Download citation
Download citation
link to html
Synchrotron radiation from third-generation high-brilliance storage rings is an ideal source for X-ray microbeams. The aim of this paper is to describe a microfocusing scheme that combines both a toroidal mirror and Kirkpatrick-Baez (KB) mirrors for upgrading the existing optical system for inelastic X-ray scattering experiments at sector 3 of the Advanced Photon Source. SHADOW ray-tracing simulations without considering slope errors of both the toroidal mirror and KB mirrors show that this combination can provide a beam size of 4.5 µm (H) × 0.6 µm (V) (FWHM) at the end of the existing D-station (66 m from the source) with use of full beam transmission of up to 59%, and a beam size of 3.7 µm (H) × 0.46 µm (V) (FWHM) at the front-end of the proposed E-station (68 m from the source) with a transmission of up to 52%. A beam size of about 5 µm (H) × 1 µm (V) can be obtained, which is close to the ideal case, by using high-quality mirrors (with slope errors of less than 0.5 µrad r.m.s.). Considering the slope errors of the existing toroidal and KB mirrors (5 and 2.9 µrad r.m.s., respectively), the beam size grows to about 13.5 µm (H) × 6.3 µm (V) at the end of the D-station and to 12.0 µm (H) × 6.0 µm (V) at the front-end of the proposed E-station. The simulations presented here are compared with the experimental measurements that are significantly larger than the theoretical values even when slope error is included in the simulations. This is because of the experimental set-up that could not yet be optimized.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds