.9800
C5—C61.394 (12)C26—H26B0.9800
C7—C81.398 (12)C26—H26C0.9800
C7—C121.403 (12)C27—H27A0.9800
C8—C91.392 (13)C27—H27B0.9800
C9—C101.377 (14)C27—H27C0.9800
C10—C111.385 (14)C28—H280.9500
C11—C121.391 (13)C29—H29A0.9800
C13—C141.388 (13)C29—H29B0.9800
C13—C181.394 (13)C29—H29C0.9800
C14—C151.410 (13)C30—H30A0.9800
C15—C161.380 (15)C30—H30B0.9800
C16—C171.387 (14)C30—H30C0.9800
O1—Cd1—O2i95.3 (2)O5—C25—N1126.2 (10)
O1—Cd1—O3174.3 (3)O6—C28—N2122.9 (9)
O2i—Cd1—O390.3 (3)C1—C2—H2119.7
O1—Cd1—O687.9 (2)C3—C2—H2119.7
O2i—Cd1—O690.6 (2)C4—C3—H3120.0
O3—Cd1—O692.8 (2)C2—C3—H3120.0
O1—Cd1—O4ii84.1 (3)C3—C4—H4120.0
O2i—Cd1—O4ii179.2 (3)C5—C4—H4120.0
O3—Cd1—O4ii90.3 (2)C4—C5—H5120.2
O6—Cd1—O4ii89.9 (2)C6—C5—H5120.2
O1—Cd1—O589.7 (2)C1—C6—H6119.8
O2i—Cd1—O587.8 (2)C5—C6—H6119.8
O3—Cd1—O589.8 (2)C9—C8—H8119.8
O6—Cd1—O5177.0 (2)C7—C8—H8119.8
O4ii—Cd1—O591.6 (2)C10—C9—H9119.8
P1—O1—Cd1166.1 (4)C8—C9—H9119.8
P1—O2—Cd1ii141.2 (4)C9—C10—H10119.8
P2—O3—Cd1155.8 (4)C11—C10—H10119.8
P2—O4—Cd1i151.6 (4)C10—C11—H11120.2
C25—O5—Cd1117.2 (6)C12—C11—H11120.2
C28—O6—Cd1114.3 (6)C11—C12—H12119.6
C25—N1—C27122.4 (10)C7—C12—H12119.6
C25—N1—C26119.1 (10)C13—C14—H14120.0
C27—N1—C26118.2 (10)C15—C14—H14120.0
C28—N2—C29119.7 (9)C16—C15—H15119.8
C28—N2—C30122.1 (9)C14—C15—H15119.8
C29—N2—C30117.8 (9)C15—C16—H16120.0
O2—P1—O1119.1 (4)C17—C16—H16120.0
O2—P1—C7106.7 (4)C16—C17—H17120.1
O1—P1—C7108.3 (4)C18—C17—H17120.1
O2—P1—C1109.8 (4)C13—C18—H18119.7
O1—P1—C1106.6 (4)C17—C18—H18119.7
C7—P1—C1105.6 (4)C21—C20—H20119.4
O3—P2—O4119.8 (3)C19—C20—H20119.4
O3—P2—C13108.3 (4)C20—C21—H21120.6
O4—P2—C13108.4 (5)C22—C21—H21120.6
O3—P2—C19107.5 (4)C23—C22—H22119.8
O4—P2—C19106.4 (4)C21—C22—H22119.8
C13—P2—C19105.5 (4)C22—C23—H23119.9
C6—C1—C2119.3 (8)C24—C23—H23119.9
C6—C1—P1120.1 (7)C19—C24—C23120.3 (10)
C2—C1—P1120.7 (7)C19—C24—H24119.8
C1—C2—C3120.7 (9)C23—C24—H24119.8
C4—C3—C2120.0 (9)O5—C25—H25116.9
C3—C4—C5120.0 (8)N1—C25—H25116.9
C4—C5—C6119.6 (9)N1—C26—H26A109.5
C1—C6—C5120.4 (9)N1—C26—H26B109.5
C8—C7—C12118.4 (8)H26A—C26—H26B109.5
C8—C7—P1120.9 (7)N1—C26—H26C109.5
C12—C7—P1120.7 (7)H26A—C26—H26C109.5
C9—C8—C7120.3 (9)H26B—C26—H26C109.5
C10—C9—C8120.4 (9)N1—C27—H27A109.5
C9—C10—C11120.3 (9)N1—C27—H27B109.5
C10—C11—C12119.7 (9)H27A—C27—H27B109.5
C11—C12—C7120.8 (9)N1—C27—H27C109.5
C14—C13—C18119.3 (9)H27A—C27—H27C109.5
C14—C13—P2120.2 (8)H27B—C27—H27C109.5
C18—C13—P2120.6 (7)O6—C28—H28118.6
C13—C14—C15119.9 (9)N2—C28—H28118.6
C16—C15—C14120.3 (10)N2—C29—H29A109.5
C15—C16—C17120.0 (10)N2—C29—H29B109.5
C16—C17—C18119.8 (10)H29A—C29—H29B109.5
C13—C18—C17120.7 (10)N2—C29—H29C109.5
C24—C19—C20118.8 (9)H29A—C29—H29C109.5
C24—C19—P2119.9 (7)H29B—C29—H29C109.5
C20—C19—P2121.2 (7)N2—C30—H30A109.5
C21—C20—C19121.2 (9)N2—C30—H30B109.5
C20—C21—C22118.9 (10)H30A—C30—H30B109.5
C23—C22—C21120.4 (9)N2—C30—H30C109.5
C22—C23—C24120.3 (10)H30A—C30—H30C109.5
C19—C24—C23120.3 (10)H30B—C30—H30C109.5
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
(CompoundII) Poly[[(µ-4,4'-bipyridine-κ2N:N')bis(µ-diphenylphosphinato-κ2O:O')cadmium(II)] dimethylformamide monosolvate] top
Crystal data top
[Cd(C12H10O2P)2(C10H8N2)]·C3H7NODx = 1.513 Mg m3
Mr = 776.02Synchrotron radiation, λ = 0.77490 Å
Orthorhombic, Pca21Cell parameters from 9937 reflections
a = 23.695 (2) Åθ = 2.6–28.9°
b = 12.8861 (12) ŵ = 0.97 mm1
c = 11.1594 (10) ÅT = 150 K
V = 3407.3 (5) Å3Blade, pink–cyan
Z = 40.08 × 0.03 × 0.01 mm
F(000) = 1584
Data collection top
Bruker APEXII
diffractometer
6924 independent reflections
Radiation source: synchrotron6231 reflections with I > 2σ(I)
Si-<111> channel cut crystal monochromatorRint = 0.081
Detector resolution: 8.33 pixels mm-1θmax = 28.9°, θmin = 2.0°
phi and ω scansh = 2929
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
k = 1616
Tmin = 0.93, Tmax = 0.96l = 1313
36812 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0325P)2 + 5.2727P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.009
6924 reflectionsΔρmax = 1.15 e Å3
411 parametersΔρmin = 0.58 e Å3
1 restraintAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.30 (4)
Crystal data top
[Cd(C12H10O2P)2(C10H8N2)]·C3H7NOV = 3407.3 (5) Å3
Mr = 776.02Z = 4
Orthorhombic, Pca21Synchrotron radiation, λ = 0.77490 Å
a = 23.695 (2) ŵ = 0.97 mm1
b = 12.8861 (12) ÅT = 150 K
c = 11.1594 (10) Å0.08 × 0.03 × 0.01 mm
Data collection top
Bruker APEXII
diffractometer
6924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
6231 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.96Rint = 0.081
36812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106Δρmax = 1.15 e Å3
S = 1.04Δρmin = 0.58 e Å3
6924 reflectionsAbsolute structure: Refined as an inversion twin.
411 parametersAbsolute structure parameter: 0.30 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.26337 (2)0.00576 (3)0.49304 (17)0.01693 (12)
P10.2550 (2)0.17052 (11)0.2486 (2)0.0181 (5)
P20.2541 (2)0.18215 (11)0.7376 (2)0.0177 (5)
O10.25947 (19)0.1405 (3)0.3791 (5)0.0214 (10)
O20.22963 (18)0.0952 (3)0.1619 (5)0.0227 (10)
O30.2575 (2)0.1516 (3)0.6086 (5)0.0226 (10)
O40.22853 (18)0.1077 (3)0.8258 (5)0.0207 (9)
N10.36474 (17)0.0043 (4)0.4958 (18)0.0202 (9)
N20.66424 (18)0.0064 (3)0.4971 (17)0.0198 (10)
C10.2154 (3)0.2908 (5)0.2380 (7)0.0252 (15)
C20.2171 (3)0.3654 (5)0.3261 (8)0.0352 (18)
H20.23850.35300.39660.042*
C30.1880 (4)0.4586 (6)0.3138 (9)0.048 (2)
H30.18930.50870.37610.057*
C40.1580 (6)0.4778 (9)0.2137 (16)0.058 (4)
H40.13900.54220.20440.069*
C50.1548 (4)0.4021 (7)0.1228 (10)0.053 (3)
H50.13210.41430.05420.063*
C60.1845 (3)0.3106 (6)0.1328 (8)0.0351 (18)
H60.18400.26140.06940.042*
C70.3249 (3)0.2063 (4)0.1974 (6)0.0196 (13)
C80.3342 (3)0.2304 (5)0.0780 (7)0.0249 (14)
H80.30320.22900.02390.030*
C90.3869 (3)0.2565 (5)0.0351 (7)0.0317 (16)
H90.39240.27380.04680.038*
C100.4316 (3)0.2566 (6)0.1146 (8)0.0356 (18)
H100.46840.27300.08640.043*
C110.4235 (3)0.2330 (6)0.2368 (8)0.039 (2)
H110.45450.23310.29100.047*
C120.3706 (3)0.2099 (5)0.2756 (7)0.0263 (15)
H120.36460.19590.35820.032*
C130.2143 (3)0.3022 (5)0.7493 (7)0.0219 (14)
C140.1823 (3)0.3216 (6)0.8499 (8)0.0374 (19)
H140.18030.27120.91180.045*
C150.1528 (4)0.4153 (7)0.8613 (11)0.060 (3)
H150.13170.42860.93210.072*
C160.1540 (6)0.4878 (7)0.7721 (17)0.054 (4)
H160.13250.54960.77870.065*
C170.1872 (4)0.4699 (7)0.6714 (8)0.046 (2)
H170.18980.52140.61070.055*
C180.2165 (3)0.3777 (5)0.6591 (7)0.0309 (16)
H180.23820.36540.58900.037*
C190.3241 (3)0.2182 (5)0.7866 (7)0.0225 (13)
C200.3331 (3)0.2423 (5)0.9074 (7)0.0257 (15)
H200.30270.24030.96270.031*
C210.3870 (3)0.2694 (5)0.9457 (8)0.0322 (16)
H210.39310.28641.02750.039*
C220.4316 (3)0.2719 (6)0.8670 (9)0.043 (2)
H220.46830.29030.89410.051*
C230.4227 (3)0.2479 (6)0.7496 (9)0.041 (2)
H230.45370.24870.69570.050*
C240.3684 (3)0.2218 (5)0.7062 (7)0.0291 (16)
H240.36260.20710.62370.035*
C250.3948 (3)0.0662 (5)0.4213 (6)0.0210 (13)
H250.37510.11020.36730.025*
C260.4535 (3)0.0679 (5)0.4209 (6)0.0220 (14)
H260.47280.11730.37290.026*
C270.48342 (19)0.0002 (4)0.488 (3)0.0172 (15)
C290.3936 (3)0.0595 (5)0.5653 (7)0.0235 (15)
H290.37290.10440.61660.028*
C300.5460 (2)0.0025 (4)0.490 (2)0.0190 (12)
C310.5763 (5)0.0213 (7)0.5960 (10)0.0221 (17)
H310.55660.03380.66880.027*
C320.6352 (4)0.0214 (6)0.5945 (9)0.0208 (17)
H320.65480.03290.66750.025*
C330.6347 (5)0.0126 (6)0.3927 (11)0.023 (2)
H330.65560.02600.32160.028*
C340.5772 (5)0.0132 (5)0.3863 (10)0.0200 (19)
H340.55880.02430.31180.024*
C380.4519 (3)0.0654 (5)0.5683 (6)0.0213 (14)
H380.47050.11130.62180.026*
O1S0.5225 (3)0.2435 (6)0.2704 (7)0.077 (2)*
N1S0.5041 (4)0.4099 (6)0.2251 (8)0.060 (2)*
C1S0.5092 (5)0.3119 (9)0.1916 (11)0.083 (3)*
H1S0.50320.29240.11050.099*
C2S0.4943 (7)0.4802 (13)0.1267 (19)0.108 (5)*
H2SA0.48090.44100.05700.162*
H2SB0.52950.51590.10630.162*
H2SC0.46570.53140.14990.162*
C3S0.5063 (6)0.4500 (15)0.3392 (16)0.105 (5)*
H3SA0.48890.40110.39530.157*
H3SB0.48600.51610.34160.157*
H3SC0.54580.46130.36200.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01206 (19)0.02235 (19)0.01637 (19)0.00014 (14)0.0000 (5)0.0014 (3)
P10.0174 (15)0.0206 (6)0.0162 (9)0.0023 (9)0.0008 (8)0.0032 (9)
P20.0170 (13)0.0199 (6)0.0161 (9)0.0007 (10)0.0012 (8)0.0005 (9)
O10.023 (3)0.024 (2)0.017 (3)0.0028 (17)0.001 (2)0.0011 (18)
O20.021 (2)0.026 (2)0.021 (3)0.0031 (18)0.001 (2)0.0018 (19)
O30.027 (3)0.023 (2)0.018 (3)0.0004 (18)0.000 (2)0.0008 (18)
O40.018 (2)0.026 (2)0.019 (2)0.0019 (17)0.000 (2)0.0010 (18)
N10.0146 (18)0.027 (2)0.019 (2)0.0004 (17)0.004 (7)0.006 (2)
N20.0146 (19)0.024 (2)0.021 (3)0.0000 (17)0.010 (6)0.005 (2)
C10.024 (4)0.024 (3)0.028 (4)0.001 (3)0.003 (3)0.006 (3)
C20.039 (4)0.028 (3)0.039 (5)0.001 (3)0.010 (4)0.006 (3)
C30.056 (5)0.025 (4)0.063 (6)0.003 (4)0.029 (5)0.000 (4)
C40.043 (7)0.040 (5)0.091 (10)0.024 (6)0.013 (7)0.023 (7)
C50.043 (5)0.044 (5)0.071 (7)0.005 (4)0.016 (5)0.019 (5)
C60.028 (4)0.033 (4)0.044 (5)0.003 (3)0.013 (4)0.013 (3)
C70.016 (3)0.020 (3)0.023 (3)0.001 (2)0.005 (3)0.002 (2)
C80.022 (3)0.028 (3)0.025 (4)0.001 (2)0.002 (3)0.006 (3)
C90.028 (4)0.042 (4)0.025 (4)0.005 (3)0.001 (3)0.006 (3)
C100.014 (3)0.051 (4)0.041 (5)0.007 (3)0.007 (3)0.008 (3)
C110.020 (4)0.062 (5)0.036 (5)0.008 (3)0.008 (3)0.002 (4)
C120.026 (4)0.035 (4)0.018 (4)0.002 (3)0.004 (3)0.005 (3)
C130.015 (3)0.021 (3)0.029 (4)0.003 (2)0.007 (3)0.009 (2)
C140.034 (4)0.033 (4)0.044 (5)0.003 (3)0.005 (4)0.008 (3)
C150.044 (5)0.045 (5)0.090 (9)0.006 (4)0.021 (6)0.028 (5)
C160.035 (7)0.035 (5)0.091 (10)0.010 (4)0.006 (6)0.015 (6)
C170.055 (6)0.028 (4)0.053 (6)0.009 (4)0.025 (5)0.006 (4)
C180.042 (4)0.026 (3)0.025 (4)0.003 (3)0.013 (4)0.001 (3)
C190.021 (3)0.023 (3)0.024 (4)0.001 (2)0.007 (3)0.000 (2)
C200.025 (4)0.028 (3)0.024 (4)0.003 (3)0.001 (3)0.003 (3)
C210.028 (4)0.039 (4)0.029 (4)0.001 (3)0.009 (3)0.008 (3)
C220.029 (4)0.049 (4)0.051 (6)0.009 (3)0.001 (4)0.010 (4)
C230.020 (4)0.062 (5)0.043 (5)0.006 (3)0.010 (4)0.011 (4)
C240.025 (4)0.034 (4)0.028 (4)0.000 (3)0.005 (3)0.000 (3)
C250.019 (3)0.029 (3)0.015 (3)0.002 (2)0.002 (3)0.002 (2)
C260.017 (3)0.027 (3)0.022 (4)0.000 (2)0.002 (3)0.005 (2)
C270.014 (2)0.023 (2)0.014 (4)0.0016 (17)0.006 (6)0.003 (2)
C290.017 (3)0.027 (3)0.026 (4)0.003 (2)0.003 (3)0.000 (3)
C300.016 (2)0.022 (2)0.020 (3)0.0003 (19)0.012 (7)0.002 (2)
C310.016 (4)0.031 (3)0.019 (4)0.004 (4)0.002 (3)0.001 (4)
C320.018 (4)0.027 (3)0.017 (4)0.005 (4)0.001 (3)0.005 (4)
C330.019 (4)0.032 (4)0.019 (4)0.001 (3)0.000 (3)0.001 (3)
C340.019 (4)0.029 (3)0.012 (4)0.002 (3)0.000 (3)0.004 (3)
C380.016 (3)0.026 (3)0.022 (4)0.001 (2)0.001 (3)0.000 (3)
Geometric parameters (Å, º) top
Cd1—O12.276 (5)C27—C381.441 (19)
Cd1—O32.283 (5)C27—C301.483 (7)
Cd1—O4i2.291 (5)C29—C381.384 (9)
Cd1—O2ii2.296 (5)C30—C341.39 (2)
Cd1—N2iii2.349 (4)C30—C311.41 (2)
Cd1—N12.402 (4)C31—C321.395 (16)
P1—O21.497 (6)C33—C341.365 (18)
P1—O11.511 (6)O1S—C1S1.285 (13)
P1—C71.811 (8)N1S—C1S1.322 (13)
P1—C11.816 (7)N1S—C3S1.375 (19)
P2—O31.495 (6)N1S—C2S1.44 (2)
P2—O41.502 (5)C2—H20.9500
P2—C191.807 (8)C3—H30.9500
P2—C131.818 (7)C4—H40.9500
O2—Cd1i2.296 (5)C5—H50.9500
O4—Cd1ii2.291 (5)C6—H60.9500
N1—C291.321 (15)C8—H80.9500
N1—C251.355 (14)C9—H90.9500
N2—C321.30 (2)C10—H100.9500
N2—C331.38 (2)C11—H110.9500
N2—Cd1iv2.349 (4)C12—H120.9500
C1—C21.375 (11)C14—H140.9500
C1—C61.408 (11)C15—H150.9500
C2—C31.392 (10)C16—H160.9500
C3—C41.347 (19)C17—H170.9500
C4—C51.409 (19)C18—H180.9500
C5—C61.376 (11)C20—H200.9500
C7—C81.386 (10)C21—H210.9500
C7—C121.391 (9)C22—H220.9500
C8—C91.380 (9)C23—H230.9500
C9—C101.381 (11)C24—H240.9500
C10—C111.411 (12)C25—H250.9500
C11—C121.360 (10)C26—H260.9500
C13—C141.376 (11)C29—H290.9500
C13—C181.400 (10)C31—H310.9500
C14—C151.401 (11)C32—H320.9500
C15—C161.37 (2)C33—H330.9500
C16—C171.39 (2)C34—H340.9500
C17—C181.383 (10)C38—H380.9500
C19—C241.381 (9)C1S—H1S0.9500
C19—C201.400 (10)C2S—H2SA0.9800
C20—C211.392 (9)C2S—H2SB0.9800
C21—C221.373 (11)C2S—H2SC0.9800
C22—C231.362 (13)C3S—H3SA0.9800
C23—C241.415 (10)C3S—H3SB0.9800
C25—C261.391 (9)C3S—H3SC0.9800
C26—C271.350 (18)
O1—Cd1—O3174.16 (12)N2—C32—C31122.6 (10)
O1—Cd1—O4i91.34 (19)C33—C34—C30119.3 (11)
O3—Cd1—O4i89.60 (18)C29—C38—C27118.1 (7)
O1—Cd1—O2ii89.56 (18)C1S—N1S—C3S128.1 (13)
O3—Cd1—O2ii90.41 (19)C1S—N1S—C2S113.6 (12)
O4i—Cd1—O2ii171.03 (11)C3S—N1S—C2S118.4 (10)
O1—Cd1—N2iii88.5 (3)C1—C2—H2119.4
O3—Cd1—N2iii85.7 (3)C3—C2—H2119.4
O4i—Cd1—N2iii95.6 (4)C4—C3—H3119.9
O2ii—Cd1—N2iii93.4 (4)C2—C3—H3119.9
O1—Cd1—N192.4 (3)C3—C4—H4120.1
O3—Cd1—N193.5 (3)C5—C4—H4120.1
O4i—Cd1—N186.0 (4)C6—C5—H5119.8
O2ii—Cd1—N185.0 (4)C4—C5—H5119.7
N2iii—Cd1—N1178.1 (8)C5—C6—H6120.4
O2—P1—O1119.0 (3)C1—C6—H6120.4
O2—P1—C7109.2 (4)C9—C8—H8119.0
O1—P1—C7107.8 (4)C7—C8—H8119.0
O2—P1—C1107.7 (4)C8—C9—H9120.9
O1—P1—C1108.5 (4)C10—C9—H9120.9
C7—P1—C1103.6 (3)C9—C10—H10119.4
O3—P2—O4119.0 (3)C11—C10—H10119.4
O3—P2—C19108.1 (4)C12—C11—H11120.7
O4—P2—C19109.7 (4)C10—C11—H11120.7
O3—P2—C13108.7 (4)C11—C12—H12119.2
O4—P2—C13106.6 (4)C7—C12—H12119.2
C19—P2—C13103.7 (3)C13—C14—H14119.8
P1—O1—Cd1138.9 (3)C15—C14—H14119.8
P1—O2—Cd1i150.3 (3)C16—C15—H15119.6
P2—O3—Cd1139.8 (3)C14—C15—H15119.6
P2—O4—Cd1ii150.0 (3)C15—C16—H16120.4
C29—N1—C25117.1 (4)C17—C16—H16120.4
C29—N1—Cd1122.0 (7)C18—C17—H17119.8
C25—N1—Cd1120.9 (8)C16—C17—H17119.8
C32—N2—C33117.6 (4)C17—C18—H18119.8
C32—N2—Cd1iv123.1 (10)C13—C18—H18119.8
C33—N2—Cd1iv119.3 (10)C21—C20—H20120.3
C2—C1—C6119.0 (7)C19—C20—H20120.3
C2—C1—P1122.4 (6)C22—C21—H21119.5
C6—C1—P1118.6 (6)C20—C21—H21119.5
C1—C2—C3121.2 (8)C23—C22—H22120.3
C4—C3—C2120.1 (10)C21—C22—H22120.3
C3—C4—C5119.8 (9)C22—C23—H23119.2
C6—C5—C4120.5 (10)C24—C23—H23119.2
C5—C6—C1119.2 (8)C19—C24—H24120.8
C8—C7—C12118.2 (6)C23—C24—H24120.8
C8—C7—P1120.3 (5)N1—C25—H25118.8
C12—C7—P1121.5 (5)C26—C25—H25118.8
C9—C8—C7122.0 (7)C27—C26—H26119.6
C8—C9—C10118.2 (7)C25—C26—H26119.6
C9—C10—C11121.1 (7)N1—C29—H29117.8
C12—C11—C10118.7 (7)C38—C29—H29117.8
C11—C12—C7121.7 (7)C32—C31—H31120.0
C14—C13—C18118.7 (6)C30—C31—H31120.0
C14—C13—P2119.9 (6)N2—C32—H32118.7
C18—C13—P2121.3 (6)C31—C32—H32118.7
C13—C14—C15120.4 (9)C34—C33—N2123.4 (11)
C16—C15—C14120.8 (11)C34—C33—H33118.3
C15—C16—C17119.2 (9)N2—C33—H33118.3
C18—C17—C16120.4 (9)C33—C34—H34120.4
C17—C18—C13120.5 (8)C30—C34—H34120.4
C24—C19—C20120.2 (6)C29—C38—H38120.9
C24—C19—P2120.6 (5)C27—C38—H38120.9
C20—C19—P2119.2 (6)O1S—C1S—N1S119.0 (11)
C21—C20—C19119.4 (7)O1S—C1S—H1S120.5
C22—C21—C20121.0 (7)N1S—C1S—H1S120.5
C23—C22—C21119.4 (8)N1S—C2S—H2SA109.5
C22—C23—C24121.6 (8)N1S—C2S—H2SB109.5
C19—C24—C23118.4 (7)H2SA—C2S—H2SB109.5
N1—C25—C26122.5 (7)N1S—C2S—H2SC109.5
C27—C26—C25120.9 (7)H2SA—C2S—H2SC109.5
C26—C27—C38116.8 (4)H2SB—C2S—H2SC109.5
C26—C27—C30123.2 (12)N1S—C3S—H3SA109.5
C38—C27—C30119.8 (12)N1S—C3S—H3SB109.5
N1—C29—C38124.3 (7)H3SA—C3S—H3SB109.5
C34—C30—C31117.0 (4)N1S—C3S—H3SC109.5
C34—C30—C27121.2 (14)H3SA—C3S—H3SC109.5
C31—C30—C27121.7 (15)H3SB—C3S—H3SC109.5
C32—C31—C30120.1 (10)
O2—P1—O1—Cd124.0 (7)P2—C13—C14—C15178.0 (7)
C7—P1—O1—Cd1101.0 (5)C13—C14—C15—C161.7 (14)
C1—P1—O1—Cd1147.4 (4)C14—C15—C16—C173.1 (18)
O1—P1—O2—Cd1i120.6 (6)C15—C16—C17—C183.1 (18)
C7—P1—O2—Cd1i3.7 (7)C16—C17—C18—C131.7 (13)
C1—P1—O2—Cd1i115.6 (6)C14—C13—C18—C170.2 (10)
O4—P2—O3—Cd127.4 (8)P2—C13—C18—C17178.0 (6)
C19—P2—O3—Cd198.4 (5)O3—P2—C19—C244.8 (6)
C13—P2—O3—Cd1149.7 (4)O4—P2—C19—C24135.9 (6)
O3—P2—O4—Cd1ii118.7 (6)C13—P2—C19—C24110.5 (6)
C19—P2—O4—Cd1ii6.4 (7)O3—P2—C19—C20175.1 (5)
C13—P2—O4—Cd1ii118.0 (6)O4—P2—C19—C2044.0 (6)
O2—P1—C1—C2161.7 (6)C13—P2—C19—C2069.6 (6)
O1—P1—C1—C231.6 (7)C24—C19—C20—C210.3 (10)
C7—P1—C1—C282.7 (7)P2—C19—C20—C21179.6 (5)
O2—P1—C1—C621.9 (7)C19—C20—C21—C220.6 (11)
O1—P1—C1—C6152.0 (5)C20—C21—C22—C230.2 (12)
C7—P1—C1—C693.7 (6)C21—C22—C23—C241.0 (13)
C6—C1—C2—C31.2 (11)C20—C19—C24—C231.5 (10)
P1—C1—C2—C3177.6 (6)P2—C19—C24—C23178.4 (6)
C1—C2—C3—C40.8 (14)C22—C23—C24—C191.8 (12)
C2—C3—C4—C51.8 (18)C29—N1—C25—C263.3 (16)
C3—C4—C5—C63.3 (18)Cd1—N1—C25—C26179.6 (6)
C4—C5—C6—C13.7 (14)N1—C25—C26—C276.1 (16)
C2—C1—C6—C52.6 (11)C25—C26—C27—C386 (2)
P1—C1—C6—C5179.2 (6)C25—C26—C27—C30179.1 (11)
O2—P1—C7—C844.8 (6)C25—N1—C29—C381.3 (17)
O1—P1—C7—C8175.4 (5)Cd1—N1—C29—C38178.4 (6)
C1—P1—C7—C869.7 (6)C26—C27—C30—C3438.5 (18)
O2—P1—C7—C12134.9 (5)C38—C27—C30—C34147.1 (13)
O1—P1—C7—C124.2 (6)C26—C27—C30—C31141.6 (16)
C1—P1—C7—C12110.6 (6)C38—C27—C30—C3132.8 (15)
C12—C7—C8—C90.7 (10)C34—C30—C31—C321.2 (13)
P1—C7—C8—C9179.0 (5)C27—C30—C31—C32178.8 (7)
C7—C8—C9—C101.0 (10)C33—N2—C32—C311.5 (14)
C8—C9—C10—C111.3 (12)Cd1iv—N2—C32—C31179.7 (6)
C9—C10—C11—C120.1 (13)C30—C31—C32—N21.2 (13)
C10—C11—C12—C71.9 (12)C32—N2—C33—C342.1 (13)
C8—C7—C12—C112.2 (10)Cd1iv—N2—C33—C34179.6 (6)
P1—C7—C12—C11177.5 (6)N2—C33—C34—C302.2 (12)
O3—P2—C13—C14148.8 (6)C31—C30—C34—C331.7 (12)
O4—P2—C13—C1419.4 (7)C27—C30—C34—C33178.3 (6)
C19—P2—C13—C1496.4 (6)N1—C29—C38—C271.9 (14)
O3—P2—C13—C1833.0 (7)C26—C27—C38—C294 (2)
O4—P2—C13—C18162.4 (5)C30—C27—C38—C29179.1 (10)
C19—P2—C13—C1881.8 (6)C3S—N1S—C1S—O1S6.3 (19)
C18—C13—C14—C150.2 (11)C2S—N1S—C1S—O1S174.6 (11)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z; (iv) x+1/2, y, z.

Experimental details

(CompoundI)(CompoundII)
Crystal data
Chemical formula[Cd(C12H10O2P)2(C3H7NO)2][Cd(C12H10O2P)2(C10H8N2)]·C3H7NO
Mr692.93776.02
Crystal system, space groupMonoclinic, P21Orthorhombic, Pca21
Temperature (K)120150
a, b, c (Å)15.285 (3), 5.7077 (11), 16.907 (3)23.695 (2), 12.8861 (12), 11.1594 (10)
α, β, γ (°)90, 98.912 (5), 9090, 90, 90
V3)1457.1 (5)3407.3 (5)
Z24
Radiation typeMo KαSynchrotron, λ = 0.77490 Å
µ (mm1)0.910.97
Crystal size (mm)0.24 × 0.18 × 0.150.08 × 0.03 × 0.01
Data collection
DiffractometerBruker X8 APEXII CCD
diffractometer
Bruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Multi-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.92, 0.940.93, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
15833, 5731, 4600 36812, 6924, 6231
Rint0.0640.081
(sin θ/λ)max1)0.6270.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.115, 1.03 0.039, 0.106, 1.04
No. of reflections57316924
No. of parameters374411
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.18, 0.541.15, 0.58
Absolute structureFlack x determined using 1693 quotients [(I+)-(I&-&)]/[(I+)+(I-)] (Parsons et al., 2013)Refined as an inversion twin.
Absolute structure parameter0.04 (2)0.30 (4)

Computer programs: APEX2 (Bruker, 2010), APEX2 and SAINT (Bruker, 2010), SAINT (Bruker, 2010) and XPREP (Sheldrick, 2008a), SHELXL2014 (Sheldrick, 2008a), XP in SHELXTL (Sheldrick, 2008a) and CrystalMaker (Palmer, 2010), SHELXTL (Sheldrick, 2008a) and CrystalMaker (Palmer, 2010), XCIF (Bruker, 2010) and enCIFer (CCDC, 2004).

Selected bond lengths (Å) and angles (°) for (I) and (II). top
(I)(II)
Cd1—O12.236 (6)Cd1—O12.276 (5)
Cd1—O2i2.275 (7)Cd1—O2iii2.296 (5)
Cd1—O32.298 (7)Cd1—O32.283 (5)
Cd1—O4ii2.317 (7)Cd1—O4iv2.291 (5)
Cd1—O52.323 (6)Cd1—N12.402 (4)
Cd1—O62.299 (6)Cd1—N2v2.349 (4)
O1—Cd1—O2i95.3 (2)O1—Cd1—O3174.16 (2)
O1—Cd1 O3174.3 (3)O1—Cd1—O4iv91.34 (19)
O2i—Cd1—O390.3 (3)O3—Cd1—O4iv89.60 (18)
O1—Cd1—O687.9 (2)O1—Cd1—O2iii89.56 (18)
O2i—Cd1—O690.6 (2)O3—Cd1—O2iii90.41 (19)
O3—Cd1—O692.78 (2)O4iv—Cd1—O2iii171.03 (11)
O1—Cd1—O4ii84.1 (3)O1—Cd1—N2v88.5 (3)
O2i—Cd1—O4ii179.2 (3)O3—Cd1—N2v85.7 (3)
O3—Cd1—O4ii90.3 (2)O4iv—Cd1—N2v95.6 (4)
O6—Cd1—O4ii89.9 (2)O2iii—Cd1—N2v93.4 (4)
O1—Cd1—O589.7 (2)O1—Cd1—N192.4 (3)
O2i—Cd1—O587.8 (2)O3—Cd1—N193.5 (3)
O3—Cd1—O589.8 (2)O4iv—Cd1—N186.0 (4)
O6—Cd1—O5177.0 (2)O2iii—Cd1—N185.0 (4)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1/2, y, z+1/2; (iv) -x+1/2, y, z-1/2; (v) x-1/2, -y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds