Download citation
Download citation
link to html
In the title compound, [Ni(C13H11ClN3O2)2], the NiII atom is located on a twofold rotation axis and is six-coordinated by four N atoms and two phenolate O atoms from the two equal Schiff base ligands in a distorted octa­hedral coordination geometry. The complex mol­ecules are connected by C—H...Cl, C—H...O and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808031577/hy2154sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808031577/hy2154Isup2.hkl
Contains datablock I

CCDC reference: 709494

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.045
  • wR factor = 0.081
  • Data-to-parameter ratio = 13.0

checkCIF/PLATON results

No syntax errors found



Alert level B RINTA01_ALERT_3_B The value of Rint is greater than 0.15 Rint given 0.154
Author Response: This is because of the poor quality and small size of the crystal selected for diffraction. Although many efforts were made to select better crystals for experiment, each time we failed.
PLAT020_ALERT_3_B The value of Rint is greater than 0.10 .........       0.15
Author Response: This is because of the poor quality and small size of the crystal selected for diffraction. Although many efforts were made to select better crystals for experiment, each time we failed.

Alert level C PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 24.99 From the CIF: _reflns_number_total 2294 Count of symmetry unique reflns 1370 Completeness (_total/calc) 167.45% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 924 Fraction of Friedel pairs measured 0.674 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Transition metal–Schiff base complexes have been an interesting field for a long time due to their striking biological activites (Casella & Gullotti, 1986; Hodnett & Dunn, 1970; Kim et al., 2005; May et al., 2004). In this paper, we report the crystal structure of a new nickel(II) complex with a Schiff base ligand, 2-[(E)-(2-(1H-imidazol-4-yl)ethylimino)methyl]-4-chloro -6-formylphenolate.

In the title compound, the NiII atom is located on a twofold rotation axis and six-coordinated by four N atoms and two phenolate O atoms from two Schiff base ligands (Fig. 1). The coordination geometry of the Ni atom can be described as distorted octahedral. The two phenolate O atoms and the two imidazole N atoms are located in the equatorial plane, with Ni—O distance of 2.054 (3)Å and Ni—N distance of 2.068 (4)Å (Table 1), and with the mean plane deviation of 0.0147 (2) Å. The other two N atoms from the imino groups of the Schiff base ligands occupy the axial positions, with somewhat long Ni—N distance of 2.102 (4) Å. The complex molecules are connected by C—H···Cl, C—H···O and N—H···O hydrogen bonds (Table 2).

Related literature top

For related literature on transition metal–Schiff base complexes, see: Casella & Gullotti (1986); Hodnett & Dunn (1970); Kim et al. (2005); May et al. (2004). For literature related to the synthesis, see: Taniguchi (1984).

Experimental top

2,6-Diformyl-4-chlorophenol was prepared using the method of Taniguchi (1984). The title compound was synthesized by the following procedure: To an acetonitrile solution (10 ml) of 2,6-diformyl-4-chlorophenol (0.092 g, 0.5 mmol) and Ni(ClO4)2.6H2O (0.018 g, 0.25 mmol), a solution of NaOH (0.041 g, 1 mmol) and histamine dihydrochloride (0.092 g, 0.5 mmol) in 15 ml of absolute methanol was added dropwise. After the mixture was stirred at ambient temperature for about 1 h, a red solution appeared and then the stirring was continued for 3 h. Red needle crystals of the title compound suitable for X-ray diffraction were obtained in about a month.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93(CH), 0.97(CH2) Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, y, -z.]
Bis{4-chloro-6-formyl-2-[(E)-2-(1H-imidazol-4- yl-κN3)ethyliminomethyl-κN]phenolato-κO1}nickel(II) top
Crystal data top
[Ni(C13H11ClN3O2)2]Dx = 1.568 Mg m3
Mr = 612.11Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 1360 reflections
Hall symbol: P 4nw 2abwθ = 2.6–15.1°
a = 13.5883 (16) ŵ = 1.00 mm1
c = 14.0392 (16) ÅT = 293 K
V = 2592.2 (5) Å3Needle, red
Z = 40.10 × 0.04 × 0.02 mm
F(000) = 1256
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2294 independent reflections
Radiation source: fine-focus sealed tube1253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.154
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.901, Tmax = 0.978k = 1616
21136 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.003
2294 reflectionsΔρmax = 0.35 e Å3
177 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 920 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Ni(C13H11ClN3O2)2]Z = 4
Mr = 612.11Mo Kα radiation
Tetragonal, P43212µ = 1.00 mm1
a = 13.5883 (16) ÅT = 293 K
c = 14.0392 (16) Å0.10 × 0.04 × 0.02 mm
V = 2592.2 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2294 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1253 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.978Rint = 0.154
21136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.35 e Å3
S = 0.82Δρmin = 0.24 e Å3
2294 reflectionsAbsolute structure: Flack (1983), 920 Friedel pairs
177 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The reason of the large Rintvalue is the poor quality and small size of the crystal sample. Although many efforts were made to select better crystal for experiment, each time we failed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.23545 (4)0.23545 (4)0.00000.0433 (3)
C10.2375 (4)0.0575 (3)0.1277 (3)0.0428 (12)
C20.2104 (4)0.0113 (4)0.2139 (4)0.0564 (15)
C30.2586 (4)0.0728 (4)0.2478 (4)0.0656 (14)
H30.23810.10260.30410.079*
C40.3356 (4)0.1106 (4)0.1977 (5)0.0642 (17)
C50.3666 (4)0.0659 (4)0.1150 (4)0.0593 (15)
H50.42020.09200.08250.071*
C60.3205 (4)0.0165 (3)0.0790 (4)0.0455 (13)
C70.1300 (4)0.0521 (5)0.2722 (4)0.0800 (19)
H70.10370.11250.25450.096*
C80.3581 (3)0.0522 (4)0.0096 (4)0.0519 (13)
H80.40550.01290.03840.062*
C90.3904 (4)0.1472 (4)0.1444 (4)0.0700 (17)
H9A0.40220.08390.17430.084*
H9B0.45390.17600.12940.084*
C100.3368 (4)0.2136 (4)0.2143 (3)0.0636 (15)
H10A0.37010.21120.27540.076*
H10B0.27040.18920.22330.076*
C110.3326 (4)0.3166 (4)0.1810 (4)0.0500 (14)
C120.3728 (4)0.4001 (4)0.2169 (4)0.0620 (16)
H120.40970.40560.27240.074*
C130.2960 (3)0.4340 (4)0.0856 (4)0.0504 (14)
H130.27070.46950.03450.060*
Cl10.39581 (12)0.21688 (11)0.23773 (13)0.1081 (7)
N10.3352 (3)0.1319 (3)0.0552 (3)0.0487 (11)
N20.2844 (3)0.3389 (3)0.0971 (3)0.0480 (11)
N30.3486 (3)0.4739 (3)0.1563 (3)0.0584 (12)
H3A0.36410.53490.16220.070*
O10.1862 (2)0.1302 (2)0.0935 (2)0.0494 (9)
O20.0962 (3)0.0119 (3)0.3416 (3)0.1061 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0453 (3)0.0453 (3)0.0393 (5)0.0010 (4)0.0040 (3)0.0040 (3)
C10.038 (3)0.050 (3)0.040 (3)0.012 (3)0.004 (3)0.003 (3)
C20.057 (4)0.056 (4)0.056 (4)0.014 (3)0.008 (3)0.009 (3)
C30.067 (4)0.064 (4)0.066 (4)0.024 (3)0.020 (5)0.016 (4)
C40.059 (4)0.055 (4)0.079 (5)0.001 (3)0.026 (4)0.017 (4)
C50.041 (3)0.060 (4)0.077 (5)0.003 (3)0.011 (3)0.002 (3)
C60.043 (3)0.043 (3)0.050 (4)0.003 (3)0.006 (3)0.001 (3)
C70.080 (5)0.115 (5)0.045 (5)0.021 (4)0.001 (4)0.030 (4)
C80.048 (3)0.044 (3)0.064 (4)0.007 (3)0.004 (3)0.013 (3)
C90.094 (4)0.056 (4)0.060 (4)0.015 (3)0.028 (4)0.004 (3)
C100.082 (4)0.069 (4)0.040 (4)0.011 (3)0.020 (3)0.006 (3)
C110.060 (4)0.053 (4)0.038 (4)0.003 (3)0.002 (3)0.002 (3)
C120.070 (4)0.068 (4)0.048 (4)0.015 (3)0.018 (3)0.000 (3)
C130.052 (4)0.054 (4)0.045 (4)0.004 (3)0.009 (3)0.006 (3)
Cl10.1068 (12)0.0770 (11)0.1405 (16)0.0095 (10)0.0362 (12)0.0368 (12)
N10.052 (3)0.054 (3)0.041 (3)0.001 (2)0.009 (2)0.003 (2)
N20.063 (3)0.042 (3)0.039 (3)0.003 (2)0.003 (2)0.000 (2)
N30.063 (3)0.053 (3)0.059 (3)0.009 (2)0.006 (3)0.018 (3)
O10.043 (2)0.059 (2)0.046 (2)0.0090 (17)0.0044 (17)0.0083 (18)
O20.116 (4)0.135 (4)0.068 (4)0.013 (3)0.017 (3)0.026 (3)
Geometric parameters (Å, º) top
Ni1—O12.054 (3)C7—H70.9300
Ni1—O1i2.054 (3)C8—N11.296 (5)
Ni1—N2i2.068 (4)C8—H80.9300
Ni1—N22.068 (4)C9—N11.474 (5)
Ni1—N12.102 (4)C9—C101.519 (6)
Ni1—N1i2.102 (4)C9—H9A0.9700
C1—O11.301 (5)C9—H9B0.9700
C1—C21.412 (6)C10—C111.477 (6)
C1—C61.431 (6)C10—H10A0.9700
C2—C31.401 (6)C10—H10B0.9700
C2—C71.474 (7)C11—C121.355 (6)
C3—C41.362 (7)C11—N21.382 (5)
C3—H30.9300C12—N31.356 (5)
C4—C51.376 (7)C12—H120.9300
C4—Cl11.752 (5)C13—N21.312 (5)
C5—C61.380 (6)C13—N31.337 (5)
C5—H50.9300C13—H130.9300
C6—C81.429 (6)N3—H3A0.8600
C7—O21.208 (5)
O1—Ni1—O1i87.37 (17)C2—C7—H7117.9
O1—Ni1—N2i91.40 (14)N1—C8—C6128.9 (5)
O1i—Ni1—N2i178.49 (14)N1—C8—H8115.5
O1—Ni1—N2178.49 (14)C6—C8—H8115.5
O1i—Ni1—N291.40 (14)N1—C9—C10112.8 (4)
N2i—Ni1—N289.8 (2)N1—C9—H9A109.0
O1—Ni1—N188.84 (14)C10—C9—H9A109.0
O1i—Ni1—N189.72 (13)N1—C9—H9B109.0
N2i—Ni1—N191.14 (15)C10—C9—H9B109.0
N2—Ni1—N190.27 (15)H9A—C9—H9B107.8
O1—Ni1—N1i89.72 (13)C11—C10—C9112.2 (4)
O1i—Ni1—N1i88.84 (14)C11—C10—H10A109.2
N2i—Ni1—N1i90.27 (15)C9—C10—H10A109.2
N2—Ni1—N1i91.14 (15)C11—C10—H10B109.2
N1—Ni1—N1i178.0 (2)C9—C10—H10B109.2
O1—C1—C2120.9 (5)H10A—C10—H10B107.9
O1—C1—C6122.8 (4)C12—C11—N2108.9 (5)
C2—C1—C6116.2 (5)C12—C11—C10131.3 (5)
C3—C2—C1122.2 (5)N2—C11—C10119.7 (5)
C3—C2—C7117.6 (5)C11—C12—N3106.8 (5)
C1—C2—C7120.2 (5)C11—C12—H12126.6
C4—C3—C2119.4 (5)N3—C12—H12126.6
C4—C3—H3120.3N2—C13—N3111.9 (5)
C2—C3—H3120.3N2—C13—H13124.1
C3—C4—C5120.3 (5)N3—C13—H13124.1
C3—C4—Cl1120.3 (5)C8—N1—C9114.6 (4)
C5—C4—Cl1119.4 (5)C8—N1—Ni1122.1 (3)
C4—C5—C6121.9 (5)C9—N1—Ni1123.2 (3)
C4—C5—H5119.0C13—N2—C11105.3 (4)
C6—C5—H5119.0C13—N2—Ni1128.9 (4)
C5—C6—C8115.6 (5)C11—N2—Ni1124.4 (3)
C5—C6—C1119.9 (5)C13—N3—C12107.2 (4)
C8—C6—C1124.4 (4)C13—N3—H3A126.4
O2—C7—C2124.1 (6)C12—N3—H3A126.4
O2—C7—H7117.9C1—O1—Ni1126.1 (3)
O1—C1—C2—C3173.9 (4)C10—C9—N1—Ni128.0 (6)
C6—C1—C2—C33.1 (6)O1—Ni1—N1—C817.2 (4)
O1—C1—C2—C77.0 (7)O1i—Ni1—N1—C8104.6 (4)
C6—C1—C2—C7176.0 (4)N2i—Ni1—N1—C874.1 (4)
C1—C2—C3—C41.5 (7)N2—Ni1—N1—C8164.0 (4)
C7—C2—C3—C4177.6 (5)O1—Ni1—N1—C9167.8 (4)
C2—C3—C4—C50.8 (8)O1i—Ni1—N1—C980.4 (4)
C2—C3—C4—Cl1179.0 (3)N2i—Ni1—N1—C9100.8 (4)
C3—C4—C5—C61.3 (8)N2—Ni1—N1—C911.0 (4)
Cl1—C4—C5—C6178.5 (4)N3—C13—N2—C110.2 (5)
C4—C5—C6—C8177.3 (5)N3—C13—N2—Ni1166.5 (3)
C4—C5—C6—C10.4 (7)C12—C11—N2—C130.6 (6)
O1—C1—C6—C5174.4 (4)C10—C11—N2—C13178.1 (5)
C2—C1—C6—C52.5 (6)C12—C11—N2—Ni1166.8 (3)
O1—C1—C6—C82.2 (7)C10—C11—N2—Ni110.7 (6)
C2—C1—C6—C8179.2 (4)N2i—Ni1—N2—C1352.1 (4)
C3—C2—C7—O28.3 (8)N1—Ni1—N2—C13143.3 (4)
C1—C2—C7—O2172.5 (5)N2i—Ni1—N2—C11112.2 (4)
C5—C6—C8—N1173.5 (5)N1—Ni1—N2—C1121.0 (4)
C1—C6—C8—N19.8 (8)N1i—Ni1—N2—C11157.6 (4)
N1—C9—C10—C1169.3 (6)N2—C13—N3—C120.3 (6)
C9—C10—C11—C12115.1 (6)C11—C12—N3—C130.6 (6)
C9—C10—C11—N261.8 (6)C2—C1—O1—Ni1157.3 (3)
N2—C11—C12—N30.7 (6)C6—C1—O1—Ni125.9 (6)
C10—C11—C12—N3177.9 (5)O1i—Ni1—O1—C1118.8 (4)
C6—C8—N1—C9178.7 (5)N1—Ni1—O1—C129.0 (4)
C6—C8—N1—Ni13.3 (7)N1i—Ni1—O1—C1152.4 (3)
C10—C9—N1—C8156.6 (4)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cl1ii0.972.823.475 (5)125
C12—H12···O2iii0.932.363.287 (7)174
N3—H3A···O1iv0.862.062.899 (5)166
Symmetry codes: (ii) x+1, y, z1/2; (iii) y+1/2, x+1/2, z3/4; (iv) y+1/2, x+1/2, z1/4.

Experimental details

Crystal data
Chemical formula[Ni(C13H11ClN3O2)2]
Mr612.11
Crystal system, space groupTetragonal, P43212
Temperature (K)293
a, c (Å)13.5883 (16), 14.0392 (16)
V3)2592.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.10 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.901, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
21136, 2294, 1253
Rint0.154
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.081, 0.82
No. of reflections2294
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.24
Absolute structureFlack (1983), 920 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O12.054 (3)Ni1—N12.102 (4)
Ni1—N22.068 (4)
O1—Ni1—O1i87.37 (17)N2—Ni1—N190.27 (15)
O1—Ni1—N2i91.40 (14)O1—Ni1—N1i89.72 (13)
O1—Ni1—N2178.49 (14)N2—Ni1—N1i91.14 (15)
N2i—Ni1—N289.8 (2)N1—Ni1—N1i178.0 (2)
O1—Ni1—N188.84 (14)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cl1ii0.972.823.475 (5)125
C12—H12···O2iii0.932.363.287 (7)174
N3—H3A···O1iv0.862.062.899 (5)166
Symmetry codes: (ii) x+1, y, z1/2; (iii) y+1/2, x+1/2, z3/4; (iv) y+1/2, x+1/2, z1/4.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds