Buy article online - an online subscription or single-article purchase is required to access this article.
research papers
A robust algorithm and computer program have been developed for the parameterization of elastic and absorptive electron atomic scattering factors. The algorithm is based on a combined modified simulated-annealing and least-squares method, and the computer program works well for fitting both elastic and absorptive atomic scattering factors with five Gaussians. As an application of this program, the elastic electron atomic scattering factors have been parameterized for all neutral atoms and for s up to 6 Å-1. Error analysis shows that the present results are considerably more accurate than the previous analytical fits in terms of the mean square value of the deviation between the numerical and fitted scattering factors. Parameterization for absorptive atomic scattering factors has been made for 17 important materials with the zinc blende structure over the temperature range 1 to 1000 K, where appropriate, and for temperature ranges for which accurate Debye-Waller factors are available. For other materials, the parameterization of the absorptive electron atomic scattering factors can be made using the program by supplying the atomic number of the element, the Debye-Waller factor and the acceleration voltage. For ions or when more accurate numerical results for neutral atoms are available, the program can read in the numerical values of the elastic scattering factors and return the parameters for both the elastic and absorptive scattering factors. The computer routines developed have been tested both on computer workstations and desktop PC computers, and will be made freely available via electronic mail or on floppy disk upon request.