Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The solar photocatalysis of water splitting represents a significant branch of enzymatic simulation by efficient chemical conversion and the generation of hydrogen as green energy provides a feasible way for the replacement of fossil fuels to solve energy and environmental issues. We report herein the self-assembly of a CoII-based metal–organic framework (MOF) constructed from 4,4′,4′′,4′′′-(ethene-1,1,2,2-tetra­yl)tetra­benzoic acid [or tetra­kis­(4-carb­oxy­phen­yl)ethyl­ene, H4TCPE] and 4,4′-bipyridyl (bpy) as four-point- and two-point-con­nected nodes, respectively. This material, namely, poly[(μ-4,4′-bipyrid­yl)[μ8-4,4′,4′′,4′′′-(ethene-1,1,2,2-tetra­yl)tetra­benzoato]cobalt(II)], [Co(C30H16O8)(C10H8N2)]n, crystallized as dark-red block-shaped crystals with high crystallinity and was fully characterized by single-crystal X-ray diffraction, PXRD, IR, solid-state UV–Vis and cyclic voltammetry (CV) measurements. The redox-active CoII atoms in the structure could be used as the catalytic sites for hydrogen production via water splitting. The application of this new MOF as a heterogeneous catalyst for light-driven H2 production has been explored in a three-component system with fluorescein as photosensitizer and tri­methyl­amine as the sacrificial electron donor, and the initial volume of H2 production is about 360 µmol after 12 h irradiation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620007044/yp3203sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620007044/yp3203Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S2053229620007044/yp3203Isup3.cdx
Supplementary material

CCDC reference: 1992832

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(µ-4,4'-bipyridyl)[µ8-4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetrabenzoato]cobalt(II)] top
Crystal data top
[Co(C30H16O8)(C10H8N2)]Dx = 1.215 Mg m3
Mr = 778.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PmmaCell parameters from 9.0145 reflections
a = 11.857 (3) Åθ = 2.3–22.1°
b = 12.936 (3) ŵ = 0.83 mm1
c = 13.877 (3) ÅT = 200 K
V = 2128.4 (8) Å3Block, colourless
Z = 20.13 × 0.11 × 0.1 mm
F(000) = 792
Data collection top
Bruker APEXII CCD
diffractometer
1448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1214
Tmin = 0.841, Tmax = 0.969k = 1515
10844 measured reflectionsl = 1614
2063 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.105P)2 + 1.8388P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2063 reflectionsΔρmax = 1.01 e Å3
179 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystals of 1 for X-ray diffraction analyses with suitable dimensions were mounted on a glass rod, and the X-ray intensity data were measured on a Bruker SMART APEX CCD-based diffractometer (Mo–Kα radiation, λ = 0.71073 Å) using the SMART (Bruker, 2008) and SAINT programs (Bruker, 2008). The crystal data was solved by direct methods and further refined by full-matrix least-squares refinements on F2 using the SHELXL-2018/3 and OLEX2 software (Dolomanov et al., 2009), and an absorption correction was performed using the SADABS program (Bruker, 2008). The remaining atoms were found from successive full-matrix least-squares refinements on F2 and Fourier syntheses. Non-H atoms were refined with anisotropic displacement parameters.

The CCDC 1992832 for 1 contains the supplementary crystallographic data for this paper and these data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.2500001.0000000.18481 (7)0.0385 (4)
Co20.2500001.0000000.37986 (7)0.0399 (4)
O10.3696 (3)0.8910 (3)0.2019 (2)0.0784 (12)
O20.3688 (3)0.8902 (3)0.3611 (2)0.0721 (10)
N10.2500001.0000000.0353 (5)0.0433 (16)
N20.2500001.0000000.5264 (4)0.0402 (15)
C10.4009 (4)0.8568 (3)0.2818 (3)0.0548 (11)
C20.4824 (4)0.7677 (4)0.2824 (3)0.0559 (11)
C30.5518 (17)0.7474 (13)0.2030 (9)0.068 (4)0.52 (2)
H30.5477680.7892140.1485880.082*0.52 (2)
C3A0.4929 (16)0.7060 (14)0.2013 (9)0.062 (4)0.48 (2)
H3A0.4493450.7191860.1469200.075*0.48 (2)
C40.6259 (15)0.6654 (13)0.2053 (10)0.068 (4)0.52 (2)
H40.6743550.6538590.1536570.081*0.52 (2)
C4A0.5687 (18)0.6244 (14)0.2019 (10)0.069 (5)0.48 (2)
H4A0.5796910.5858340.1461810.082*0.48 (2)
C50.6284 (4)0.5998 (4)0.2847 (4)0.0600 (12)
C60.5638 (18)0.6241 (16)0.3621 (12)0.076 (5)0.52 (2)
H60.5687570.5834640.4172830.091*0.52 (2)
C6A0.6173 (19)0.6613 (14)0.3637 (13)0.066 (4)0.48 (2)
H6A0.6597940.6472370.4184800.080*0.48 (2)
C70.4908 (18)0.7074 (14)0.3615 (11)0.065 (4)0.52 (2)
H70.4473560.7219540.4156790.078*0.52 (2)
C7A0.545 (2)0.7434 (17)0.3640 (13)0.072 (5)0.48 (2)
H7A0.5371230.7833370.4193100.086*0.48 (2)
C80.6958 (7)0.5000000.2846 (6)0.078 (2)
C90.3433 (8)1.0000000.4231 (6)0.119 (4)
H90.4115051.0000000.4562400.143*
C100.3468 (8)1.0000000.3214 (6)0.116 (4)
H100.4157781.0000000.2894950.139*
C110.2500001.0000000.2705 (5)0.045 (2)
C120.2500001.0000000.1635 (6)0.047 (2)
C130.3375 (9)0.9612 (8)0.1115 (6)0.084 (5)0.5
H130.4009160.9358470.1431020.100*0.5
C140.3330 (8)0.9591 (7)0.0130 (7)0.079 (4)0.5
H140.3912120.9272590.0206580.094*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0490 (7)0.0367 (6)0.0298 (6)0.0000.0000.000
Co20.0494 (7)0.0393 (7)0.0310 (6)0.0000.0000.000
O10.101 (3)0.088 (3)0.0466 (19)0.053 (2)0.0028 (18)0.0013 (16)
O20.089 (3)0.073 (2)0.054 (2)0.040 (2)0.0085 (18)0.0002 (17)
N10.046 (4)0.043 (4)0.041 (4)0.0000.0000.000
N20.046 (4)0.047 (4)0.027 (3)0.0000.0000.000
C10.061 (3)0.052 (3)0.051 (3)0.013 (2)0.000 (2)0.003 (2)
C20.063 (3)0.054 (3)0.051 (3)0.017 (2)0.002 (2)0.001 (2)
C30.079 (11)0.059 (8)0.066 (7)0.025 (8)0.008 (7)0.013 (6)
C3A0.061 (9)0.070 (9)0.056 (7)0.017 (8)0.007 (6)0.009 (6)
C40.059 (8)0.074 (9)0.071 (7)0.011 (7)0.014 (6)0.008 (6)
C4A0.076 (11)0.063 (9)0.067 (7)0.025 (8)0.000 (8)0.020 (6)
C50.061 (3)0.049 (3)0.069 (3)0.014 (2)0.002 (3)0.003 (2)
C60.091 (13)0.072 (11)0.065 (8)0.031 (9)0.014 (9)0.019 (7)
C6A0.077 (12)0.061 (10)0.060 (7)0.020 (8)0.011 (8)0.003 (7)
C70.074 (11)0.071 (10)0.050 (6)0.026 (8)0.012 (7)0.000 (6)
C7A0.085 (13)0.074 (12)0.055 (7)0.026 (9)0.001 (9)0.004 (7)
C80.068 (4)0.083 (5)0.082 (5)0.0000.003 (4)0.000
C90.076 (6)0.233 (12)0.048 (5)0.0000.007 (5)0.000
C100.072 (6)0.227 (12)0.048 (5)0.0000.006 (4)0.000
C110.052 (5)0.057 (5)0.025 (4)0.0000.0000.000
C120.061 (6)0.049 (5)0.031 (4)0.0000.0000.000
C130.063 (6)0.143 (14)0.045 (5)0.056 (7)0.004 (4)0.002 (5)
C140.062 (6)0.125 (11)0.048 (5)0.053 (6)0.006 (4)0.007 (5)
Geometric parameters (Å, º) top
Co1—Co22.7067 (15)C3A—C4A1.387 (17)
Co1—O1i2.014 (3)C4—H40.9300
Co1—O1ii2.014 (3)C4—C51.391 (14)
Co1—O1iii2.014 (3)C4A—H4A0.9300
Co1—O12.014 (3)C4A—C51.386 (15)
Co1—N12.074 (7)C5—C61.357 (17)
Co2—O2i2.018 (3)C5—C6A1.362 (17)
Co2—O2ii2.018 (3)C5—C81.518 (6)
Co2—O22.018 (3)C6—H60.9300
Co2—O2iii2.018 (3)C6—C71.38 (2)
Co2—N22.034 (6)C6A—H6A0.9300
O1—C11.251 (5)C6A—C7A1.37 (2)
O2—C11.241 (5)C7—H70.9300
N1—C141.303 (9)C7A—H7A0.9300
N2—C9iv1.310 (9)C8—C8vi1.285 (16)
N2—C9v1.310 (9)C9—H90.9300
C1—C21.504 (6)C9—C101.412 (12)
C2—C31.400 (13)C10—H100.9300
C2—C3A1.386 (13)C10—C111.347 (10)
C2—C71.350 (17)C11—C121.485 (11)
C2—C7A1.388 (19)C12—C131.360 (10)
C3—H30.9300C13—H130.9300
C3—C41.378 (16)C13—C141.367 (13)
C3A—H3A0.9300C14—H140.9300
O1—Co1—Co283.25 (9)C4—C3—H3120.0
O1iii—Co1—Co283.25 (9)C2—C3A—H3A120.3
O1ii—Co1—Co283.25 (9)C2—C3A—C4A119.4 (10)
O1i—Co1—Co283.25 (9)C4A—C3A—H3A120.3
O1—Co1—O1iii88.9 (3)C3—C4—H4120.0
O1ii—Co1—O1i88.9 (3)C3—C4—C5120.1 (10)
O1—Co1—O1ii89.5 (3)C5—C4—H4120.0
O1—Co1—O1i166.50 (18)C3A—C4A—H4A119.6
O1iii—Co1—O1i89.6 (3)C5—C4A—C3A120.8 (10)
O1iii—Co1—O1ii166.50 (18)C5—C4A—H4A119.6
O1—Co1—N196.75 (9)C4—C5—C8122.0 (7)
O1i—Co1—N196.75 (9)C4A—C5—C8117.7 (7)
O1iii—Co1—N196.75 (9)C6—C5—C4118.3 (9)
O1ii—Co1—N196.75 (9)C6—C5—C8119.6 (8)
N1—Co1—Co2180.0C6A—C5—C4A118.9 (10)
O2ii—Co2—Co182.57 (10)C6A—C5—C8123.3 (8)
O2iii—Co2—Co182.57 (10)C5—C6—H6119.0
O2—Co2—Co182.57 (10)C5—C6—C7122.0 (13)
O2i—Co2—Co182.57 (10)C7—C6—H6119.0
O2ii—Co2—O2i89.5 (2)C5—C6A—H6A119.4
O2—Co2—O2ii88.6 (2)C5—C6A—C7A121.2 (14)
O2—Co2—O2iii89.5 (2)C7A—C6A—H6A119.4
O2—Co2—O2i165.15 (19)C2—C7—C6120.1 (13)
O2ii—Co2—O2iii165.15 (19)C2—C7—H7120.0
O2iii—Co2—O2i88.6 (2)C6—C7—H7120.0
O2ii—Co2—N297.43 (10)C2—C7A—H7A119.7
O2i—Co2—N297.43 (10)C6A—C7A—C2120.6 (15)
O2iii—Co2—N297.43 (10)C6A—C7A—H7A119.7
O2—Co2—N297.43 (10)C5—C8—C5vii116.5 (6)
N2—Co2—Co1180.0C8vi—C8—C5vii121.8 (3)
C1—O1—Co1124.1 (3)C8vi—C8—C5121.8 (3)
C1—O2—Co2125.0 (3)N2viii—C9—H9118.0
C14—N1—Co1121.0 (5)N2viii—C9—C10124.0 (8)
C9iv—N2—Co2122.3 (4)C10—C9—H9118.0
C9v—N2—Co2122.3 (4)C9—C10—H10120.0
C9v—N2—C9iv115.3 (9)C11—C10—C9119.9 (8)
O1—C1—C2117.8 (4)C11—C10—H10120.0
O2—C1—O1124.9 (4)C10—C11—C10i116.8 (9)
O2—C1—C2117.3 (4)C10i—C11—C12121.6 (5)
C3—C2—C1121.1 (6)C10—C11—C12121.6 (5)
C3A—C2—C1119.6 (6)C13—C12—C11122.0 (5)
C3A—C2—C7A119.0 (10)C12—C13—H13119.8
C7—C2—C1119.6 (7)C12—C13—C14120.5 (8)
C7—C2—C3119.2 (9)C14—C13—H13119.8
C7A—C2—C1121.4 (8)N1—C14—C13122.4 (8)
C2—C3—H3120.0N1—C14—H14118.8
C4—C3—C2120.1 (10)C13—C14—H14118.8
Co1—O1—C1—O25.5 (8)C3A—C4A—C5—C6A4.5 (19)
Co1—O1—C1—C2173.8 (3)C3A—C4A—C5—C8170.7 (11)
Co1—N1—C14—C13177.5 (8)C4—C5—C6—C74.4 (19)
Co2—O2—C1—O15.0 (8)C4—C5—C8—C5vii110.9 (12)
Co2—O2—C1—C2174.4 (3)C4—C5—C8—C8vi69.1 (12)
O1—C1—C2—C322.5 (13)C4A—C5—C6A—C7A3 (2)
O1—C1—C2—C3A20.4 (13)C4A—C5—C8—C5vii69.3 (14)
O1—C1—C2—C7158.8 (12)C4A—C5—C8—C8vi110.7 (12)
O1—C1—C2—C7A162.1 (13)C5—C6—C7—C20 (2)
O2—C1—C2—C3158.1 (12)C5—C6A—C7A—C22 (2)
O2—C1—C2—C3A159.0 (12)C6—C5—C8—C5vii65.6 (15)
O2—C1—C2—C720.6 (13)C6—C5—C8—C8vi114.3 (13)
O2—C1—C2—C7A18.6 (14)C6A—C5—C8—C5vii105.6 (14)
N2viii—C9—C10—C110.000 (1)C6A—C5—C8—C8vi74.4 (13)
C1—C2—C3—C4179.9 (10)C7—C2—C3—C41.2 (18)
C1—C2—C3A—C4A179.5 (11)C7A—C2—C3A—C4A2.8 (19)
C1—C2—C7—C6178.7 (10)C8—C5—C6—C7172.3 (11)
C1—C2—C7A—C6A179.1 (11)C8—C5—C6A—C7A171.8 (11)
C2—C3—C4—C53.0 (19)C9—C10—C11—C10i0.000 (1)
C2—C3A—C4A—C54 (2)C9—C10—C11—C12180.000 (1)
C3—C2—C7—C62.6 (18)C10—C11—C12—C1325.8 (6)
C3—C4—C5—C65.7 (17)C10i—C11—C12—C13154.2 (6)
C3—C4—C5—C8170.9 (10)C11—C12—C13—C14177.7 (7)
C3A—C2—C7A—C6A1 (2)C12—C13—C14—N15.0 (16)
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+1/2, y, z; (iii) x, y+2, z; (iv) x+1/2, y+2, z+1; (v) x, y, z+1; (vi) x+3/2, y+1, z; (vii) x, y+1, z; (viii) x, y, z1.
A comparison between the photocatalytic water-splitting efficiency of MOF-related materials top
PhotocatalystPhotosensitizerLight sourceH2 production (mmol g-1 h-1)Reference
Ru-Pt-UiO-67[Ru(dcbpy)(bpy)2]2+Visible1133.3Yao et al. (2018)
ZIF-67[Ru(bpy)3]2+Visible843.7Pattengale et al. (2017)
MOF-199/NiEosin YVisible8000Zhao et al. (2016)
Dy-MOFPtUV-vis21.53Yu et al. (2018)
RhB/Pt@UiO-66(Zr)-100RhB/PtVisible116He et al. (2014)
Co2@MIL-125-NH2MIL-125-NH2Visible553Li et al. (2016)
Co-MOFRu(bpy)3Cl2Visible1.102Liao et al. (2018)
Co-MBFlVisible1000Liu et al. (2019)
1FlVisible6000This work
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds