Download citation
Download citation
link to html
The reaction of 4-fluoro­aniline hydro­chloride, 18-crown-6 and ferric chloride in methano­lic solution yields the title compound, (C6H7FN)[FeCl4]·C12H24O6, which has an unusual supramolecular structure. N—H...O hydrogen-bonding inter­actions between the NH3+ substituents of the 4-fluoro­anilinium cations and the O atoms of the crown ether mol­ecules result in a rotator–stator-like structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681002009X/im2203sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681002009X/im2203Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.078
  • wR factor = 0.271
  • Data-to-parameter ratio = 21.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT093_ALERT_1_A No su's on H-atoms, but refinement reported as . mixed
Alert level C RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25 Weighted R factor given 0.271 PLAT084_ALERT_2_C High wR2 Value ................................. 0.27 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C8 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O5 PLAT334_ALERT_2_C Small Average Benzene C-C Dist. C13 -C18 1.36 Ang. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 11 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 3 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 54 PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C14 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C17 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of Fe2 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 17
Alert level G PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large. 0.13 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 14 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Crown ethers have attracted much attention because of their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution (Fender et al. 2002). Both the size of the crown ether and the nature of the ammonium cation (-NH4+, RNH3+, etc) can influence the stoichiometry and stability of these host-guest complexes. The host molecules combine with the guest species by intermolecular interactions, and if the host molecule possess some specific sites (by chelate effect), it is easy to realise high selectivity in ion or molecular recognitions.18-crown-6 have the highest affinity for ammonium cation RNH3+ and most studies of 18-crown-6 and its derivatives invariably showed a 1:1 stoichiometry with RNH3+ cations.

In continuation of our investigations on ferroelectric phase transitions materials the dielectric permittivity of the title compound was tested (Fu et al. 2007; Ye et al. 2009; Zhang et al. 2009). The title compound shows no dielectric anomalies with values of 6-8 and 7-10 in the temperature ranges from 80 to 300 K and 300 K to 400 K (below the compound melting point 433 K), respectively. These findings suggest that the compound should exhibit no distinct phase transition within the measured temperature range.

The title compound crystallizes in the P21/c space group. The asymmetric unit of the title compound is composed of a cationic [(C6H4FN3) (18-Crown-6)]+ moiety and one isolated anionic [FeCl4]- (Fig 1). The protonated p-fluoroanilinium [C6H4FNH3]+ and 18-crown-6 form a superamolecular rotator-stator-like structure by forming N—H···O hydrogen bonds between the -NH3+ substitutents of the cations and oxygen atoms of crown ethers. Intramolecular N—H···O hydrogen distances within the usual range: 2.950 (6) and 2.840 (6) Å. The crown ring is slight distorted. The six oxygen atoms of the crown ether lie approximately in a plane. The C—N bonds of [C6H4FNH3]+ are almost perpendicular to the mean oxygen plane.

The typical Fe—Cl bond lengths in the tetrahedral coordinate anion [FeCl4]- are within 2.170 (3)-2.184 (2) Å. The Cl—Fe—Cl bond angles indicate little distortion from a regular tetrahedron [spread of values 108.3 (1)-110.7 (1)°].

Fig. 2 shows a view down the a axis. An alternate arrangement of cation and anion layers is observed along the c axis, a couple of head-to-head rotator-stator cations and an anion [FeCl4]- along the b axis. No significantly short intermolecular hydrogen bond was observed.

Related literature top

For a related 18-crown-6 clathrate, see: Fender et al. (2002). For the ferroelectric properties of selected transition metal complexes, see: Fu et al. (2007); Ye et al. (2009); Zhang et al. (2009).

Experimental top

p-F-C6H4-NH2 × HCl (2 mmol, 0.295 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in methanol. After addition of ferric chloride (2 mmol, 0.54 g) in concentrated hydrochloric acid, a precipitate (yield is about 95%) was formed, filtered and washed with a small amount of methanol. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of methanol and DMF (v/v 3/1) from the solution at room temperature after two days.

Refinement top

All hydrogens were were calculated geometrically. The positions of the H atoms of the nitrogen atoms were refined using a riding model with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N). C—H groups were also refined using a riding model for hydrogen atoms with C—H distances ranging from 0.93 to 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
4-Fluoroanilinium tetrachloridoferrate(III)–1,4,7,10,13,16-hexaoxacyclooctadecane (1/1) top
Crystal data top
(C6H7FN)[FeCl4]·C12H24O6F(000) = 1188
Mr = 574.09Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5625 reflections
a = 11.45 (1) Åθ = 2.3–27.5°
b = 24.14 (2) ŵ = 1.00 mm1
c = 9.719 (9) ÅT = 293 K
β = 96.82 (2)°Block, pale yellow
V = 2667 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
6039 independent reflections
Radiation source: fine-focus sealed tube3173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 3131
Tmin = 0.818, Tmax = 0.818l = 1212
26978 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.271H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1312P)2 + 0.8151P]
where P = (Fo2 + 2Fc2)/3
6039 reflections(Δ/σ)max = 0.005
281 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C6H7FN)[FeCl4]·C12H24O6V = 2667 (4) Å3
Mr = 574.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.45 (1) ŵ = 1.00 mm1
b = 24.14 (2) ÅT = 293 K
c = 9.719 (9) Å0.20 × 0.20 × 0.20 mm
β = 96.82 (2)°
Data collection top
Rigaku SCXmini
diffractometer
6039 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3173 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.818Rint = 0.068
26978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.271H-atom parameters constrained
S = 1.07Δρmax = 0.49 e Å3
6039 reflectionsΔρmin = 0.35 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5434 (4)0.09467 (19)0.7021 (5)0.0842 (13)
O20.7834 (4)0.06611 (18)0.6808 (4)0.0816 (12)
O30.9463 (3)0.14900 (18)0.7297 (5)0.0741 (11)
O40.8972 (4)0.23864 (18)0.8904 (5)0.0849 (13)
O50.6635 (4)0.25943 (19)0.9254 (5)0.0903 (14)
O60.4892 (4)0.1787 (2)0.8722 (5)0.0895 (14)
C10.5820 (8)0.0397 (3)0.6788 (9)0.102 (2)
H1A0.51880.01900.62680.122*
H1B0.60250.02120.76700.122*
C20.6847 (7)0.0408 (3)0.6013 (8)0.093 (2)
H2A0.70490.00330.57760.112*
H2B0.66530.06130.51580.112*
C30.8831 (6)0.0647 (3)0.6178 (7)0.0800 (18)
H3A0.86880.08240.52780.096*
H3B0.90530.02650.60390.096*
C40.9802 (6)0.0937 (3)0.7041 (7)0.0798 (18)
H4A0.99870.07430.79130.096*
H4B1.05000.09390.65650.096*
C51.0380 (5)0.1806 (3)0.7950 (8)0.086 (2)
H5A1.10340.18060.74000.104*
H5B1.06500.16480.88500.104*
C60.9964 (6)0.2383 (3)0.8120 (9)0.091 (2)
H6A1.05960.26030.85950.109*
H6B0.97390.25460.72160.109*
C70.8554 (8)0.2921 (3)0.9050 (10)0.104 (3)
H7A0.82860.30740.81450.124*
H7B0.91800.31540.94880.124*
C80.7560 (8)0.2905 (3)0.9917 (11)0.113 (3)
H8A0.78250.27431.08120.136*
H8B0.72930.32801.00670.136*
C90.5658 (7)0.2584 (4)0.9976 (9)0.100 (2)
H9A0.54700.29551.02610.120*
H9B0.58130.23551.07980.120*
C100.4667 (6)0.2353 (3)0.9035 (9)0.091 (2)
H10A0.39480.23770.94690.109*
H10B0.45610.25670.81840.109*
C110.4035 (6)0.1551 (4)0.7758 (10)0.101 (2)
H11A0.39810.17590.68990.122*
H11B0.32760.15690.81080.122*
C120.4324 (6)0.0968 (3)0.7491 (10)0.100 (2)
H12A0.43290.07530.83340.119*
H12B0.37360.08130.67970.119*
F10.8204 (4)0.00256 (15)0.3199 (4)0.0906 (12)
N10.7364 (3)0.14716 (16)0.1213 (4)0.0498 (9)
H1C0.78530.17600.11400.075*
H1D0.66250.15920.12760.075*
H1E0.74670.12770.19670.075*
C130.8711 (5)0.0971 (3)0.0489 (7)0.0748 (17)
H13A0.93400.11170.00850.090*
C140.7606 (4)0.11179 (19)0.0016 (5)0.0493 (11)
C150.6684 (5)0.0924 (3)0.0657 (7)0.0699 (16)
H15A0.59200.10370.03550.084*
C160.6894 (6)0.0558 (3)0.1752 (7)0.0758 (17)
H16A0.62790.04270.22060.091*
C170.8011 (6)0.0396 (2)0.2148 (6)0.0658 (15)
C180.8913 (6)0.0598 (3)0.1588 (7)0.0804 (18)
H18A0.96760.04930.19220.096*
Fe20.25883 (7)0.12580 (3)0.22601 (9)0.0635 (3)
Cl10.44359 (16)0.11643 (9)0.3030 (3)0.1179 (8)
Cl20.2109 (2)0.06493 (9)0.0642 (2)0.1121 (7)
Cl30.22522 (16)0.20828 (7)0.13775 (19)0.0840 (5)
Cl40.1561 (2)0.11388 (10)0.3981 (2)0.1144 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.079 (3)0.078 (3)0.094 (3)0.018 (2)0.006 (2)0.002 (2)
O20.104 (4)0.073 (3)0.070 (3)0.002 (2)0.015 (2)0.007 (2)
O30.058 (2)0.079 (3)0.086 (3)0.010 (2)0.012 (2)0.006 (2)
O40.081 (3)0.076 (3)0.100 (3)0.021 (2)0.021 (2)0.006 (2)
O50.086 (3)0.078 (3)0.109 (4)0.010 (2)0.022 (3)0.015 (3)
O60.062 (3)0.098 (3)0.109 (4)0.013 (2)0.013 (2)0.017 (3)
C10.122 (7)0.089 (5)0.091 (5)0.017 (5)0.003 (5)0.016 (4)
C20.115 (6)0.074 (4)0.090 (5)0.018 (4)0.011 (4)0.024 (4)
C30.093 (5)0.077 (4)0.073 (4)0.029 (4)0.017 (3)0.005 (3)
C40.080 (4)0.072 (4)0.089 (5)0.020 (3)0.017 (4)0.000 (3)
C50.045 (3)0.101 (5)0.114 (5)0.010 (3)0.010 (3)0.013 (4)
C60.068 (4)0.097 (5)0.110 (6)0.021 (4)0.020 (4)0.006 (4)
C70.127 (7)0.066 (4)0.120 (6)0.022 (4)0.025 (5)0.029 (4)
C80.112 (6)0.092 (5)0.136 (7)0.022 (5)0.017 (5)0.046 (5)
C90.091 (5)0.109 (6)0.108 (6)0.024 (4)0.044 (5)0.002 (5)
C100.071 (4)0.085 (5)0.121 (6)0.029 (4)0.036 (4)0.012 (4)
C110.057 (4)0.117 (6)0.129 (6)0.003 (4)0.011 (4)0.036 (5)
C120.059 (4)0.102 (6)0.135 (7)0.028 (4)0.002 (4)0.013 (5)
F10.122 (3)0.087 (2)0.065 (2)0.032 (2)0.019 (2)0.0282 (19)
N10.048 (2)0.049 (2)0.053 (2)0.0015 (17)0.0086 (18)0.0046 (18)
C130.053 (3)0.096 (4)0.075 (4)0.004 (3)0.006 (3)0.019 (3)
C140.054 (3)0.048 (3)0.047 (3)0.002 (2)0.011 (2)0.003 (2)
C150.053 (3)0.078 (4)0.081 (4)0.012 (3)0.018 (3)0.022 (3)
C160.072 (4)0.075 (4)0.086 (4)0.011 (3)0.032 (3)0.024 (3)
C170.090 (4)0.055 (3)0.053 (3)0.007 (3)0.010 (3)0.005 (2)
C180.061 (4)0.105 (5)0.074 (4)0.015 (3)0.003 (3)0.026 (4)
Fe20.0551 (5)0.0653 (5)0.0706 (5)0.0049 (4)0.0089 (4)0.0102 (4)
Cl10.0592 (10)0.1006 (14)0.187 (2)0.0182 (9)0.0152 (12)0.0312 (14)
Cl20.1251 (17)0.0938 (13)0.1119 (15)0.0013 (11)0.0090 (12)0.0418 (12)
Cl30.0859 (11)0.0766 (10)0.0914 (11)0.0080 (8)0.0180 (9)0.0043 (9)
Cl40.1298 (18)0.1178 (16)0.1061 (15)0.0209 (13)0.0577 (13)0.0211 (12)
Geometric parameters (Å, º) top
O1—C121.401 (8)C8—H8B0.9700
O1—C11.425 (9)C9—C101.480 (12)
O2—C31.357 (8)C9—H9A0.9700
O2—C21.428 (8)C9—H9B0.9700
O3—C51.388 (7)C10—H10A0.9700
O3—C41.420 (7)C10—H10B0.9700
O4—C71.388 (8)C11—C121.476 (11)
O4—C61.441 (8)C11—H11A0.9700
O5—C91.390 (8)C11—H11B0.9700
O5—C81.391 (9)C12—H12A0.9700
O6—C111.396 (9)C12—H12B0.9700
O6—C101.428 (8)F1—C171.356 (6)
C1—C21.471 (11)N1—C141.467 (6)
C1—H1A0.9700N1—H1C0.8900
C1—H1B0.9700N1—H1D0.8900
C2—H2A0.9700N1—H1E0.8900
C2—H2B0.9700C13—C141.341 (8)
C3—C41.486 (10)C13—C181.396 (8)
C3—H3A0.9700C13—H13A0.9300
C3—H3B0.9700C14—C151.371 (7)
C4—H4A0.9700C15—C161.381 (8)
C4—H4B0.9700C15—H15A0.9300
C5—C61.487 (10)C16—C171.349 (9)
C5—H5A0.9700C16—H16A0.9300
C5—H5B0.9700C17—C181.317 (8)
C6—H6A0.9700C18—H18A0.9300
C6—H6B0.9700Fe2—Cl12.170 (3)
C7—C81.495 (12)Fe2—Cl22.175 (2)
C7—H7A0.9700Fe2—Cl42.175 (3)
C7—H7B0.9700Fe2—Cl32.184 (2)
C8—H8A0.9700
C12—O1—C1113.4 (6)O5—C9—C10107.4 (7)
C3—O2—C2113.5 (5)O5—C9—H9A110.2
C5—O3—C4112.9 (5)C10—C9—H9A110.2
C7—O4—C6111.2 (5)O5—C9—H9B110.2
C9—O5—C8113.0 (7)C10—C9—H9B110.2
C11—O6—C10113.7 (6)H9A—C9—H9B108.5
O1—C1—C2110.2 (6)O6—C10—C9110.3 (6)
O1—C1—H1A109.6O6—C10—H10A109.6
C2—C1—H1A109.6C9—C10—H10A109.6
O1—C1—H1B109.6O6—C10—H10B109.6
C2—C1—H1B109.6C9—C10—H10B109.6
H1A—C1—H1B108.1H10A—C10—H10B108.1
O2—C2—C1111.2 (6)O6—C11—C12110.7 (6)
O2—C2—H2A109.4O6—C11—H11A109.5
C1—C2—H2A109.4C12—C11—H11A109.5
O2—C2—H2B109.4O6—C11—H11B109.5
C1—C2—H2B109.4C12—C11—H11B109.5
H2A—C2—H2B108.0H11A—C11—H11B108.1
O2—C3—C4110.3 (6)O1—C12—C11108.9 (6)
O2—C3—H3A109.6O1—C12—H12A109.9
C4—C3—H3A109.6C11—C12—H12A109.9
O2—C3—H3B109.6O1—C12—H12B109.9
C4—C3—H3B109.6C11—C12—H12B109.9
H3A—C3—H3B108.1H12A—C12—H12B108.3
O3—C4—C3109.9 (5)C14—N1—H1C109.5
O3—C4—H4A109.7C14—N1—H1D109.5
C3—C4—H4A109.7H1C—N1—H1D109.5
O3—C4—H4B109.7C14—N1—H1E109.5
C3—C4—H4B109.7H1C—N1—H1E109.5
H4A—C4—H4B108.2H1D—N1—H1E109.5
O3—C5—C6109.3 (5)C14—C13—C18119.8 (5)
O3—C5—H5A109.8C14—C13—H13A120.1
C6—C5—H5A109.8C18—C13—H13A120.1
O3—C5—H5B109.8C13—C14—C15120.0 (5)
C6—C5—H5B109.8C13—C14—N1120.8 (5)
H5A—C5—H5B108.3C15—C14—N1119.2 (5)
O4—C6—C5110.3 (5)C14—C15—C16119.7 (5)
O4—C6—H6A109.6C14—C15—H15A120.1
C5—C6—H6A109.6C16—C15—H15A120.1
O4—C6—H6B109.6C17—C16—C15118.5 (5)
C5—C6—H6B109.6C17—C16—H16A120.7
H6A—C6—H6B108.1C15—C16—H16A120.7
O4—C7—C8109.2 (7)C18—C17—C16122.6 (6)
O4—C7—H7A109.8C18—C17—F1119.3 (6)
C8—C7—H7A109.8C16—C17—F1118.1 (6)
O4—C7—H7B109.8C17—C18—C13119.2 (6)
C8—C7—H7B109.8C17—C18—H18A120.4
H7A—C7—H7B108.3C13—C18—H18A120.4
O5—C8—C7109.9 (7)Cl1—Fe2—Cl2109.35 (9)
O5—C8—H8A109.7Cl1—Fe2—Cl4108.36 (13)
C7—C8—H8A109.7Cl2—Fe2—Cl4110.70 (12)
O5—C8—H8B109.7Cl1—Fe2—Cl3110.46 (9)
C7—C8—H8B109.7Cl2—Fe2—Cl3108.32 (11)
H8A—C8—H8B108.2Cl4—Fe2—Cl3109.66 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.891.982.868 (6)176
N1—H1D···O6i0.892.042.924 (6)173
N1—H1E···O2i0.891.982.840 (6)162
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formula(C6H7FN)[FeCl4]·C12H24O6
Mr574.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.45 (1), 24.14 (2), 9.719 (9)
β (°) 96.82 (2)
V3)2667 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.818, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
26978, 6039, 3173
Rint0.068
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.271, 1.07
No. of reflections6039
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.35

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.891.982.868 (6)176.3
N1—H1D···O6i0.892.042.924 (6)173.0
N1—H1E···O2i0.891.982.840 (6)161.6
Symmetry code: (i) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds