Buy article online - an online subscription or single-article purchase is required to access this article.
The solar photocatalysis of water splitting represents a significant branch of enzymatic simulation by efficient chemical conversion and the generation of hydrogen as green energy provides a feasible way for the replacement of fossil fuels to solve energy and environmental issues. We report herein the self-assembly of a CoII-based metal–organic framework (MOF) constructed from 4,4′,4′′,4′′′-(ethene-1,1,2,2-tetrayl)tetrabenzoic acid [or tetrakis(4-carboxyphenyl)ethylene, H4TCPE] and 4,4′-bipyridyl (bpy) as four-point- and two-point-connected nodes, respectively. This material, namely, poly[(μ-4,4′-bipyridyl)[μ8-4,4′,4′′,4′′′-(ethene-1,1,2,2-tetrayl)tetrabenzoato]cobalt(II)], [Co(C30H16O8)(C10H8N2)]n, crystallized as dark-red block-shaped crystals with high crystallinity and was fully characterized by single-crystal X-ray diffraction, PXRD, IR, solid-state UV–Vis and cyclic voltammetry (CV) measurements. The redox-active CoII atoms in the structure could be used as the catalytic sites for hydrogen production via water splitting. The application of this new MOF as a heterogeneous catalyst for light-driven H2 production has been explored in a three-component system with fluorescein as photosensitizer and trimethylamine as the sacrificial electron donor, and the initial volume of H2 production is about 360 µmol after 12 h irradiation.
Supporting information
CCDC reference: 1992832
Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and
OLEX2 (Dolomanov et al., 2009); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Poly[(µ-4,4'-bipyridyl)[µ
8-4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetrabenzoato]cobalt(II)]
top
Crystal data top
[Co(C30H16O8)(C10H8N2)] | Dx = 1.215 Mg m−3 |
Mr = 778.48 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pmma | Cell parameters from 9.0145 reflections |
a = 11.857 (3) Å | θ = 2.3–22.1° |
b = 12.936 (3) Å | µ = 0.83 mm−1 |
c = 13.877 (3) Å | T = 200 K |
V = 2128.4 (8) Å3 | Block, colourless |
Z = 2 | 0.13 × 0.11 × 0.1 mm |
F(000) = 792 | |
Data collection top
Bruker APEXII CCD diffractometer | 1448 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
φ and ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −12→14 |
Tmin = 0.841, Tmax = 0.969 | k = −15→15 |
10844 measured reflections | l = −16→14 |
2063 independent reflections | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.177 | w = 1/[σ2(Fo2) + (0.105P)2 + 1.8388P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2063 reflections | Δρmax = 1.01 e Å−3 |
179 parameters | Δρmin = −0.37 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single crystals of 1 for X-ray diffraction analyses with
suitable dimensions were mounted on a glass rod, and the X-ray intensity data
were measured on a Bruker SMART APEX CCD-based diffractometer (Mo–Kα
radiation, λ = 0.71073 Å) using the SMART (Bruker, 2008) and
SAINT programs
(Bruker, 2008). The crystal data was solved by direct
methods and further
refined by full-matrix least-squares refinements on F2 using the
SHELXL-2018/3 and OLEX2 software (Dolomanov et al., 2009), and
an
absorption correction was performed using the SADABS program (Bruker, 2008).
The remaining atoms were found from successive full-matrix least-squares
refinements on F2 and Fourier syntheses. Non-H atoms were refined
with anisotropic displacement parameters. The CCDC 1992832 for 1 contains the
supplementary crystallographic data for this paper and these data can be
obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Co1 | 0.250000 | 1.000000 | 0.18481 (7) | 0.0385 (4) | |
Co2 | 0.250000 | 1.000000 | 0.37986 (7) | 0.0399 (4) | |
O1 | 0.3696 (3) | 0.8910 (3) | 0.2019 (2) | 0.0784 (12) | |
O2 | 0.3688 (3) | 0.8902 (3) | 0.3611 (2) | 0.0721 (10) | |
N1 | 0.250000 | 1.000000 | 0.0353 (5) | 0.0433 (16) | |
N2 | 0.250000 | 1.000000 | 0.5264 (4) | 0.0402 (15) | |
C1 | 0.4009 (4) | 0.8568 (3) | 0.2818 (3) | 0.0548 (11) | |
C2 | 0.4824 (4) | 0.7677 (4) | 0.2824 (3) | 0.0559 (11) | |
C3 | 0.5518 (17) | 0.7474 (13) | 0.2030 (9) | 0.068 (4) | 0.52 (2) |
H3 | 0.547768 | 0.789214 | 0.148588 | 0.082* | 0.52 (2) |
C3A | 0.4929 (16) | 0.7060 (14) | 0.2013 (9) | 0.062 (4) | 0.48 (2) |
H3A | 0.449345 | 0.719186 | 0.146920 | 0.075* | 0.48 (2) |
C4 | 0.6259 (15) | 0.6654 (13) | 0.2053 (10) | 0.068 (4) | 0.52 (2) |
H4 | 0.674355 | 0.653859 | 0.153657 | 0.081* | 0.52 (2) |
C4A | 0.5687 (18) | 0.6244 (14) | 0.2019 (10) | 0.069 (5) | 0.48 (2) |
H4A | 0.579691 | 0.585834 | 0.146181 | 0.082* | 0.48 (2) |
C5 | 0.6284 (4) | 0.5998 (4) | 0.2847 (4) | 0.0600 (12) | |
C6 | 0.5638 (18) | 0.6241 (16) | 0.3621 (12) | 0.076 (5) | 0.52 (2) |
H6 | 0.568757 | 0.583464 | 0.417283 | 0.091* | 0.52 (2) |
C6A | 0.6173 (19) | 0.6613 (14) | 0.3637 (13) | 0.066 (4) | 0.48 (2) |
H6A | 0.659794 | 0.647237 | 0.418480 | 0.080* | 0.48 (2) |
C7 | 0.4908 (18) | 0.7074 (14) | 0.3615 (11) | 0.065 (4) | 0.52 (2) |
H7 | 0.447356 | 0.721954 | 0.415679 | 0.078* | 0.52 (2) |
C7A | 0.545 (2) | 0.7434 (17) | 0.3640 (13) | 0.072 (5) | 0.48 (2) |
H7A | 0.537123 | 0.783337 | 0.419310 | 0.086* | 0.48 (2) |
C8 | 0.6958 (7) | 0.500000 | 0.2846 (6) | 0.078 (2) | |
C9 | 0.3433 (8) | 1.000000 | −0.4231 (6) | 0.119 (4) | |
H9 | 0.411505 | 1.000000 | −0.456240 | 0.143* | |
C10 | 0.3468 (8) | 1.000000 | −0.3214 (6) | 0.116 (4) | |
H10 | 0.415778 | 1.000000 | −0.289495 | 0.139* | |
C11 | 0.250000 | 1.000000 | −0.2705 (5) | 0.045 (2) | |
C12 | 0.250000 | 1.000000 | −0.1635 (6) | 0.047 (2) | |
C13 | 0.3375 (9) | 0.9612 (8) | −0.1115 (6) | 0.084 (5) | 0.5 |
H13 | 0.400916 | 0.935847 | −0.143102 | 0.100* | 0.5 |
C14 | 0.3330 (8) | 0.9591 (7) | −0.0130 (7) | 0.079 (4) | 0.5 |
H14 | 0.391212 | 0.927259 | 0.020658 | 0.094* | 0.5 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Co1 | 0.0490 (7) | 0.0367 (6) | 0.0298 (6) | 0.000 | 0.000 | 0.000 |
Co2 | 0.0494 (7) | 0.0393 (7) | 0.0310 (6) | 0.000 | 0.000 | 0.000 |
O1 | 0.101 (3) | 0.088 (3) | 0.0466 (19) | 0.053 (2) | −0.0028 (18) | −0.0013 (16) |
O2 | 0.089 (3) | 0.073 (2) | 0.054 (2) | 0.040 (2) | 0.0085 (18) | 0.0002 (17) |
N1 | 0.046 (4) | 0.043 (4) | 0.041 (4) | 0.000 | 0.000 | 0.000 |
N2 | 0.046 (4) | 0.047 (4) | 0.027 (3) | 0.000 | 0.000 | 0.000 |
C1 | 0.061 (3) | 0.052 (3) | 0.051 (3) | 0.013 (2) | 0.000 (2) | −0.003 (2) |
C2 | 0.063 (3) | 0.054 (3) | 0.051 (3) | 0.017 (2) | 0.002 (2) | 0.001 (2) |
C3 | 0.079 (11) | 0.059 (8) | 0.066 (7) | 0.025 (8) | 0.008 (7) | 0.013 (6) |
C3A | 0.061 (9) | 0.070 (9) | 0.056 (7) | 0.017 (8) | −0.007 (6) | −0.009 (6) |
C4 | 0.059 (8) | 0.074 (9) | 0.071 (7) | 0.011 (7) | 0.014 (6) | −0.008 (6) |
C4A | 0.076 (11) | 0.063 (9) | 0.067 (7) | 0.025 (8) | 0.000 (8) | −0.020 (6) |
C5 | 0.061 (3) | 0.049 (3) | 0.069 (3) | 0.014 (2) | −0.002 (3) | 0.003 (2) |
C6 | 0.091 (13) | 0.072 (11) | 0.065 (8) | 0.031 (9) | 0.014 (9) | 0.019 (7) |
C6A | 0.077 (12) | 0.061 (10) | 0.060 (7) | 0.020 (8) | −0.011 (8) | −0.003 (7) |
C7 | 0.074 (11) | 0.071 (10) | 0.050 (6) | 0.026 (8) | 0.012 (7) | 0.000 (6) |
C7A | 0.085 (13) | 0.074 (12) | 0.055 (7) | 0.026 (9) | 0.001 (9) | −0.004 (7) |
C8 | 0.068 (4) | 0.083 (5) | 0.082 (5) | 0.000 | 0.003 (4) | 0.000 |
C9 | 0.076 (6) | 0.233 (12) | 0.048 (5) | 0.000 | 0.007 (5) | 0.000 |
C10 | 0.072 (6) | 0.227 (12) | 0.048 (5) | 0.000 | −0.006 (4) | 0.000 |
C11 | 0.052 (5) | 0.057 (5) | 0.025 (4) | 0.000 | 0.000 | 0.000 |
C12 | 0.061 (6) | 0.049 (5) | 0.031 (4) | 0.000 | 0.000 | 0.000 |
C13 | 0.063 (6) | 0.143 (14) | 0.045 (5) | 0.056 (7) | 0.004 (4) | −0.002 (5) |
C14 | 0.062 (6) | 0.125 (11) | 0.048 (5) | 0.053 (6) | −0.006 (4) | 0.007 (5) |
Geometric parameters (Å, º) top
Co1—Co2 | 2.7067 (15) | C3A—C4A | 1.387 (17) |
Co1—O1i | 2.014 (3) | C4—H4 | 0.9300 |
Co1—O1ii | 2.014 (3) | C4—C5 | 1.391 (14) |
Co1—O1iii | 2.014 (3) | C4A—H4A | 0.9300 |
Co1—O1 | 2.014 (3) | C4A—C5 | 1.386 (15) |
Co1—N1 | 2.074 (7) | C5—C6 | 1.357 (17) |
Co2—O2i | 2.018 (3) | C5—C6A | 1.362 (17) |
Co2—O2ii | 2.018 (3) | C5—C8 | 1.518 (6) |
Co2—O2 | 2.018 (3) | C6—H6 | 0.9300 |
Co2—O2iii | 2.018 (3) | C6—C7 | 1.38 (2) |
Co2—N2 | 2.034 (6) | C6A—H6A | 0.9300 |
O1—C1 | 1.251 (5) | C6A—C7A | 1.37 (2) |
O2—C1 | 1.241 (5) | C7—H7 | 0.9300 |
N1—C14 | 1.303 (9) | C7A—H7A | 0.9300 |
N2—C9iv | 1.310 (9) | C8—C8vi | 1.285 (16) |
N2—C9v | 1.310 (9) | C9—H9 | 0.9300 |
C1—C2 | 1.504 (6) | C9—C10 | 1.412 (12) |
C2—C3 | 1.400 (13) | C10—H10 | 0.9300 |
C2—C3A | 1.386 (13) | C10—C11 | 1.347 (10) |
C2—C7 | 1.350 (17) | C11—C12 | 1.485 (11) |
C2—C7A | 1.388 (19) | C12—C13 | 1.360 (10) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.378 (16) | C13—C14 | 1.367 (13) |
C3A—H3A | 0.9300 | C14—H14 | 0.9300 |
| | | |
O1—Co1—Co2 | 83.25 (9) | C4—C3—H3 | 120.0 |
O1iii—Co1—Co2 | 83.25 (9) | C2—C3A—H3A | 120.3 |
O1ii—Co1—Co2 | 83.25 (9) | C2—C3A—C4A | 119.4 (10) |
O1i—Co1—Co2 | 83.25 (9) | C4A—C3A—H3A | 120.3 |
O1—Co1—O1iii | 88.9 (3) | C3—C4—H4 | 120.0 |
O1ii—Co1—O1i | 88.9 (3) | C3—C4—C5 | 120.1 (10) |
O1—Co1—O1ii | 89.5 (3) | C5—C4—H4 | 120.0 |
O1—Co1—O1i | 166.50 (18) | C3A—C4A—H4A | 119.6 |
O1iii—Co1—O1i | 89.6 (3) | C5—C4A—C3A | 120.8 (10) |
O1iii—Co1—O1ii | 166.50 (18) | C5—C4A—H4A | 119.6 |
O1—Co1—N1 | 96.75 (9) | C4—C5—C8 | 122.0 (7) |
O1i—Co1—N1 | 96.75 (9) | C4A—C5—C8 | 117.7 (7) |
O1iii—Co1—N1 | 96.75 (9) | C6—C5—C4 | 118.3 (9) |
O1ii—Co1—N1 | 96.75 (9) | C6—C5—C8 | 119.6 (8) |
N1—Co1—Co2 | 180.0 | C6A—C5—C4A | 118.9 (10) |
O2ii—Co2—Co1 | 82.57 (10) | C6A—C5—C8 | 123.3 (8) |
O2iii—Co2—Co1 | 82.57 (10) | C5—C6—H6 | 119.0 |
O2—Co2—Co1 | 82.57 (10) | C5—C6—C7 | 122.0 (13) |
O2i—Co2—Co1 | 82.57 (10) | C7—C6—H6 | 119.0 |
O2ii—Co2—O2i | 89.5 (2) | C5—C6A—H6A | 119.4 |
O2—Co2—O2ii | 88.6 (2) | C5—C6A—C7A | 121.2 (14) |
O2—Co2—O2iii | 89.5 (2) | C7A—C6A—H6A | 119.4 |
O2—Co2—O2i | 165.15 (19) | C2—C7—C6 | 120.1 (13) |
O2ii—Co2—O2iii | 165.15 (19) | C2—C7—H7 | 120.0 |
O2iii—Co2—O2i | 88.6 (2) | C6—C7—H7 | 120.0 |
O2ii—Co2—N2 | 97.43 (10) | C2—C7A—H7A | 119.7 |
O2i—Co2—N2 | 97.43 (10) | C6A—C7A—C2 | 120.6 (15) |
O2iii—Co2—N2 | 97.43 (10) | C6A—C7A—H7A | 119.7 |
O2—Co2—N2 | 97.43 (10) | C5—C8—C5vii | 116.5 (6) |
N2—Co2—Co1 | 180.0 | C8vi—C8—C5vii | 121.8 (3) |
C1—O1—Co1 | 124.1 (3) | C8vi—C8—C5 | 121.8 (3) |
C1—O2—Co2 | 125.0 (3) | N2viii—C9—H9 | 118.0 |
C14—N1—Co1 | 121.0 (5) | N2viii—C9—C10 | 124.0 (8) |
C9iv—N2—Co2 | 122.3 (4) | C10—C9—H9 | 118.0 |
C9v—N2—Co2 | 122.3 (4) | C9—C10—H10 | 120.0 |
C9v—N2—C9iv | 115.3 (9) | C11—C10—C9 | 119.9 (8) |
O1—C1—C2 | 117.8 (4) | C11—C10—H10 | 120.0 |
O2—C1—O1 | 124.9 (4) | C10—C11—C10i | 116.8 (9) |
O2—C1—C2 | 117.3 (4) | C10i—C11—C12 | 121.6 (5) |
C3—C2—C1 | 121.1 (6) | C10—C11—C12 | 121.6 (5) |
C3A—C2—C1 | 119.6 (6) | C13—C12—C11 | 122.0 (5) |
C3A—C2—C7A | 119.0 (10) | C12—C13—H13 | 119.8 |
C7—C2—C1 | 119.6 (7) | C12—C13—C14 | 120.5 (8) |
C7—C2—C3 | 119.2 (9) | C14—C13—H13 | 119.8 |
C7A—C2—C1 | 121.4 (8) | N1—C14—C13 | 122.4 (8) |
C2—C3—H3 | 120.0 | N1—C14—H14 | 118.8 |
C4—C3—C2 | 120.1 (10) | C13—C14—H14 | 118.8 |
| | | |
Co1—O1—C1—O2 | −5.5 (8) | C3A—C4A—C5—C6A | −4.5 (19) |
Co1—O1—C1—C2 | 173.8 (3) | C3A—C4A—C5—C8 | 170.7 (11) |
Co1—N1—C14—C13 | −177.5 (8) | C4—C5—C6—C7 | 4.4 (19) |
Co2—O2—C1—O1 | 5.0 (8) | C4—C5—C8—C5vii | −110.9 (12) |
Co2—O2—C1—C2 | −174.4 (3) | C4—C5—C8—C8vi | 69.1 (12) |
O1—C1—C2—C3 | 22.5 (13) | C4A—C5—C6A—C7A | 3 (2) |
O1—C1—C2—C3A | −20.4 (13) | C4A—C5—C8—C5vii | −69.3 (14) |
O1—C1—C2—C7 | −158.8 (12) | C4A—C5—C8—C8vi | 110.7 (12) |
O1—C1—C2—C7A | 162.1 (13) | C5—C6—C7—C2 | 0 (2) |
O2—C1—C2—C3 | −158.1 (12) | C5—C6A—C7A—C2 | −2 (2) |
O2—C1—C2—C3A | 159.0 (12) | C6—C5—C8—C5vii | 65.6 (15) |
O2—C1—C2—C7 | 20.6 (13) | C6—C5—C8—C8vi | −114.3 (13) |
O2—C1—C2—C7A | −18.6 (14) | C6A—C5—C8—C5vii | 105.6 (14) |
N2viii—C9—C10—C11 | 0.000 (1) | C6A—C5—C8—C8vi | −74.4 (13) |
C1—C2—C3—C4 | 179.9 (10) | C7—C2—C3—C4 | 1.2 (18) |
C1—C2—C3A—C4A | 179.5 (11) | C7A—C2—C3A—C4A | −2.8 (19) |
C1—C2—C7—C6 | 178.7 (10) | C8—C5—C6—C7 | −172.3 (11) |
C1—C2—C7A—C6A | 179.1 (11) | C8—C5—C6A—C7A | −171.8 (11) |
C2—C3—C4—C5 | 3.0 (19) | C9—C10—C11—C10i | 0.000 (1) |
C2—C3A—C4A—C5 | 4 (2) | C9—C10—C11—C12 | 180.000 (1) |
C3—C2—C7—C6 | −2.6 (18) | C10—C11—C12—C13 | −25.8 (6) |
C3—C4—C5—C6 | −5.7 (17) | C10i—C11—C12—C13 | 154.2 (6) |
C3—C4—C5—C8 | 170.9 (10) | C11—C12—C13—C14 | −177.7 (7) |
C3A—C2—C7A—C6A | 1 (2) | C12—C13—C14—N1 | −5.0 (16) |
Symmetry codes: (i) −x+1/2, −y+2, z; (ii) −x+1/2, y, z; (iii) x, −y+2, z; (iv) −x+1/2, −y+2, z+1; (v) x, y, z+1; (vi) −x+3/2, −y+1, z; (vii) x, −y+1, z; (viii) x, y, z−1. |
A comparison between the photocatalytic water-splitting efficiency of
MOF-related materials topPhotocatalyst | Photosensitizer | Light source | H2 production (mmol g-1 h-1) | Reference |
Ru-Pt-UiO-67 | [Ru(dcbpy)(bpy)2]2+ | Visible | 1133.3 | Yao et al. (2018) |
ZIF-67 | [Ru(bpy)3]2+ | Visible | 843.7 | Pattengale et al. (2017) |
MOF-199/Ni | Eosin Y | Visible | 8000 | Zhao et al. (2016) |
Dy-MOF | Pt | UV-vis | 21.53 | Yu et al. (2018) |
RhB/Pt@UiO-66(Zr)-100 | RhB/Pt | Visible | 116 | He et al. (2014) |
Co2@MIL-125-NH2 | MIL-125-NH2 | Visible | 553 | Li et al. (2016) |
Co-MOF | Ru(bpy)3Cl2 | Visible | 1.102 | Liao et al. (2018) |
Co-MB | Fl | Visible | 1000 | Liu et al. (2019) |
1 | Fl | Visible | 6000 | This work |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.