Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614022256/yp3082sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614022256/yp3082CompoundIsup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614022256/yp3082CompoundIIsup3.hkl |
CCDC references: 1028208; 1028209
In the field of hybrid materials, coordination polymers have garnered much interest in recent decades. The structural diversity of this class of materials makes them attractive for a variety of potential applications that include small-molecule storage, optics, and separation science (Furukawa et al., 2013, and references therein; Czaja et al., 2009; Dinča & Long, 2008). The seemingly endless combination of metal ions and organic molecules has created a vast array of structural topologies (Li et al., 2014; Stock & Biswas, 2012; Zhao et al., 2011). By far, the most common systems that have been investigated are metal carboxylates (ror selected reviews, see Farha & Hupp, 2010; Horike & Kitagawa, 2011; Tranchemontagne et al., 2009; James, 2003).
In order to recognize the full potential of this exciting field, extensions to other classes of organic molecules have been explored. While such classes have varied, largely speaking, phosphonates and sulfonates have received the most attention. In general, sulfonates tend to show relatively weak coordination to metals and therefore lead to structures with less than desirable materials applications such as low thermal stability and a lack of porosity (Côte & Shimizu, 2003; Videnova-Adrabinska, 2007). Phosphonates have been used for robust crystalline materials that are capable of being characterized by single-crystal X-ray diffraction (Liang & Shimizu, 2007; Konar et al., 2007; Clearfield, 2008). Challenges with phosphonate chemistry historically have included rapid precipitation due to the formation of dense, layered phases which often form intractable solids that are difficult to characterize. Furthermore, compared to carboxylates, phosphonates offer many more bridging modes to metals, making the establishment of structural motifs for the design of specific materials less predictable (Shimizu et al., 2009).
Our interest lies in exploring phosphinates (R2PO2-) as less conventional organic linker molecules that could be useful in the synthesis of coordination polymers. Relative to the classes of materials discussed previously, less attention has been given to phosphinates in extended materials (Al-Shboul et al., 2012; Rood et al., 2014). Compared to metal phosphonates, the acid–base chemistry of metal phosphinates may more closely resemble that of metal carboxylates. Such behavior could lead to precipitation rates that are slower than that of metal phosphonates and off a route to isolating new materials that can be more readily characterized by single-crystal X-ray diffraction. The structures of metal diphenylphosphinate compounds have been well studied for copper (Bino & Sassman, 1987), nickel (Annan et al., 1991), and manganese (Ruettinger et al., 1999; Du et al., 1991). Orlandini and co-workers have expanded the area to include studies on diphosphinates with transition metals (Costantino, Ienco et al., 2008; Bataille et al., 2008; Costantino Midollini & Orlandini, 2008; Midollini & Orlandini, 2006; Ciattini et al., 2005; Midollini et al., 2004; Cecconi et al., 2004; Berti et al., 2002) and p-block metals (Cecconi et al., 2003; Beckman et al., 2004, 2005). As part of our investigations in this area, we isolated one- and two-dimensional cadmium(II) coordination polymers incorporating diphenylphosphinate ligands. We report here on the synthesis and crystal structures of [Cd(O2PPh2)(DMF)2]n (DMF is dimethylformamide), (I), and {[Cd(O2PPh2)(bipy)].DMF}n (bipy is 4,4'-bipyridine), (II).
Cadmium nitrate tetrahydrate and dimethylformamide were obtained commercially and used as received. Diphenylphosphinic acid (99%) was purchased from Alfa Aesar and used without further purification. IR spectra were obtained on a Nicolet Magna 760 FT–IR spectrometer. Reported yields are based on the first crop of crystals that were isolated from the reaction solution.
A capped vial containing Cd(NO3)2.4H2O (77 mg, 0.25 mmol) and diphenylphosphinic acid (109 mg, 0.5 mmol) dissolved in DMF (5 ml) was heated without stirring at 333 K for 3 d resulting in a colorless solution. The vial was transferred to a 278 K refrigerator for 2 d, resulting in the formation of colorless crystals (yield 0.043 g, 25% based on Cd). IR (KBr pellet, ν, cm-1): 3563 (w), 3388 (m), 3047 (w), 2941 (w), 1676 (m), 1604 (s), 1535 (m), 1485 (w), 1436 (m), 1414 (m), 1385 (w), 1345 (w), 1318 (w), 1221 (w), 1180 (s), 1129 (s), 1052 (s), 1024 (w), 991 (w), 942 (w), 910 (m), 867 (w), 809 (m), 754 (m), 721 (s), 698 (s).
Cd(NO3)2.4H2O (77 mg, 0.25 mmol), diphenylphosphinic acid (109 mg, 0.5 mmol) and 4,4'-bipyridine (40 mg, 0.25 mmol) were added to a vial, along with DMF (10 ml). The vial was capped and heated to 333 K in a silicone oil bath for 7 d, during which time pale-pink crystals deposited on the walls of the vial (yield 0.103 g, 53% yield based on Cd). IR (KBr pellet, ν, cm-1): 3050 (w), 3006 (w), 2925 (w), 2359 (m), 2343 (m), 2179 (s), 1647 (s), 1485 (w), 1437 (s), 1417 (w), 1391 (s), 1314 (w), 1261 (w), 1192 (s), 1161 (m), 1131 (s), 1052 (s), 1023 (s), 998 (m), 925 (w), 756 (m), 723 (s), 696 (s), 677 (m).
Crystal data, data collection and structure refinement details are summarized in Table 1. Crystals were mounted on MiTeGen loops at 150 K using Paratone-N oil. Data were collected using a combination of ω and ϕ scans. Compound (I) was examined on a Bruker APEXII instrument. A data collection strategy requiring a minimum of fourfold redundancy was employed. Due to the diminutive size of the crystals of compound (II), intensity data were collected at 150 K on a D8 goniostat equipped with a Bruker APEXII CCD detector at Beamline 11.3.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory) using synchrotron radiation tuned to λ = 0.77490 Å. For data collection, frames were measured for a duration of 1 s at 0.3° intervals of ω with a maximum 2θ value of ~60°. The data frames were collected using the program APEX2 (Bruker, 2010) and processed using the program SAINT routine within APEX2. The data were corrected for absorption and beam corrections based on the multi-scan technique as implemented in SADABS. For compound (II), anomalous dispersion factors were calculated using the method of Brennan and Cowan in PLATON (Brennan & Cowan, 1992; Spek, 2009).
The structures of (I) and (II) were solved from partial data sets using the Autostructure option in APEX2 (Bruker, 2010). This option employs direct methods, Patterson synthesis and dual space routines of SHELXTL (Sheldrick, 2008a). H atoms were placed at calculated positions with Uiso(H) values set at 1.5Ueq(C) for methyl groups or at 1.2Ueq(C) otherwise. All crystallographic details are available in Table 1.
In the refinement of compound (I), the ratio of maximum to minimum electron density was 5.94. A three-electron peak resides at 1.75 Å from atom O1. Upon examination, there is possible twinning in the crystal that cannot be excised into separate components because the reflections are too close to the primary component. Reintegration of the data did not improve this and the structure solution is reported as such.
Both structures are achiral, however solutions in acentric space-group options yielded chemically reasonable models which fit better to the data. Similarly, an alternative potential space group of Pcca for (II) was abandoned because of poorer fit as opposed to the reported space group. Analysis of intensities of Friedel pairs of reflections through Flack's methodology (Parsons et al., 2013) and Hooft's Bayesian analysis (Hooft et al., 2008) also support the choice of acentric space groups. For (I), the null value with low errors, the Flack x parameter is 0.04 (2) and the Hooft y parameter is 0.04 (2), is indicative of the correct assignment of handedness. For (II), the fractional, but not half, value with low errors, the Flack x parameter = 0.30 (4) and the Hooft y parameter = 0.29 (2), is suggestive of racemic twinning.
Compounds (I) and (II) were prepared by the reaction of cadmium nitrate and the appropriate organic linker molecules. The compounds were crystallized from DMF solutions. The IR spectrum of each compound is consistent with the proposed formulations provided previously. In both compounds, strong P—O stretches from the phosphinate ligands were evident near 1200 cm-1. In (I), the C═ O stretch from the DMF ligands was observed at 1604 cm-1. Compound (II) displayed appropriate aryl stretches near 3000 cm-1 from 4,4'-bipyridine, as well as additional strong stretches at 1647, 1437, and 696 cm-1 resulting from this ligand.
As shown in Fig. 1, the structure of (I) revealed a one-dimensional chain motif that runs parallel to the crystallographic c axis. The compound crystallized in the monoclinic space group P21. Throughout the structure, the CdII centers reside in pseudo-octahedral geometries and are connected together by a single type of phosphinate bridging mode. A Cd—O—P—O—Cd motif is displayed throughout the chain. The octahedral geometry results from contacts to four O atoms from four separate phosphinate ligands plus two O atoms from two DMF ligands. The Cd—O bond lengths are in the range 2.236 (6)–2.323 (6) Å. The trans-O—Cd—O bond angles range from 174.3 (3) to 179.2 (3)°, while the cis-O—Cd—O angles range from 84.1 (3) to 95.3 (2)°. A complete list of bond lengths and angles involving the CdII centers is given in Table 2.
In an attempt to isolate a higher dimensionality structure using the diphenylphosphinate anion, we employed a similar synthesis as described for (I) and added one equivalent of 4,4'-bipyridine. By displacing the DMF molecules from cadmium, the chains could be assembled into two-dimensional structures. Upon standing at 333 K for several days, small crystals suitable for synchrotron X-ray diffraction were obtained. Compound (II) formed a two-dimensional sheet structure where the cadmium(II) phosphinate chains were crosslinked by 4,4'-bipyridine. These sheets run along the crystallographic ac plane. Fig. 2 shows the local geometry around the CdII center. In (II), the Cd—O distances range from 2.276 (5) to 2.296 (5) Å and the Cd—N distances are 2.349 (4) and 2.402 (4) Å. The cis bond angles around the CdII center range from 85.0 (4) to 95.6 (4)°. The trans angles range from 171.03 (11) to 178.1 (8)°, with the N—Cd—N angle being widest. Fig. 3 illustrates portions of three cadmium(II) phosphinate chains running vertically and connected by 4,4'-bipyridine in the horizontal direction. A similar approach using 4,4'-bipyridine has been noted by Dong and co-workers. In their study, a mixed carboxylate–phosphinate dianionic ligand generated chain structures with cadmium(II). Sheet-like structures similar to (II) were isolated upon addition of 4,4'-bipyridine. An interesting difference in this case was that each CdII center was bis-coordinated to phosphinate moieties, whereas (II) exhibits tetra-coordination to the phosphinates (Dong et al. 2012).
Upon closer inspection of the structure of (II), the two-dimensional sheets assemble into a three-dimensional architecture via parallel displaced π–π interactions between the phenyl rings of neighboring diphenylphosphinate ligands on adjacent chains (Hunter & Sanders, 1990). The interplanar separation of aligning C atoms are as follows: C2 and C16 at a distance of 3.637 (15) Å, C3 and C17 at a distance of 3.477 (9) Å, and C4 and C18 at a distance of 3.565 (15) Å. The periplanar angle formed by these phenyl and pyridyl rings is 9.73 (3)°. While weak, these interactions help the structure assemble pores parallel to the crystallographic c axis which encapsulate free DMF molecules as solvents of crystallization. The π–π interactions as viewed between C atoms and the expanded framework are illustrated in Fig. 4.
One- and two-dimensional cadmium phosphinate coordination polymers have been synthesized and characterized in the solid state. The two-dimensional structure, (II), takes on a three-dimensional architecture when π–π interactions between phenyl rings of the diphenylphoshinate ligands are considered. Both materials exhibit a single type of phosphinate bridging mode. This general M—O—P—O—M motif has been noted for other transition-metal phosphinates, as well as a series of alkaline-earth-metal phosphinates that we recently reported. In general, chains predominant the literature for most metal complexes incorporating diphenylphosphinate ligands. This study has shown that additional neutral organic molecules, such as 4,4'-bipyridine, can be used to synthesize higher-dimensional structures beyond that of chains. Such findings prompt future studies aimed at isolating porous materials with potentially useful properties in materials applications.
For related literature, see: Al-Shboul, Volland, Görls, Krieck & Westerhausen (2012); Annan et al. (1991); Bataille et al. (2008); Beckman et al. (2004, 2005); Berti et al. (2002); Bino & Sassman (1987); Brennan & Cowan (1992); Bruker (2010); Côte & Shimizu (2003); Cecconi et al. (2003, 2004); Ciattini et al. (2005); Clearfield (2008); Costantino, Ienco, Midollini & Orlandini (2008); Costantino, Midollini & Orlandini (2008); Czaja et al. (2009); Dinča & Long (2008); Dong et al. (2012); Du et al. (1991); Farha & Hupp (2010); Furukawa et al. (2013); Hooft et al. (2008); Horike & Kitagawa (2011); Hunter & Sanders (1990); James (2003); Konar et al. (2007); Li et al. (2014); Liang & Shimizu (2007); Midollini & Orlandini (2006); Midollini et al. (2004); Parsons et al. (2013); Rood et al. (2014); Ruettinger et al. (1999); Sheldrick (2008a); Shimizu et al. (2009); Spek (2009); Stock & Biswas (2012); Tranchemontagne et al. (2009); Videnova-Adrabinska (2007); Zhao et al. (2011).
For both compounds, data collection: APEX2 (Bruker, 2010). Cell refinement: APEX2 and SAINT (Bruker, 2010) for CompoundI; SAINT (Bruker, 2010) for CompoundII. Data reduction: SAINT (Bruker, 2010) and XPREP (Sheldrick, 2008a) for CompoundI; SAINT (Bruker, 2010) for CompoundII. For both compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008a). Molecular graphics: XP in SHELXTL (Sheldrick, 2008a) and CrystalMaker (Palmer, 2010) for CompoundI; SHELXTL (Sheldrick, 2008a) and CrystalMaker (Palmer, 2010) for CompoundII. Software used to prepare material for publication: XCIF (Bruker, 2010) and enCIFer (CCDC, 2004) for CompoundI; SHELXTL (Sheldrick, 2008a) for CompoundII.
[Cd(C12H10O2P)2(C3H7NO)2] | F(000) = 708 |
Mr = 692.93 | Dx = 1.579 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 15.285 (3) Å | Cell parameters from 2486 reflections |
b = 5.7077 (11) Å | θ = 2.4–22.2° |
c = 16.907 (3) Å | µ = 0.91 mm−1 |
β = 98.912 (5)° | T = 120 K |
V = 1457.1 (5) Å3 | Rod, colorless |
Z = 2 | 0.24 × 0.18 × 0.15 mm |
Bruker X8 APEXII CCD diffractometer | 5731 independent reflections |
Radiation source: fine-focus sealed tube | 4600 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
Detector resolution: 8.33 pixels mm-1 | θmax = 26.5°, θmin = 1.2° |
ϕ and ω scans | h = −19→18 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) | k = −7→6 |
Tmin = 0.92, Tmax = 0.94 | l = −20→21 |
15833 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0562P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5731 reflections | Δρmax = 3.18 e Å−3 |
374 parameters | Δρmin = −0.54 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1693 quotients [(I+)-(I&-&)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (2) |
[Cd(C12H10O2P)2(C3H7NO)2] | V = 1457.1 (5) Å3 |
Mr = 692.93 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 15.285 (3) Å | µ = 0.91 mm−1 |
b = 5.7077 (11) Å | T = 120 K |
c = 16.907 (3) Å | 0.24 × 0.18 × 0.15 mm |
β = 98.912 (5)° |
Bruker X8 APEXII CCD diffractometer | 5731 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) | 4600 reflections with I > 2σ(I) |
Tmin = 0.92, Tmax = 0.94 | Rint = 0.064 |
15833 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.115 | Δρmax = 3.18 e Å−3 |
S = 1.03 | Δρmin = −0.54 e Å−3 |
5731 reflections | Absolute structure: Flack x determined using 1693 quotients [(I+)-(I&-&)]/[(I+)+(I-)] (Parsons et al., 2013) |
374 parameters | Absolute structure parameter: 0.04 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.19261 (4) | 0.18695 (14) | 0.72123 (3) | 0.01222 (16) | |
O1 | 0.1296 (4) | 0.4926 (12) | 0.7730 (4) | 0.0175 (16) | |
O2 | 0.0870 (4) | 0.9237 (11) | 0.7429 (4) | 0.0165 (15) | |
O3 | 0.2691 (4) | −0.1035 (12) | 0.6671 (4) | 0.0165 (17) | |
O4 | 0.3001 (4) | −0.5428 (13) | 0.7010 (4) | 0.0184 (17) | |
O5 | 0.2671 (4) | 0.0952 (11) | 0.8478 (4) | 0.0190 (16) | |
O6 | 0.1125 (4) | 0.2837 (11) | 0.5991 (4) | 0.0162 (15) | |
N1 | 0.3365 (6) | −0.1926 (17) | 0.9255 (6) | 0.023 (2) | |
N2 | 0.1040 (6) | 0.5686 (16) | 0.5051 (5) | 0.013 (2) | |
P1 | 0.07575 (14) | 0.7027 (7) | 0.78742 (12) | 0.0133 (5) | |
P2 | 0.32813 (12) | −0.3125 (8) | 0.66868 (11) | 0.0143 (4) | |
C1 | 0.0968 (6) | 0.7584 (15) | 0.8946 (5) | 0.015 (2) | |
C2 | 0.0731 (6) | 0.9701 (18) | 0.9253 (6) | 0.019 (2) | |
H2 | 0.0463 | 1.0881 | 0.8900 | 0.022* | |
C3 | 0.0880 (6) | 1.0113 (18) | 1.0071 (6) | 0.021 (2) | |
H3 | 0.0709 | 1.1564 | 1.0276 | 0.025* | |
C4 | 0.1278 (7) | 0.8421 (19) | 1.0587 (6) | 0.025 (2) | |
H4 | 0.1376 | 0.8699 | 1.1148 | 0.030* | |
C5 | 0.1535 (6) | 0.6302 (18) | 1.0286 (5) | 0.024 (3) | |
H5 | 0.1821 | 0.5144 | 1.0639 | 0.029* | |
C6 | 0.1372 (6) | 0.5888 (16) | 0.9464 (6) | 0.019 (2) | |
H6 | 0.1539 | 0.4435 | 0.9258 | 0.023* | |
C7 | −0.0404 (6) | 0.6246 (14) | 0.7649 (5) | 0.014 (2) | |
C8 | −0.0665 (6) | 0.4061 (16) | 0.7320 (5) | 0.015 (2) | |
H8 | −0.0230 | 0.2925 | 0.7248 | 0.018* | |
C9 | −0.1559 (6) | 0.3542 (17) | 0.7098 (5) | 0.019 (2) | |
H9 | −0.1731 | 0.2061 | 0.6868 | 0.023* | |
C10 | −0.2197 (7) | 0.5162 (17) | 0.7209 (6) | 0.021 (2) | |
H10 | −0.2805 | 0.4796 | 0.7054 | 0.025* | |
C11 | −0.1955 (6) | 0.7323 (17) | 0.7546 (5) | 0.020 (3) | |
H11 | −0.2396 | 0.8435 | 0.7624 | 0.024* | |
C12 | −0.1063 (6) | 0.7859 (16) | 0.7770 (6) | 0.019 (2) | |
H12 | −0.0898 | 0.9334 | 0.8007 | 0.022* | |
C13 | 0.3520 (6) | −0.3608 (16) | 0.5683 (5) | 0.017 (3) | |
C14 | 0.3256 (6) | −0.5671 (17) | 0.5281 (6) | 0.020 (2) | |
H14 | 0.2962 | −0.6851 | 0.5537 | 0.024* | |
C15 | 0.3424 (6) | −0.6013 (19) | 0.4493 (6) | 0.025 (2) | |
H15 | 0.3237 | −0.7419 | 0.4217 | 0.030* | |
C16 | 0.3858 (7) | −0.431 (2) | 0.4120 (6) | 0.027 (3) | |
H16 | 0.3966 | −0.4549 | 0.3588 | 0.033* | |
C17 | 0.4136 (7) | −0.2266 (19) | 0.4524 (6) | 0.026 (3) | |
H17 | 0.4445 | −0.1109 | 0.4273 | 0.031* | |
C18 | 0.3961 (6) | −0.1909 (18) | 0.5303 (6) | 0.022 (2) | |
H18 | 0.4144 | −0.0495 | 0.5575 | 0.027* | |
C19 | 0.4344 (6) | −0.2360 (15) | 0.7290 (5) | 0.016 (2) | |
C20 | 0.4484 (6) | −0.0156 (17) | 0.7645 (5) | 0.018 (2) | |
H20 | 0.4046 | 0.1025 | 0.7525 | 0.022* | |
C21 | 0.5250 (7) | 0.0340 (18) | 0.8169 (6) | 0.025 (2) | |
H21 | 0.5328 | 0.1821 | 0.8427 | 0.030* | |
C22 | 0.5909 (7) | −0.1376 (19) | 0.8313 (6) | 0.026 (2) | |
H22 | 0.6440 | −0.1058 | 0.8669 | 0.031* | |
C23 | 0.5793 (6) | −0.352 (2) | 0.7940 (6) | 0.026 (3) | |
H23 | 0.6247 | −0.4671 | 0.8036 | 0.031* | |
C24 | 0.5015 (7) | −0.4013 (17) | 0.7424 (6) | 0.024 (2) | |
H24 | 0.4943 | −0.5490 | 0.7163 | 0.029* | |
C25 | 0.2902 (6) | −0.1099 (18) | 0.8601 (5) | 0.016 (2) | |
H25 | 0.2727 | −0.2183 | 0.8180 | 0.020* | |
C26 | 0.3643 (10) | −0.033 (2) | 0.9927 (7) | 0.058 (4) | |
H26A | 0.4237 | 0.0268 | 0.9893 | 0.087* | |
H26B | 0.3653 | −0.1180 | 1.0432 | 0.087* | |
H26C | 0.3226 | 0.0977 | 0.9903 | 0.087* | |
C27 | 0.3684 (8) | −0.434 (2) | 0.9320 (8) | 0.035 (3) | |
H27A | 0.3390 | −0.5248 | 0.8864 | 0.052* | |
H27B | 0.3551 | −0.5030 | 0.9819 | 0.052* | |
H27C | 0.4326 | −0.4357 | 0.9323 | 0.052* | |
C28 | 0.1175 (6) | 0.4939 (17) | 0.5806 (5) | 0.016 (2) | |
H28 | 0.1314 | 0.6059 | 0.6222 | 0.019* | |
C29 | 0.1208 (8) | 0.815 (2) | 0.4874 (7) | 0.019 (3) | |
H29A | 0.1254 | 0.9072 | 0.5368 | 0.029* | |
H29B | 0.0719 | 0.8751 | 0.4483 | 0.029* | |
H29C | 0.1763 | 0.8272 | 0.4654 | 0.029* | |
C30 | 0.0834 (7) | 0.4068 (16) | 0.4372 (5) | 0.020 (2) | |
H30A | 0.0625 | 0.2576 | 0.4560 | 0.031* | |
H30B | 0.1368 | 0.3798 | 0.4130 | 0.031* | |
H30C | 0.0372 | 0.4751 | 0.3972 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0117 (3) | 0.0116 (3) | 0.0133 (3) | 0.0007 (4) | 0.00152 (19) | 0.0004 (4) |
O1 | 0.014 (4) | 0.020 (4) | 0.020 (4) | 0.003 (3) | 0.006 (3) | −0.006 (3) |
O2 | 0.016 (4) | 0.016 (4) | 0.018 (4) | −0.006 (3) | 0.003 (3) | −0.002 (3) |
O3 | 0.017 (4) | 0.014 (4) | 0.018 (4) | 0.001 (3) | 0.002 (3) | −0.001 (3) |
O4 | 0.011 (4) | 0.021 (4) | 0.025 (4) | −0.002 (3) | 0.008 (3) | −0.003 (3) |
O5 | 0.019 (4) | 0.020 (4) | 0.015 (3) | 0.000 (3) | −0.004 (3) | 0.002 (3) |
O6 | 0.017 (3) | 0.014 (4) | 0.016 (3) | 0.000 (3) | −0.003 (3) | −0.001 (3) |
N1 | 0.020 (5) | 0.018 (5) | 0.025 (5) | −0.006 (4) | −0.009 (4) | 0.004 (4) |
N2 | 0.017 (5) | 0.010 (4) | 0.013 (4) | 0.004 (4) | 0.000 (4) | −0.001 (4) |
P1 | 0.0142 (10) | 0.0129 (13) | 0.0130 (10) | 0.0012 (17) | 0.0033 (8) | 0.0006 (16) |
P2 | 0.0119 (10) | 0.0144 (11) | 0.0168 (10) | 0.0001 (19) | 0.0028 (8) | −0.0014 (19) |
C1 | 0.012 (5) | 0.014 (6) | 0.019 (5) | −0.002 (3) | 0.006 (4) | −0.005 (4) |
C2 | 0.016 (5) | 0.022 (6) | 0.018 (5) | −0.003 (4) | 0.002 (4) | 0.001 (4) |
C3 | 0.022 (6) | 0.020 (5) | 0.022 (5) | −0.003 (4) | 0.005 (4) | −0.009 (4) |
C4 | 0.031 (6) | 0.031 (7) | 0.014 (5) | −0.004 (5) | 0.009 (5) | −0.008 (5) |
C5 | 0.025 (5) | 0.038 (9) | 0.008 (4) | −0.005 (5) | −0.002 (4) | −0.003 (4) |
C6 | 0.018 (5) | 0.013 (5) | 0.026 (6) | 0.002 (4) | 0.007 (4) | 0.002 (4) |
C7 | 0.022 (5) | 0.016 (6) | 0.005 (4) | −0.003 (4) | 0.003 (3) | 0.002 (3) |
C8 | 0.021 (5) | 0.014 (5) | 0.011 (5) | 0.002 (4) | 0.004 (4) | 0.003 (4) |
C9 | 0.024 (6) | 0.016 (5) | 0.018 (5) | −0.006 (4) | 0.001 (4) | 0.000 (4) |
C10 | 0.022 (6) | 0.018 (5) | 0.021 (5) | −0.010 (4) | 0.000 (4) | 0.010 (4) |
C11 | 0.021 (5) | 0.015 (8) | 0.025 (5) | 0.005 (4) | 0.007 (4) | 0.008 (4) |
C12 | 0.017 (5) | 0.014 (5) | 0.025 (5) | −0.003 (4) | 0.004 (4) | −0.003 (4) |
C13 | 0.011 (4) | 0.017 (8) | 0.024 (5) | 0.000 (4) | −0.002 (4) | −0.005 (4) |
C14 | 0.020 (5) | 0.017 (6) | 0.023 (5) | −0.002 (4) | 0.004 (4) | −0.001 (4) |
C15 | 0.021 (6) | 0.031 (7) | 0.022 (5) | 0.004 (5) | 0.000 (4) | −0.005 (5) |
C16 | 0.028 (6) | 0.036 (7) | 0.020 (6) | 0.010 (5) | 0.007 (5) | 0.002 (5) |
C17 | 0.022 (6) | 0.037 (7) | 0.020 (5) | 0.001 (4) | 0.009 (5) | 0.001 (5) |
C18 | 0.015 (5) | 0.024 (6) | 0.027 (6) | −0.002 (4) | 0.005 (4) | 0.001 (5) |
C19 | 0.011 (5) | 0.019 (6) | 0.018 (5) | 0.000 (3) | 0.005 (4) | 0.004 (4) |
C20 | 0.012 (5) | 0.019 (6) | 0.023 (5) | 0.004 (4) | 0.003 (4) | 0.001 (4) |
C21 | 0.029 (6) | 0.021 (6) | 0.024 (6) | −0.005 (5) | 0.000 (5) | −0.003 (4) |
C22 | 0.017 (6) | 0.038 (7) | 0.019 (5) | −0.009 (5) | −0.007 (4) | 0.010 (5) |
C23 | 0.008 (4) | 0.035 (10) | 0.033 (5) | 0.003 (5) | −0.003 (4) | 0.004 (5) |
C24 | 0.025 (6) | 0.027 (6) | 0.021 (5) | 0.002 (4) | 0.009 (4) | 0.003 (4) |
C25 | 0.015 (5) | 0.023 (6) | 0.013 (5) | −0.003 (4) | 0.005 (4) | 0.001 (4) |
C26 | 0.097 (12) | 0.034 (8) | 0.030 (7) | −0.008 (8) | −0.031 (8) | 0.000 (6) |
C27 | 0.032 (8) | 0.031 (7) | 0.039 (7) | 0.005 (6) | −0.004 (6) | 0.009 (6) |
C28 | 0.013 (5) | 0.020 (6) | 0.016 (5) | −0.001 (4) | 0.003 (4) | −0.001 (4) |
C29 | 0.021 (6) | 0.014 (6) | 0.022 (6) | 0.000 (5) | 0.000 (5) | 0.003 (5) |
C30 | 0.034 (6) | 0.012 (5) | 0.014 (5) | 0.004 (4) | 0.001 (4) | 0.002 (4) |
Cd1—O1 | 2.236 (6) | C17—C18 | 1.398 (14) |
Cd1—O2i | 2.275 (7) | C19—C24 | 1.386 (12) |
Cd1—O3 | 2.298 (7) | C19—C20 | 1.396 (13) |
Cd1—O6 | 2.299 (6) | C20—C21 | 1.383 (13) |
Cd1—O4ii | 2.317 (7) | C21—C22 | 1.399 (14) |
Cd1—O5 | 2.323 (6) | C22—C23 | 1.375 (16) |
O1—P1 | 1.496 (8) | C23—C24 | 1.390 (13) |
O2—P1 | 1.493 (8) | C2—H2 | 0.9500 |
O2—Cd1ii | 2.276 (6) | C3—H3 | 0.9500 |
O3—P2 | 1.494 (8) | C4—H4 | 0.9500 |
O4—P2 | 1.511 (8) | C5—H5 | 0.9500 |
O4—Cd1i | 2.317 (7) | C6—H6 | 0.9500 |
O5—C25 | 1.231 (11) | C8—H8 | 0.9500 |
O6—C28 | 1.245 (11) | C9—H9 | 0.9500 |
N1—C25 | 1.305 (13) | C10—H10 | 0.9500 |
N1—C27 | 1.459 (12) | C11—H11 | 0.9500 |
N1—C26 | 1.465 (14) | C12—H12 | 0.9500 |
N2—C28 | 1.332 (12) | C14—H14 | 0.9500 |
N2—C29 | 1.468 (11) | C15—H15 | 0.9500 |
N2—C30 | 1.469 (12) | C16—H16 | 0.9500 |
P1—C7 | 1.812 (9) | C17—H17 | 0.9500 |
P1—C1 | 1.818 (9) | C18—H18 | 0.9500 |
P2—C13 | 1.811 (9) | C20—H20 | 0.9500 |
P2—C19 | 1.832 (9) | C21—H21 | 0.9500 |
C1—C6 | 1.385 (12) | C22—H22 | 0.9500 |
C1—C2 | 1.386 (13) | C23—H23 | 0.9500 |
C2—C3 | 1.386 (13) | C24—H24 | 0.9500 |
C3—C4 | 1.378 (14) | C25—H25 | 0.9500 |
C4—C5 | 1.392 (14) | C26—H26A | 0.9800 |
C5—C6 | 1.394 (12) | C26—H26B | 0.9800 |
C7—C8 | 1.398 (12) | C26—H26C | 0.9800 |
C7—C12 | 1.403 (12) | C27—H27A | 0.9800 |
C8—C9 | 1.392 (13) | C27—H27B | 0.9800 |
C9—C10 | 1.377 (14) | C27—H27C | 0.9800 |
C10—C11 | 1.385 (14) | C28—H28 | 0.9500 |
C11—C12 | 1.391 (13) | C29—H29A | 0.9800 |
C13—C14 | 1.388 (13) | C29—H29B | 0.9800 |
C13—C18 | 1.394 (13) | C29—H29C | 0.9800 |
C14—C15 | 1.410 (13) | C30—H30A | 0.9800 |
C15—C16 | 1.380 (15) | C30—H30B | 0.9800 |
C16—C17 | 1.387 (14) | C30—H30C | 0.9800 |
O1—Cd1—O2i | 95.3 (2) | O5—C25—N1 | 126.2 (10) |
O1—Cd1—O3 | 174.3 (3) | O6—C28—N2 | 122.9 (9) |
O2i—Cd1—O3 | 90.3 (3) | C1—C2—H2 | 119.7 |
O1—Cd1—O6 | 87.9 (2) | C3—C2—H2 | 119.7 |
O2i—Cd1—O6 | 90.6 (2) | C4—C3—H3 | 120.0 |
O3—Cd1—O6 | 92.8 (2) | C2—C3—H3 | 120.0 |
O1—Cd1—O4ii | 84.1 (3) | C3—C4—H4 | 120.0 |
O2i—Cd1—O4ii | 179.2 (3) | C5—C4—H4 | 120.0 |
O3—Cd1—O4ii | 90.3 (2) | C4—C5—H5 | 120.2 |
O6—Cd1—O4ii | 89.9 (2) | C6—C5—H5 | 120.2 |
O1—Cd1—O5 | 89.7 (2) | C1—C6—H6 | 119.8 |
O2i—Cd1—O5 | 87.8 (2) | C5—C6—H6 | 119.8 |
O3—Cd1—O5 | 89.8 (2) | C9—C8—H8 | 119.8 |
O6—Cd1—O5 | 177.0 (2) | C7—C8—H8 | 119.8 |
O4ii—Cd1—O5 | 91.6 (2) | C10—C9—H9 | 119.8 |
P1—O1—Cd1 | 166.1 (4) | C8—C9—H9 | 119.8 |
P1—O2—Cd1ii | 141.2 (4) | C9—C10—H10 | 119.8 |
P2—O3—Cd1 | 155.8 (4) | C11—C10—H10 | 119.8 |
P2—O4—Cd1i | 151.6 (4) | C10—C11—H11 | 120.2 |
C25—O5—Cd1 | 117.2 (6) | C12—C11—H11 | 120.2 |
C28—O6—Cd1 | 114.3 (6) | C11—C12—H12 | 119.6 |
C25—N1—C27 | 122.4 (10) | C7—C12—H12 | 119.6 |
C25—N1—C26 | 119.1 (10) | C13—C14—H14 | 120.0 |
C27—N1—C26 | 118.2 (10) | C15—C14—H14 | 120.0 |
C28—N2—C29 | 119.7 (9) | C16—C15—H15 | 119.8 |
C28—N2—C30 | 122.1 (9) | C14—C15—H15 | 119.8 |
C29—N2—C30 | 117.8 (9) | C15—C16—H16 | 120.0 |
O2—P1—O1 | 119.1 (4) | C17—C16—H16 | 120.0 |
O2—P1—C7 | 106.7 (4) | C16—C17—H17 | 120.1 |
O1—P1—C7 | 108.3 (4) | C18—C17—H17 | 120.1 |
O2—P1—C1 | 109.8 (4) | C13—C18—H18 | 119.7 |
O1—P1—C1 | 106.6 (4) | C17—C18—H18 | 119.7 |
C7—P1—C1 | 105.6 (4) | C21—C20—H20 | 119.4 |
O3—P2—O4 | 119.8 (3) | C19—C20—H20 | 119.4 |
O3—P2—C13 | 108.3 (4) | C20—C21—H21 | 120.6 |
O4—P2—C13 | 108.4 (5) | C22—C21—H21 | 120.6 |
O3—P2—C19 | 107.5 (4) | C23—C22—H22 | 119.8 |
O4—P2—C19 | 106.4 (4) | C21—C22—H22 | 119.8 |
C13—P2—C19 | 105.5 (4) | C22—C23—H23 | 119.9 |
C6—C1—C2 | 119.3 (8) | C24—C23—H23 | 119.9 |
C6—C1—P1 | 120.1 (7) | C19—C24—C23 | 120.3 (10) |
C2—C1—P1 | 120.7 (7) | C19—C24—H24 | 119.8 |
C1—C2—C3 | 120.7 (9) | C23—C24—H24 | 119.8 |
C4—C3—C2 | 120.0 (9) | O5—C25—H25 | 116.9 |
C3—C4—C5 | 120.0 (8) | N1—C25—H25 | 116.9 |
C4—C5—C6 | 119.6 (9) | N1—C26—H26A | 109.5 |
C1—C6—C5 | 120.4 (9) | N1—C26—H26B | 109.5 |
C8—C7—C12 | 118.4 (8) | H26A—C26—H26B | 109.5 |
C8—C7—P1 | 120.9 (7) | N1—C26—H26C | 109.5 |
C12—C7—P1 | 120.7 (7) | H26A—C26—H26C | 109.5 |
C9—C8—C7 | 120.3 (9) | H26B—C26—H26C | 109.5 |
C10—C9—C8 | 120.4 (9) | N1—C27—H27A | 109.5 |
C9—C10—C11 | 120.3 (9) | N1—C27—H27B | 109.5 |
C10—C11—C12 | 119.7 (9) | H27A—C27—H27B | 109.5 |
C11—C12—C7 | 120.8 (9) | N1—C27—H27C | 109.5 |
C14—C13—C18 | 119.3 (9) | H27A—C27—H27C | 109.5 |
C14—C13—P2 | 120.2 (8) | H27B—C27—H27C | 109.5 |
C18—C13—P2 | 120.6 (7) | O6—C28—H28 | 118.6 |
C13—C14—C15 | 119.9 (9) | N2—C28—H28 | 118.6 |
C16—C15—C14 | 120.3 (10) | N2—C29—H29A | 109.5 |
C15—C16—C17 | 120.0 (10) | N2—C29—H29B | 109.5 |
C16—C17—C18 | 119.8 (10) | H29A—C29—H29B | 109.5 |
C13—C18—C17 | 120.7 (10) | N2—C29—H29C | 109.5 |
C24—C19—C20 | 118.8 (9) | H29A—C29—H29C | 109.5 |
C24—C19—P2 | 119.9 (7) | H29B—C29—H29C | 109.5 |
C20—C19—P2 | 121.2 (7) | N2—C30—H30A | 109.5 |
C21—C20—C19 | 121.2 (9) | N2—C30—H30B | 109.5 |
C20—C21—C22 | 118.9 (10) | H30A—C30—H30B | 109.5 |
C23—C22—C21 | 120.4 (9) | N2—C30—H30C | 109.5 |
C22—C23—C24 | 120.3 (10) | H30A—C30—H30C | 109.5 |
C19—C24—C23 | 120.3 (10) | H30B—C30—H30C | 109.5 |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z. |
[Cd(C12H10O2P)2(C10H8N2)]·C3H7NO | Dx = 1.513 Mg m−3 |
Mr = 776.02 | Synchrotron radiation, λ = 0.77490 Å |
Orthorhombic, Pca21 | Cell parameters from 9937 reflections |
a = 23.695 (2) Å | θ = 2.6–28.9° |
b = 12.8861 (12) Å | µ = 0.97 mm−1 |
c = 11.1594 (10) Å | T = 150 K |
V = 3407.3 (5) Å3 | Blade, pink–cyan |
Z = 4 | 0.08 × 0.03 × 0.01 mm |
F(000) = 1584 |
Bruker APEXII diffractometer | 6924 independent reflections |
Radiation source: synchrotron | 6231 reflections with I > 2σ(I) |
Si-<111> channel cut crystal monochromator | Rint = 0.081 |
Detector resolution: 8.33 pixels mm-1 | θmax = 28.9°, θmin = 2.0° |
phi and ω scans | h = −29→29 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) | k = −16→16 |
Tmin = 0.93, Tmax = 0.96 | l = −13→13 |
36812 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0325P)2 + 5.2727P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.009 |
6924 reflections | Δρmax = 1.15 e Å−3 |
411 parameters | Δρmin = −0.58 e Å−3 |
1 restraint | Absolute structure: Refined as an inversion twin. |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.30 (4) |
[Cd(C12H10O2P)2(C10H8N2)]·C3H7NO | V = 3407.3 (5) Å3 |
Mr = 776.02 | Z = 4 |
Orthorhombic, Pca21 | Synchrotron radiation, λ = 0.77490 Å |
a = 23.695 (2) Å | µ = 0.97 mm−1 |
b = 12.8861 (12) Å | T = 150 K |
c = 11.1594 (10) Å | 0.08 × 0.03 × 0.01 mm |
Bruker APEXII diffractometer | 6924 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) | 6231 reflections with I > 2σ(I) |
Tmin = 0.93, Tmax = 0.96 | Rint = 0.081 |
36812 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.106 | Δρmax = 1.15 e Å−3 |
S = 1.04 | Δρmin = −0.58 e Å−3 |
6924 reflections | Absolute structure: Refined as an inversion twin. |
411 parameters | Absolute structure parameter: 0.30 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a two-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.26337 (2) | 0.00576 (3) | 0.49304 (17) | 0.01693 (12) | |
P1 | 0.2550 (2) | −0.17052 (11) | 0.2486 (2) | 0.0181 (5) | |
P2 | 0.2541 (2) | 0.18215 (11) | 0.7376 (2) | 0.0177 (5) | |
O1 | 0.25947 (19) | −0.1405 (3) | 0.3791 (5) | 0.0214 (10) | |
O2 | 0.22963 (18) | −0.0952 (3) | 0.1619 (5) | 0.0227 (10) | |
O3 | 0.2575 (2) | 0.1516 (3) | 0.6086 (5) | 0.0226 (10) | |
O4 | 0.22853 (18) | 0.1077 (3) | 0.8258 (5) | 0.0207 (9) | |
N1 | 0.36474 (17) | 0.0043 (4) | 0.4958 (18) | 0.0202 (9) | |
N2 | 0.66424 (18) | −0.0064 (3) | 0.4971 (17) | 0.0198 (10) | |
C1 | 0.2154 (3) | −0.2908 (5) | 0.2380 (7) | 0.0252 (15) | |
C2 | 0.2171 (3) | −0.3654 (5) | 0.3261 (8) | 0.0352 (18) | |
H2 | 0.2385 | −0.3530 | 0.3966 | 0.042* | |
C3 | 0.1880 (4) | −0.4586 (6) | 0.3138 (9) | 0.048 (2) | |
H3 | 0.1893 | −0.5087 | 0.3761 | 0.057* | |
C4 | 0.1580 (6) | −0.4778 (9) | 0.2137 (16) | 0.058 (4) | |
H4 | 0.1390 | −0.5422 | 0.2044 | 0.069* | |
C5 | 0.1548 (4) | −0.4021 (7) | 0.1228 (10) | 0.053 (3) | |
H5 | 0.1321 | −0.4143 | 0.0542 | 0.063* | |
C6 | 0.1845 (3) | −0.3106 (6) | 0.1328 (8) | 0.0351 (18) | |
H6 | 0.1840 | −0.2614 | 0.0694 | 0.042* | |
C7 | 0.3249 (3) | −0.2063 (4) | 0.1974 (6) | 0.0196 (13) | |
C8 | 0.3342 (3) | −0.2304 (5) | 0.0780 (7) | 0.0249 (14) | |
H8 | 0.3032 | −0.2290 | 0.0239 | 0.030* | |
C9 | 0.3869 (3) | −0.2565 (5) | 0.0351 (7) | 0.0317 (16) | |
H9 | 0.3924 | −0.2738 | −0.0468 | 0.038* | |
C10 | 0.4316 (3) | −0.2566 (6) | 0.1146 (8) | 0.0356 (18) | |
H10 | 0.4684 | −0.2730 | 0.0864 | 0.043* | |
C11 | 0.4235 (3) | −0.2330 (6) | 0.2368 (8) | 0.039 (2) | |
H11 | 0.4545 | −0.2331 | 0.2910 | 0.047* | |
C12 | 0.3706 (3) | −0.2099 (5) | 0.2756 (7) | 0.0263 (15) | |
H12 | 0.3646 | −0.1959 | 0.3582 | 0.032* | |
C13 | 0.2143 (3) | 0.3022 (5) | 0.7493 (7) | 0.0219 (14) | |
C14 | 0.1823 (3) | 0.3216 (6) | 0.8499 (8) | 0.0374 (19) | |
H14 | 0.1803 | 0.2712 | 0.9118 | 0.045* | |
C15 | 0.1528 (4) | 0.4153 (7) | 0.8613 (11) | 0.060 (3) | |
H15 | 0.1317 | 0.4286 | 0.9321 | 0.072* | |
C16 | 0.1540 (6) | 0.4878 (7) | 0.7721 (17) | 0.054 (4) | |
H16 | 0.1325 | 0.5496 | 0.7787 | 0.065* | |
C17 | 0.1872 (4) | 0.4699 (7) | 0.6714 (8) | 0.046 (2) | |
H17 | 0.1898 | 0.5214 | 0.6107 | 0.055* | |
C18 | 0.2165 (3) | 0.3777 (5) | 0.6591 (7) | 0.0309 (16) | |
H18 | 0.2382 | 0.3654 | 0.5890 | 0.037* | |
C19 | 0.3241 (3) | 0.2182 (5) | 0.7866 (7) | 0.0225 (13) | |
C20 | 0.3331 (3) | 0.2423 (5) | 0.9074 (7) | 0.0257 (15) | |
H20 | 0.3027 | 0.2403 | 0.9627 | 0.031* | |
C21 | 0.3870 (3) | 0.2694 (5) | 0.9457 (8) | 0.0322 (16) | |
H21 | 0.3931 | 0.2864 | 1.0275 | 0.039* | |
C22 | 0.4316 (3) | 0.2719 (6) | 0.8670 (9) | 0.043 (2) | |
H22 | 0.4683 | 0.2903 | 0.8941 | 0.051* | |
C23 | 0.4227 (3) | 0.2479 (6) | 0.7496 (9) | 0.041 (2) | |
H23 | 0.4537 | 0.2487 | 0.6957 | 0.050* | |
C24 | 0.3684 (3) | 0.2218 (5) | 0.7062 (7) | 0.0291 (16) | |
H24 | 0.3626 | 0.2071 | 0.6237 | 0.035* | |
C25 | 0.3948 (3) | 0.0662 (5) | 0.4213 (6) | 0.0210 (13) | |
H25 | 0.3751 | 0.1102 | 0.3673 | 0.025* | |
C26 | 0.4535 (3) | 0.0679 (5) | 0.4209 (6) | 0.0220 (14) | |
H26 | 0.4728 | 0.1173 | 0.3729 | 0.026* | |
C27 | 0.48342 (19) | 0.0002 (4) | 0.488 (3) | 0.0172 (15) | |
C29 | 0.3936 (3) | −0.0595 (5) | 0.5653 (7) | 0.0235 (15) | |
H29 | 0.3729 | −0.1044 | 0.6166 | 0.028* | |
C30 | 0.5460 (2) | −0.0025 (4) | 0.490 (2) | 0.0190 (12) | |
C31 | 0.5763 (5) | −0.0213 (7) | 0.5960 (10) | 0.0221 (17) | |
H31 | 0.5566 | −0.0338 | 0.6688 | 0.027* | |
C32 | 0.6352 (4) | −0.0214 (6) | 0.5945 (9) | 0.0208 (17) | |
H32 | 0.6548 | −0.0329 | 0.6675 | 0.025* | |
C33 | 0.6347 (5) | 0.0126 (6) | 0.3927 (11) | 0.023 (2) | |
H33 | 0.6556 | 0.0260 | 0.3216 | 0.028* | |
C34 | 0.5772 (5) | 0.0132 (5) | 0.3863 (10) | 0.0200 (19) | |
H34 | 0.5588 | 0.0243 | 0.3118 | 0.024* | |
C38 | 0.4519 (3) | −0.0654 (5) | 0.5683 (6) | 0.0213 (14) | |
H38 | 0.4705 | −0.1113 | 0.6218 | 0.026* | |
O1S | 0.5225 (3) | 0.2435 (6) | 0.2704 (7) | 0.077 (2)* | |
N1S | 0.5041 (4) | 0.4099 (6) | 0.2251 (8) | 0.060 (2)* | |
C1S | 0.5092 (5) | 0.3119 (9) | 0.1916 (11) | 0.083 (3)* | |
H1S | 0.5032 | 0.2924 | 0.1105 | 0.099* | |
C2S | 0.4943 (7) | 0.4802 (13) | 0.1267 (19) | 0.108 (5)* | |
H2SA | 0.4809 | 0.4410 | 0.0570 | 0.162* | |
H2SB | 0.5295 | 0.5159 | 0.1063 | 0.162* | |
H2SC | 0.4657 | 0.5314 | 0.1499 | 0.162* | |
C3S | 0.5063 (6) | 0.4500 (15) | 0.3392 (16) | 0.105 (5)* | |
H3SA | 0.4889 | 0.4011 | 0.3953 | 0.157* | |
H3SB | 0.4860 | 0.5161 | 0.3416 | 0.157* | |
H3SC | 0.5458 | 0.4613 | 0.3620 | 0.157* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01206 (19) | 0.02235 (19) | 0.01637 (19) | −0.00014 (14) | 0.0000 (5) | −0.0014 (3) |
P1 | 0.0174 (15) | 0.0206 (6) | 0.0162 (9) | 0.0023 (9) | 0.0008 (8) | −0.0032 (9) |
P2 | 0.0170 (13) | 0.0199 (6) | 0.0161 (9) | −0.0007 (10) | 0.0012 (8) | −0.0005 (9) |
O1 | 0.023 (3) | 0.024 (2) | 0.017 (3) | 0.0028 (17) | −0.001 (2) | −0.0011 (18) |
O2 | 0.021 (2) | 0.026 (2) | 0.021 (3) | 0.0031 (18) | −0.001 (2) | −0.0018 (19) |
O3 | 0.027 (3) | 0.023 (2) | 0.018 (3) | −0.0004 (18) | 0.000 (2) | −0.0008 (18) |
O4 | 0.018 (2) | 0.026 (2) | 0.019 (2) | −0.0019 (17) | 0.000 (2) | 0.0010 (18) |
N1 | 0.0146 (18) | 0.027 (2) | 0.019 (2) | 0.0004 (17) | 0.004 (7) | −0.006 (2) |
N2 | 0.0146 (19) | 0.024 (2) | 0.021 (3) | 0.0000 (17) | −0.010 (6) | 0.005 (2) |
C1 | 0.024 (4) | 0.024 (3) | 0.028 (4) | 0.001 (3) | 0.003 (3) | −0.006 (3) |
C2 | 0.039 (4) | 0.028 (3) | 0.039 (5) | −0.001 (3) | 0.010 (4) | −0.006 (3) |
C3 | 0.056 (5) | 0.025 (4) | 0.063 (6) | −0.003 (4) | 0.029 (5) | 0.000 (4) |
C4 | 0.043 (7) | 0.040 (5) | 0.091 (10) | −0.024 (6) | 0.013 (7) | −0.023 (7) |
C5 | 0.043 (5) | 0.044 (5) | 0.071 (7) | −0.005 (4) | −0.016 (5) | −0.019 (5) |
C6 | 0.028 (4) | 0.033 (4) | 0.044 (5) | 0.003 (3) | −0.013 (4) | −0.013 (3) |
C7 | 0.016 (3) | 0.020 (3) | 0.023 (3) | 0.001 (2) | −0.005 (3) | 0.002 (2) |
C8 | 0.022 (3) | 0.028 (3) | 0.025 (4) | 0.001 (2) | −0.002 (3) | −0.006 (3) |
C9 | 0.028 (4) | 0.042 (4) | 0.025 (4) | 0.005 (3) | −0.001 (3) | −0.006 (3) |
C10 | 0.014 (3) | 0.051 (4) | 0.041 (5) | 0.007 (3) | 0.007 (3) | −0.008 (3) |
C11 | 0.020 (4) | 0.062 (5) | 0.036 (5) | 0.008 (3) | −0.008 (3) | −0.002 (4) |
C12 | 0.026 (4) | 0.035 (4) | 0.018 (4) | 0.002 (3) | −0.004 (3) | −0.005 (3) |
C13 | 0.015 (3) | 0.021 (3) | 0.029 (4) | −0.003 (2) | −0.007 (3) | −0.009 (2) |
C14 | 0.034 (4) | 0.033 (4) | 0.044 (5) | −0.003 (3) | 0.005 (4) | −0.008 (3) |
C15 | 0.044 (5) | 0.045 (5) | 0.090 (9) | 0.006 (4) | 0.021 (6) | −0.028 (5) |
C16 | 0.035 (7) | 0.035 (5) | 0.091 (10) | 0.010 (4) | −0.006 (6) | −0.015 (6) |
C17 | 0.055 (6) | 0.028 (4) | 0.053 (6) | 0.009 (4) | −0.025 (5) | −0.006 (4) |
C18 | 0.042 (4) | 0.026 (3) | 0.025 (4) | 0.003 (3) | −0.013 (4) | −0.001 (3) |
C19 | 0.021 (3) | 0.023 (3) | 0.024 (4) | 0.001 (2) | −0.007 (3) | 0.000 (2) |
C20 | 0.025 (4) | 0.028 (3) | 0.024 (4) | −0.003 (3) | −0.001 (3) | −0.003 (3) |
C21 | 0.028 (4) | 0.039 (4) | 0.029 (4) | −0.001 (3) | −0.009 (3) | −0.008 (3) |
C22 | 0.029 (4) | 0.049 (4) | 0.051 (6) | −0.009 (3) | 0.001 (4) | −0.010 (4) |
C23 | 0.020 (4) | 0.062 (5) | 0.043 (5) | −0.006 (3) | 0.010 (4) | −0.011 (4) |
C24 | 0.025 (4) | 0.034 (4) | 0.028 (4) | 0.000 (3) | 0.005 (3) | 0.000 (3) |
C25 | 0.019 (3) | 0.029 (3) | 0.015 (3) | 0.002 (2) | 0.002 (3) | 0.002 (2) |
C26 | 0.017 (3) | 0.027 (3) | 0.022 (4) | 0.000 (2) | 0.002 (3) | 0.005 (2) |
C27 | 0.014 (2) | 0.023 (2) | 0.014 (4) | −0.0016 (17) | 0.006 (6) | −0.003 (2) |
C29 | 0.017 (3) | 0.027 (3) | 0.026 (4) | −0.003 (2) | 0.003 (3) | 0.000 (3) |
C30 | 0.016 (2) | 0.022 (2) | 0.020 (3) | −0.0003 (19) | −0.012 (7) | −0.002 (2) |
C31 | 0.016 (4) | 0.031 (3) | 0.019 (4) | −0.004 (4) | 0.002 (3) | −0.001 (4) |
C32 | 0.018 (4) | 0.027 (3) | 0.017 (4) | 0.005 (4) | −0.001 (3) | 0.005 (4) |
C33 | 0.019 (4) | 0.032 (4) | 0.019 (4) | 0.001 (3) | 0.000 (3) | −0.001 (3) |
C34 | 0.019 (4) | 0.029 (3) | 0.012 (4) | −0.002 (3) | 0.000 (3) | 0.004 (3) |
C38 | 0.016 (3) | 0.026 (3) | 0.022 (4) | −0.001 (2) | 0.001 (3) | 0.000 (3) |
Cd1—O1 | 2.276 (5) | C27—C38 | 1.441 (19) |
Cd1—O3 | 2.283 (5) | C27—C30 | 1.483 (7) |
Cd1—O4i | 2.291 (5) | C29—C38 | 1.384 (9) |
Cd1—O2ii | 2.296 (5) | C30—C34 | 1.39 (2) |
Cd1—N2iii | 2.349 (4) | C30—C31 | 1.41 (2) |
Cd1—N1 | 2.402 (4) | C31—C32 | 1.395 (16) |
P1—O2 | 1.497 (6) | C33—C34 | 1.365 (18) |
P1—O1 | 1.511 (6) | O1S—C1S | 1.285 (13) |
P1—C7 | 1.811 (8) | N1S—C1S | 1.322 (13) |
P1—C1 | 1.816 (7) | N1S—C3S | 1.375 (19) |
P2—O3 | 1.495 (6) | N1S—C2S | 1.44 (2) |
P2—O4 | 1.502 (5) | C2—H2 | 0.9500 |
P2—C19 | 1.807 (8) | C3—H3 | 0.9500 |
P2—C13 | 1.818 (7) | C4—H4 | 0.9500 |
O2—Cd1i | 2.296 (5) | C5—H5 | 0.9500 |
O4—Cd1ii | 2.291 (5) | C6—H6 | 0.9500 |
N1—C29 | 1.321 (15) | C8—H8 | 0.9500 |
N1—C25 | 1.355 (14) | C9—H9 | 0.9500 |
N2—C32 | 1.30 (2) | C10—H10 | 0.9500 |
N2—C33 | 1.38 (2) | C11—H11 | 0.9500 |
N2—Cd1iv | 2.349 (4) | C12—H12 | 0.9500 |
C1—C2 | 1.375 (11) | C14—H14 | 0.9500 |
C1—C6 | 1.408 (11) | C15—H15 | 0.9500 |
C2—C3 | 1.392 (10) | C16—H16 | 0.9500 |
C3—C4 | 1.347 (19) | C17—H17 | 0.9500 |
C4—C5 | 1.409 (19) | C18—H18 | 0.9500 |
C5—C6 | 1.376 (11) | C20—H20 | 0.9500 |
C7—C8 | 1.386 (10) | C21—H21 | 0.9500 |
C7—C12 | 1.391 (9) | C22—H22 | 0.9500 |
C8—C9 | 1.380 (9) | C23—H23 | 0.9500 |
C9—C10 | 1.381 (11) | C24—H24 | 0.9500 |
C10—C11 | 1.411 (12) | C25—H25 | 0.9500 |
C11—C12 | 1.360 (10) | C26—H26 | 0.9500 |
C13—C14 | 1.376 (11) | C29—H29 | 0.9500 |
C13—C18 | 1.400 (10) | C31—H31 | 0.9500 |
C14—C15 | 1.401 (11) | C32—H32 | 0.9500 |
C15—C16 | 1.37 (2) | C33—H33 | 0.9500 |
C16—C17 | 1.39 (2) | C34—H34 | 0.9500 |
C17—C18 | 1.383 (10) | C38—H38 | 0.9500 |
C19—C24 | 1.381 (9) | C1S—H1S | 0.9500 |
C19—C20 | 1.400 (10) | C2S—H2SA | 0.9800 |
C20—C21 | 1.392 (9) | C2S—H2SB | 0.9800 |
C21—C22 | 1.373 (11) | C2S—H2SC | 0.9800 |
C22—C23 | 1.362 (13) | C3S—H3SA | 0.9800 |
C23—C24 | 1.415 (10) | C3S—H3SB | 0.9800 |
C25—C26 | 1.391 (9) | C3S—H3SC | 0.9800 |
C26—C27 | 1.350 (18) | ||
O1—Cd1—O3 | 174.16 (12) | N2—C32—C31 | 122.6 (10) |
O1—Cd1—O4i | 91.34 (19) | C33—C34—C30 | 119.3 (11) |
O3—Cd1—O4i | 89.60 (18) | C29—C38—C27 | 118.1 (7) |
O1—Cd1—O2ii | 89.56 (18) | C1S—N1S—C3S | 128.1 (13) |
O3—Cd1—O2ii | 90.41 (19) | C1S—N1S—C2S | 113.6 (12) |
O4i—Cd1—O2ii | 171.03 (11) | C3S—N1S—C2S | 118.4 (10) |
O1—Cd1—N2iii | 88.5 (3) | C1—C2—H2 | 119.4 |
O3—Cd1—N2iii | 85.7 (3) | C3—C2—H2 | 119.4 |
O4i—Cd1—N2iii | 95.6 (4) | C4—C3—H3 | 119.9 |
O2ii—Cd1—N2iii | 93.4 (4) | C2—C3—H3 | 119.9 |
O1—Cd1—N1 | 92.4 (3) | C3—C4—H4 | 120.1 |
O3—Cd1—N1 | 93.5 (3) | C5—C4—H4 | 120.1 |
O4i—Cd1—N1 | 86.0 (4) | C6—C5—H5 | 119.8 |
O2ii—Cd1—N1 | 85.0 (4) | C4—C5—H5 | 119.7 |
N2iii—Cd1—N1 | 178.1 (8) | C5—C6—H6 | 120.4 |
O2—P1—O1 | 119.0 (3) | C1—C6—H6 | 120.4 |
O2—P1—C7 | 109.2 (4) | C9—C8—H8 | 119.0 |
O1—P1—C7 | 107.8 (4) | C7—C8—H8 | 119.0 |
O2—P1—C1 | 107.7 (4) | C8—C9—H9 | 120.9 |
O1—P1—C1 | 108.5 (4) | C10—C9—H9 | 120.9 |
C7—P1—C1 | 103.6 (3) | C9—C10—H10 | 119.4 |
O3—P2—O4 | 119.0 (3) | C11—C10—H10 | 119.4 |
O3—P2—C19 | 108.1 (4) | C12—C11—H11 | 120.7 |
O4—P2—C19 | 109.7 (4) | C10—C11—H11 | 120.7 |
O3—P2—C13 | 108.7 (4) | C11—C12—H12 | 119.2 |
O4—P2—C13 | 106.6 (4) | C7—C12—H12 | 119.2 |
C19—P2—C13 | 103.7 (3) | C13—C14—H14 | 119.8 |
P1—O1—Cd1 | 138.9 (3) | C15—C14—H14 | 119.8 |
P1—O2—Cd1i | 150.3 (3) | C16—C15—H15 | 119.6 |
P2—O3—Cd1 | 139.8 (3) | C14—C15—H15 | 119.6 |
P2—O4—Cd1ii | 150.0 (3) | C15—C16—H16 | 120.4 |
C29—N1—C25 | 117.1 (4) | C17—C16—H16 | 120.4 |
C29—N1—Cd1 | 122.0 (7) | C18—C17—H17 | 119.8 |
C25—N1—Cd1 | 120.9 (8) | C16—C17—H17 | 119.8 |
C32—N2—C33 | 117.6 (4) | C17—C18—H18 | 119.8 |
C32—N2—Cd1iv | 123.1 (10) | C13—C18—H18 | 119.8 |
C33—N2—Cd1iv | 119.3 (10) | C21—C20—H20 | 120.3 |
C2—C1—C6 | 119.0 (7) | C19—C20—H20 | 120.3 |
C2—C1—P1 | 122.4 (6) | C22—C21—H21 | 119.5 |
C6—C1—P1 | 118.6 (6) | C20—C21—H21 | 119.5 |
C1—C2—C3 | 121.2 (8) | C23—C22—H22 | 120.3 |
C4—C3—C2 | 120.1 (10) | C21—C22—H22 | 120.3 |
C3—C4—C5 | 119.8 (9) | C22—C23—H23 | 119.2 |
C6—C5—C4 | 120.5 (10) | C24—C23—H23 | 119.2 |
C5—C6—C1 | 119.2 (8) | C19—C24—H24 | 120.8 |
C8—C7—C12 | 118.2 (6) | C23—C24—H24 | 120.8 |
C8—C7—P1 | 120.3 (5) | N1—C25—H25 | 118.8 |
C12—C7—P1 | 121.5 (5) | C26—C25—H25 | 118.8 |
C9—C8—C7 | 122.0 (7) | C27—C26—H26 | 119.6 |
C8—C9—C10 | 118.2 (7) | C25—C26—H26 | 119.6 |
C9—C10—C11 | 121.1 (7) | N1—C29—H29 | 117.8 |
C12—C11—C10 | 118.7 (7) | C38—C29—H29 | 117.8 |
C11—C12—C7 | 121.7 (7) | C32—C31—H31 | 120.0 |
C14—C13—C18 | 118.7 (6) | C30—C31—H31 | 120.0 |
C14—C13—P2 | 119.9 (6) | N2—C32—H32 | 118.7 |
C18—C13—P2 | 121.3 (6) | C31—C32—H32 | 118.7 |
C13—C14—C15 | 120.4 (9) | C34—C33—N2 | 123.4 (11) |
C16—C15—C14 | 120.8 (11) | C34—C33—H33 | 118.3 |
C15—C16—C17 | 119.2 (9) | N2—C33—H33 | 118.3 |
C18—C17—C16 | 120.4 (9) | C33—C34—H34 | 120.4 |
C17—C18—C13 | 120.5 (8) | C30—C34—H34 | 120.4 |
C24—C19—C20 | 120.2 (6) | C29—C38—H38 | 120.9 |
C24—C19—P2 | 120.6 (5) | C27—C38—H38 | 120.9 |
C20—C19—P2 | 119.2 (6) | O1S—C1S—N1S | 119.0 (11) |
C21—C20—C19 | 119.4 (7) | O1S—C1S—H1S | 120.5 |
C22—C21—C20 | 121.0 (7) | N1S—C1S—H1S | 120.5 |
C23—C22—C21 | 119.4 (8) | N1S—C2S—H2SA | 109.5 |
C22—C23—C24 | 121.6 (8) | N1S—C2S—H2SB | 109.5 |
C19—C24—C23 | 118.4 (7) | H2SA—C2S—H2SB | 109.5 |
N1—C25—C26 | 122.5 (7) | N1S—C2S—H2SC | 109.5 |
C27—C26—C25 | 120.9 (7) | H2SA—C2S—H2SC | 109.5 |
C26—C27—C38 | 116.8 (4) | H2SB—C2S—H2SC | 109.5 |
C26—C27—C30 | 123.2 (12) | N1S—C3S—H3SA | 109.5 |
C38—C27—C30 | 119.8 (12) | N1S—C3S—H3SB | 109.5 |
N1—C29—C38 | 124.3 (7) | H3SA—C3S—H3SB | 109.5 |
C34—C30—C31 | 117.0 (4) | N1S—C3S—H3SC | 109.5 |
C34—C30—C27 | 121.2 (14) | H3SA—C3S—H3SC | 109.5 |
C31—C30—C27 | 121.7 (15) | H3SB—C3S—H3SC | 109.5 |
C32—C31—C30 | 120.1 (10) | ||
O2—P1—O1—Cd1 | −24.0 (7) | P2—C13—C14—C15 | 178.0 (7) |
C7—P1—O1—Cd1 | 101.0 (5) | C13—C14—C15—C16 | 1.7 (14) |
C1—P1—O1—Cd1 | −147.4 (4) | C14—C15—C16—C17 | −3.1 (18) |
O1—P1—O2—Cd1i | 120.6 (6) | C15—C16—C17—C18 | 3.1 (18) |
C7—P1—O2—Cd1i | −3.7 (7) | C16—C17—C18—C13 | −1.7 (13) |
C1—P1—O2—Cd1i | −115.6 (6) | C14—C13—C18—C17 | 0.2 (10) |
O4—P2—O3—Cd1 | −27.4 (8) | P2—C13—C18—C17 | −178.0 (6) |
C19—P2—O3—Cd1 | 98.4 (5) | O3—P2—C19—C24 | 4.8 (6) |
C13—P2—O3—Cd1 | −149.7 (4) | O4—P2—C19—C24 | 135.9 (6) |
O3—P2—O4—Cd1ii | 118.7 (6) | C13—P2—C19—C24 | −110.5 (6) |
C19—P2—O4—Cd1ii | −6.4 (7) | O3—P2—C19—C20 | −175.1 (5) |
C13—P2—O4—Cd1ii | −118.0 (6) | O4—P2—C19—C20 | −44.0 (6) |
O2—P1—C1—C2 | −161.7 (6) | C13—P2—C19—C20 | 69.6 (6) |
O1—P1—C1—C2 | −31.6 (7) | C24—C19—C20—C21 | −0.3 (10) |
C7—P1—C1—C2 | 82.7 (7) | P2—C19—C20—C21 | 179.6 (5) |
O2—P1—C1—C6 | 21.9 (7) | C19—C20—C21—C22 | −0.6 (11) |
O1—P1—C1—C6 | 152.0 (5) | C20—C21—C22—C23 | 0.2 (12) |
C7—P1—C1—C6 | −93.7 (6) | C21—C22—C23—C24 | 1.0 (13) |
C6—C1—C2—C3 | −1.2 (11) | C20—C19—C24—C23 | 1.5 (10) |
P1—C1—C2—C3 | −177.6 (6) | P2—C19—C24—C23 | −178.4 (6) |
C1—C2—C3—C4 | 0.8 (14) | C22—C23—C24—C19 | −1.8 (12) |
C2—C3—C4—C5 | −1.8 (18) | C29—N1—C25—C26 | −3.3 (16) |
C3—C4—C5—C6 | 3.3 (18) | Cd1—N1—C25—C26 | 179.6 (6) |
C4—C5—C6—C1 | −3.7 (14) | N1—C25—C26—C27 | 6.1 (16) |
C2—C1—C6—C5 | 2.6 (11) | C25—C26—C27—C38 | −6 (2) |
P1—C1—C6—C5 | 179.2 (6) | C25—C26—C27—C30 | 179.1 (11) |
O2—P1—C7—C8 | −44.8 (6) | C25—N1—C29—C38 | 1.3 (17) |
O1—P1—C7—C8 | −175.4 (5) | Cd1—N1—C29—C38 | 178.4 (6) |
C1—P1—C7—C8 | 69.7 (6) | C26—C27—C30—C34 | −38.5 (18) |
O2—P1—C7—C12 | 134.9 (5) | C38—C27—C30—C34 | 147.1 (13) |
O1—P1—C7—C12 | 4.2 (6) | C26—C27—C30—C31 | 141.6 (16) |
C1—P1—C7—C12 | −110.6 (6) | C38—C27—C30—C31 | −32.8 (15) |
C12—C7—C8—C9 | −0.7 (10) | C34—C30—C31—C32 | 1.2 (13) |
P1—C7—C8—C9 | 179.0 (5) | C27—C30—C31—C32 | −178.8 (7) |
C7—C8—C9—C10 | −1.0 (10) | C33—N2—C32—C31 | 1.5 (14) |
C8—C9—C10—C11 | 1.3 (12) | Cd1iv—N2—C32—C31 | 179.7 (6) |
C9—C10—C11—C12 | 0.1 (13) | C30—C31—C32—N2 | −1.2 (13) |
C10—C11—C12—C7 | −1.9 (12) | C32—N2—C33—C34 | −2.1 (13) |
C8—C7—C12—C11 | 2.2 (10) | Cd1iv—N2—C33—C34 | 179.6 (6) |
P1—C7—C12—C11 | −177.5 (6) | N2—C33—C34—C30 | 2.2 (12) |
O3—P2—C13—C14 | 148.8 (6) | C31—C30—C34—C33 | −1.7 (12) |
O4—P2—C13—C14 | 19.4 (7) | C27—C30—C34—C33 | 178.3 (6) |
C19—P2—C13—C14 | −96.4 (6) | N1—C29—C38—C27 | −1.9 (14) |
O3—P2—C13—C18 | −33.0 (7) | C26—C27—C38—C29 | 4 (2) |
O4—P2—C13—C18 | −162.4 (5) | C30—C27—C38—C29 | 179.1 (10) |
C19—P2—C13—C18 | 81.8 (6) | C3S—N1S—C1S—O1S | −6.3 (19) |
C18—C13—C14—C15 | −0.2 (11) | C2S—N1S—C1S—O1S | 174.6 (11) |
Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) −x+1/2, y, z+1/2; (iii) x−1/2, −y, z; (iv) x+1/2, −y, z. |
Experimental details
(CompoundI) | (CompoundII) | |
Crystal data | ||
Chemical formula | [Cd(C12H10O2P)2(C3H7NO)2] | [Cd(C12H10O2P)2(C10H8N2)]·C3H7NO |
Mr | 692.93 | 776.02 |
Crystal system, space group | Monoclinic, P21 | Orthorhombic, Pca21 |
Temperature (K) | 120 | 150 |
a, b, c (Å) | 15.285 (3), 5.7077 (11), 16.907 (3) | 23.695 (2), 12.8861 (12), 11.1594 (10) |
α, β, γ (°) | 90, 98.912 (5), 90 | 90, 90, 90 |
V (Å3) | 1457.1 (5) | 3407.3 (5) |
Z | 2 | 4 |
Radiation type | Mo Kα | Synchrotron, λ = 0.77490 Å |
µ (mm−1) | 0.91 | 0.97 |
Crystal size (mm) | 0.24 × 0.18 × 0.15 | 0.08 × 0.03 × 0.01 |
Data collection | ||
Diffractometer | Bruker X8 APEXII CCD diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008b) | Multi-scan (SADABS; Sheldrick, 2008b) |
Tmin, Tmax | 0.92, 0.94 | 0.93, 0.96 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15833, 5731, 4600 | 36812, 6924, 6231 |
Rint | 0.064 | 0.081 |
(sin θ/λ)max (Å−1) | 0.627 | 0.625 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.115, 1.03 | 0.039, 0.106, 1.04 |
No. of reflections | 5731 | 6924 |
No. of parameters | 374 | 411 |
No. of restraints | 1 | 1 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 3.18, −0.54 | 1.15, −0.58 |
Absolute structure | Flack x determined using 1693 quotients [(I+)-(I&-&)]/[(I+)+(I-)] (Parsons et al., 2013) | Refined as an inversion twin. |
Absolute structure parameter | 0.04 (2) | 0.30 (4) |
Computer programs: APEX2 (Bruker, 2010), APEX2 and SAINT (Bruker, 2010), SAINT (Bruker, 2010) and XPREP (Sheldrick, 2008a), SHELXL2014 (Sheldrick, 2008a), XP in SHELXTL (Sheldrick, 2008a) and CrystalMaker (Palmer, 2010), SHELXTL (Sheldrick, 2008a) and CrystalMaker (Palmer, 2010), XCIF (Bruker, 2010) and enCIFer (CCDC, 2004).
(I) | (II) | ||
Cd1—O1 | 2.236 (6) | Cd1—O1 | 2.276 (5) |
Cd1—O2i | 2.275 (7) | Cd1—O2iii | 2.296 (5) |
Cd1—O3 | 2.298 (7) | Cd1—O3 | 2.283 (5) |
Cd1—O4ii | 2.317 (7) | Cd1—O4iv | 2.291 (5) |
Cd1—O5 | 2.323 (6) | Cd1—N1 | 2.402 (4) |
Cd1—O6 | 2.299 (6) | Cd1—N2v | 2.349 (4) |
O1—Cd1—O2i | 95.3 (2) | O1—Cd1—O3 | 174.16 (2) |
O1—Cd1 O3 | 174.3 (3) | O1—Cd1—O4iv | 91.34 (19) |
O2i—Cd1—O3 | 90.3 (3) | O3—Cd1—O4iv | 89.60 (18) |
O1—Cd1—O6 | 87.9 (2) | O1—Cd1—O2iii | 89.56 (18) |
O2i—Cd1—O6 | 90.6 (2) | O3—Cd1—O2iii | 90.41 (19) |
O3—Cd1—O6 | 92.78 (2) | O4iv—Cd1—O2iii | 171.03 (11) |
O1—Cd1—O4ii | 84.1 (3) | O1—Cd1—N2v | 88.5 (3) |
O2i—Cd1—O4ii | 179.2 (3) | O3—Cd1—N2v | 85.7 (3) |
O3—Cd1—O4ii | 90.3 (2) | O4iv—Cd1—N2v | 95.6 (4) |
O6—Cd1—O4ii | 89.9 (2) | O2iii—Cd1—N2v | 93.4 (4) |
O1—Cd1—O5 | 89.7 (2) | O1—Cd1—N1 | 92.4 (3) |
O2i—Cd1—O5 | 87.8 (2) | O3—Cd1—N1 | 93.5 (3) |
O3—Cd1—O5 | 89.8 (2) | O4iv—Cd1—N1 | 86.0 (4) |
O6—Cd1—O5 | 177.0 (2) | O2iii—Cd1—N1 | 85.0 (4) |
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1/2, y, z+1/2; (iv) -x+1/2, y, z-1/2; (v) x-1/2, -y, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register