Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The synthesis of a chiral iso­thio­urea, namely, (4aR,8aR)-3-phenyl-4a,5,6,7,8,8a-hexa­hydro­benzo[4,5]imidazo[2,1-b]thia­zol-9-ium bromide, C15H17N2S+·Br, with potential organocatalytic and anti-inflammatory activity is reported. The preparation of the heterocycle of inter­est was carried out in two high-yielding steps. The hydro­bromide salt of the iso­thio­urea of inter­est provided suitable crystals for X-ray diffraction analysis, the results of which are reported. Salient observations from this analysis are the near perpendicular arrangement of the phenyl ring and the mean plane of the heterocycle. This conformational characteristic may be relevant with regard the stereoselectivity induced by the chiral isothiourea in asymmetric reactions. Furthermore, evidence was found for the existence of an S⋯Br halogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623010781/zo3043sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623010781/zo3043Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623010781/zo3043sup3.pdf
Supplementary material

CCDC reference: 2290420

Computing details top

(4aR,8aR)-3-Phenyl-4a,5,6,7,8,8a-hexahydrobenzo[4,5]imidazo[2,1-b]thiazol-9-ium bromide top
Crystal data top
C15H17N2S+·BrF(000) = 688
Mr = 337.27Dx = 1.575 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9613 reflections
a = 7.9846 (6) Åθ = 2.5–26.8°
b = 9.1982 (6) ŵ = 3.03 mm1
c = 19.3636 (16) ÅT = 296 K
V = 1422.14 (18) Å3Plate, yellow
Z = 40.45 × 0.41 × 0.15 mm
Data collection top
Bruker D8 VENTURE
diffractometer
4178 independent reflections
Radiation source: microsource x-ray tube3648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ or ω oscillation scansθmax = 30.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.521, Tmax = 0.74k = 1212
97564 measured reflectionsl = 2727
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.092P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.47 e Å3
4178 reflectionsΔρmin = 0.65 e Å3
176 parametersAbsolute structure: Flack x determined using 1413 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.038 (3)
0 constraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Crystal data, data collection and structure refinement details are summarized in Table 1. A yellow plate-like specimen of (R,R)-3, with approximate dimensions 0.150 × 0.410 × 0.450 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured with molybdenum lamp irradiation (λ = 0.71073 Å).

The integration of the data using an orthorhombic unit cell (space group P212121) yielded a total of 97564 reflections to a maximum θ angle of 30.15° (0.71 Å resolution), of which 4178 were independent (average redundancy 23.352, completeness = 99.6%, Rint = 7.24%, Rsig = 2.68%) and 3648 (87.31%) were greater than 2σ(F2). The final cell constants of a = 7.9846 (6), b = 9.1982 (6), c = 19.3636 (16) Å and V = 1422.14 (18) Å3, are based upon the refinement of the XYZ-centroids of 9613 reflections above 20σ(I) with 4.902 < 2θ < 53.55°. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.3430 and 0.6600.

The final anisotropic full-matrix least-squares refinement on F2 with 176 variables converged at R1 = 3.13%, for the observed data and wR2 = 7.82% for all data. The goodness-of-fit was 1.097. The largest peak in the final difference electron-density synthesis was 0.471 e- Å-3 and the largest hole was -0.648 e- Å-3 with an r.m.s. deviation of 0.100 e- Å-3. On the basis of the final model, the calculated density was 1.575 g cm-3 and F(000), 688 e-. The Flack parameter of 0.038 (3) indicates that the correct enantiomer was refined (Parsons et al., 2013).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br170.93598 (4)0.30667 (3)0.83995 (2)0.04600 (11)
S10.83202 (11)0.12522 (8)0.68066 (4)0.04214 (18)
N40.7349 (3)0.3263 (2)0.59869 (12)0.0311 (4)
N90.7012 (3)0.4002 (3)0.70832 (13)0.0401 (5)
C70.5495 (5)0.7586 (3)0.6275 (2)0.0491 (8)
H7A0.4602260.8277910.6361090.059*
H7B0.6551160.8103190.6306280.059*
C60.5302 (4)0.6970 (4)0.55494 (19)0.0484 (7)
H6B0.546770.7747710.5218220.058*
H6A0.4165570.6614830.5494190.058*
C50.6529 (4)0.5725 (3)0.53815 (16)0.0400 (6)
H5A0.6269590.5302060.4935310.048*
H5B0.7671650.6083040.53720.048*
C4A0.6315 (3)0.4612 (3)0.59478 (14)0.0311 (5)
H4A0.5131980.4329680.5964110.037*
C30.7677 (3)0.2068 (3)0.55544 (14)0.0328 (5)
C110.7490 (3)0.2108 (3)0.48004 (14)0.0323 (5)
C160.8145 (4)0.3232 (3)0.44013 (15)0.0356 (5)
H160.8689390.4004470.4615450.043*
C150.7996 (4)0.3212 (4)0.36929 (16)0.0442 (7)
H150.8430830.3971960.3431720.053*
C140.7196 (4)0.2058 (4)0.33674 (17)0.0471 (7)
H140.708180.2049110.2889490.057*
C80.5446 (4)0.6400 (4)0.68327 (17)0.0443 (7)
H8B0.5675220.6814860.7283470.053*
H8A0.4351930.5942520.6844790.053*
C8A0.6776 (4)0.5299 (3)0.66446 (15)0.0349 (5)
H8AA0.7852070.5801680.6597470.042*
C100.7549 (3)0.2954 (3)0.66590 (15)0.0346 (5)
C20.8223 (4)0.0924 (3)0.59247 (16)0.0404 (6)
H20.8520010.0040390.5726490.048*
C120.6719 (4)0.0944 (3)0.44656 (17)0.0379 (6)
H120.6298770.017250.472330.046*
C130.6573 (4)0.0926 (4)0.37564 (18)0.0453 (7)
H130.6051740.0146320.3539330.054*
H90.749 (3)0.406 (4)0.7493 (9)0.037 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br170.04827 (17)0.04082 (15)0.04891 (17)0.00207 (13)0.01169 (13)0.00259 (13)
S10.0480 (4)0.0396 (4)0.0389 (4)0.0073 (3)0.0006 (3)0.0101 (3)
N40.0318 (10)0.0296 (11)0.0318 (11)0.0015 (9)0.0004 (8)0.0016 (9)
N90.0466 (14)0.0413 (13)0.0324 (12)0.0066 (11)0.0046 (11)0.0032 (10)
C70.0465 (18)0.0326 (13)0.068 (2)0.0042 (13)0.0007 (17)0.0043 (14)
C60.0507 (17)0.0365 (14)0.0580 (19)0.0090 (14)0.0004 (14)0.0094 (14)
C50.0463 (16)0.0326 (13)0.0412 (15)0.0046 (12)0.0020 (13)0.0069 (11)
C4A0.0290 (12)0.0276 (11)0.0367 (13)0.0001 (9)0.0010 (10)0.0009 (10)
C30.0320 (12)0.0299 (12)0.0365 (13)0.0016 (10)0.0035 (10)0.0006 (11)
C110.0286 (11)0.0331 (13)0.0351 (13)0.0042 (10)0.0035 (10)0.0012 (10)
C160.0378 (13)0.0311 (13)0.0379 (13)0.0008 (11)0.0005 (11)0.0018 (11)
C150.0513 (17)0.0428 (15)0.0384 (14)0.0030 (15)0.0021 (13)0.0049 (13)
C140.0480 (16)0.0574 (18)0.0359 (14)0.0077 (15)0.0052 (13)0.0061 (15)
C80.0401 (16)0.0443 (15)0.0486 (16)0.0051 (12)0.0005 (14)0.0121 (13)
C8A0.0323 (12)0.0342 (12)0.0383 (13)0.0007 (10)0.0047 (12)0.0040 (11)
C100.0331 (12)0.0359 (12)0.0349 (13)0.0011 (10)0.0018 (10)0.0036 (12)
C20.0470 (16)0.0329 (13)0.0412 (15)0.0049 (12)0.0044 (13)0.0039 (11)
C120.0324 (13)0.0316 (12)0.0498 (16)0.0007 (11)0.0057 (12)0.0051 (11)
C130.0357 (15)0.0482 (17)0.0520 (18)0.0010 (13)0.0029 (13)0.0179 (14)
Geometric parameters (Å, º) top
S1—C101.706 (3)C4A—H4A0.98
S1—C21.736 (3)C3—C21.345 (4)
N4—C101.342 (4)C3—C111.468 (4)
N4—C31.407 (4)C11—C161.393 (4)
N4—C4A1.492 (3)C11—C121.395 (4)
N9—C101.337 (4)C16—C151.377 (4)
N9—C8A1.477 (4)C16—H160.93
N9—H90.880 (13)C15—C141.390 (5)
C7—C61.524 (5)C15—H150.93
C7—C81.535 (5)C14—C131.377 (5)
C7—H7A0.97C14—H140.93
C7—H7B0.97C8—C8A1.511 (4)
C6—C51.541 (4)C8—H8B0.97
C6—H6B0.97C8—H8A0.97
C6—H6A0.97C8A—H8AA0.98
C5—C4A1.511 (4)C2—H20.93
C5—H5A0.97C12—C131.378 (5)
C5—H5B0.97C12—H120.93
C4A—C8A1.535 (4)C13—H130.93
C10—S1—C288.76 (14)C16—C11—C3122.2 (2)
C10—N4—C3112.9 (2)C12—C11—C3119.2 (3)
C10—N4—C4A106.9 (2)C15—C16—C11120.7 (3)
C3—N4—C4A136.3 (2)C15—C16—H16119.7
C10—N9—C8A105.7 (2)C11—C16—H16119.7
C10—N9—H9117 (2)C16—C15—C14120.1 (3)
C8A—N9—H9121 (2)C16—C15—H15119.9
C6—C7—C8112.4 (3)C14—C15—H15119.9
C6—C7—H7A109.1C13—C14—C15119.7 (3)
C8—C7—H7A109.1C13—C14—H14120.2
C6—C7—H7B109.1C15—C14—H14120.2
C8—C7—H7B109.1C8A—C8—C7106.8 (3)
H7A—C7—H7B107.8C8A—C8—H8B110.4
C7—C6—C5114.0 (3)C7—C8—H8B110.4
C7—C6—H6B108.8C8A—C8—H8A110.4
C5—C6—H6B108.8C7—C8—H8A110.4
C7—C6—H6A108.8H8B—C8—H8A108.6
C5—C6—H6A108.8N9—C8A—C8119.5 (3)
H6B—C6—H6A107.7N9—C8A—C4A101.7 (2)
C4A—C5—C6106.2 (2)C8—C8A—C4A108.6 (2)
C4A—C5—H5A110.5N9—C8A—H8AA108.8
C6—C5—H5A110.5C8—C8A—H8AA108.8
C4A—C5—H5B110.5C4A—C8A—H8AA108.8
C6—C5—H5B110.5N9—C10—N4113.9 (2)
H5A—C5—H5B108.7N9—C10—S1132.4 (2)
N4—C4A—C5122.6 (2)N4—C10—S1113.6 (2)
N4—C4A—C8A99.5 (2)C3—C2—S1113.8 (2)
C5—C4A—C8A109.4 (2)C3—C2—H2123.1
N4—C4A—H4A108.2S1—C2—H2123.1
C5—C4A—H4A108.2C13—C12—C11120.6 (3)
C8A—C4A—H4A108.2C13—C12—H12119.7
C2—C3—N4110.7 (3)C11—C12—H12119.7
C2—C3—C11125.6 (3)C14—C13—C12120.4 (3)
N4—C3—C11123.6 (2)C14—C13—H13119.8
C16—C11—C12118.5 (3)C12—C13—H13119.8
C8—C7—C6—C552.1 (4)C10—N9—C8A—C4A30.2 (3)
C7—C6—C5—C4A53.7 (4)C7—C8—C8A—N9179.0 (3)
C10—N4—C4A—C5147.2 (3)C7—C8—C8A—C4A63.1 (3)
C3—N4—C4A—C557.6 (4)N4—C4A—C8A—N933.5 (3)
C10—N4—C4A—C8A26.8 (3)C5—C4A—C8A—N9163.1 (2)
C3—N4—C4A—C8A178.0 (3)N4—C4A—C8A—C8160.4 (2)
C6—C5—C4A—N4177.2 (2)C5—C4A—C8A—C870.0 (3)
C6—C5—C4A—C8A61.6 (3)C8A—N9—C10—N414.1 (3)
C10—N4—C3—C24.1 (3)C8A—N9—C10—S1170.6 (2)
C4A—N4—C3—C2158.2 (3)C3—N4—C10—N9170.8 (2)
C10—N4—C3—C11177.7 (2)C4A—N4—C10—N99.1 (3)
C4A—N4—C3—C1123.5 (5)C3—N4—C10—S15.4 (3)
C2—C3—C11—C16130.2 (3)C4A—N4—C10—S1167.05 (17)
N4—C3—C11—C1647.7 (4)C2—S1—C10—N9171.3 (3)
C2—C3—C11—C1245.9 (4)C2—S1—C10—N44.0 (2)
N4—C3—C11—C12136.1 (3)N4—C3—C2—S11.0 (3)
C12—C11—C16—C151.7 (4)C11—C3—C2—S1179.2 (2)
C3—C11—C16—C15177.8 (3)C10—S1—C2—C31.6 (3)
C11—C16—C15—C140.5 (5)C16—C11—C12—C131.6 (4)
C16—C15—C14—C130.8 (5)C3—C11—C12—C13177.8 (3)
C6—C7—C8—C8A54.8 (4)C15—C14—C13—C120.9 (5)
C10—N9—C8A—C8149.6 (3)C11—C12—C13—C140.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8AA···Br17i0.983.054.001 (3)164
C2—H2···Br17ii0.9333.514 (3)116
N9—H9···Br170.88 (1)2.48 (2)3.279 (3)151 (3)
C8A—H8AA···Br17i0.983.054.001 (3)164
C2—H2···Br17ii0.9333.514 (3)116
N9—H9···Br170.88 (1)2.48 (2)3.279 (3)151 (3)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2.
Comparison of experimental and standard (average) (Allen et al., 1987; Gilchrist, 1992) bonds (Å) for the isothiourea segment in the hydrobromide salt (R,R)-3 top
Experimental bond distances
N4—C101.342 (4)C2—C31.345 (4)
N9—C101.337 (4)N4—C31.407 (4)
S1—C101.706 (3)N4—C4A1.492 (3)
S1—C21.736 (3)
Standard bond distances (Parsons et al., 2013)
C—N1.469–1.499
CN1.325–1.372 (partial double bond)
CN1.279 (imine)
CC1.33
Atomic coordinates used to describe main planes A and B, together with the least-squares planes (x,y,z in crystal coordinates) and deviations top
An asterisk (*) indicates an atom used to define the mean plane.
DeviationAtomDeviationAtom
Plane A
0.0516 (0.0015)S1*-0.1779 (0.0028)C6*
0.0668 (0.0024)C10*0.3154 (0.0027)C5*
0.0065 (0.0024)N9*-0.2494 (0.0025)C4A*
0.2943 (0.0026)C8A*0.0554 (0.0021)N4*
-0.3248 (0.0027)C8*-0.0884 (0.0023)C3*
0.1419 (0.0031)C7*-0.0913 (0.0025)C2*
Plane A: 7.4132 (0.0014)x + 3.4100 (0.0038)y - 0.4648 (0.0162)z = 6.2269 (0.0105)
R.m.s. deviation of fitted atoms = 0.1897
Plane B
-0.0101 (0.0019)C11*-0.0075 (0.0022)C14*
0.0054 (0.0021)C12*0.0026 (0.0022)C15*
0.0035 (0.0022)C13*0.0062 (0.0020)C16*
Plane B: 6.9945 (0.0049)x - 4.3933 (0.0102)y - 1.2984 (0.0241)z = 3.6995 (0.0119)
R.m.s. deviation of fitted atoms = 0.0064
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds