Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801017561/om6059sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536801017561/om6059Isup2.hkl |
Single crystals of synthetic schuetteite were prepared by hydrothermal treatment of commercial HgSO4 (Merck, pA) in demineralized water (steel autoclave with teflon-lined tubes, filling degree 70%, 520 K, 10 d). The crystals obtained were canary yellow in colour and had an hexagonal plate-like habit with [001] as the main crystal face.
All crystals examined were systematically twinned. Under consideration of racemic twinning a twin ratio of ca 5:1 was determined for the measured crystal. During the last refinement cycles with Hg and S atoms refined anisotropically and O atoms isotropically, large displacement parameters for the O atoms of the sulfate group were observed [fractional coordinates and isotropic displacement parameters for this model: (O2) x = 0.178 (3), y = 0.155 (3), z = 0.2652 (16), Ueq = 0.074 Å2; (O3) x = 0.3948 (16), y = 0.1067 (19), z = 0.4325 (10), Ueq = 0.037 Å2]. This could not be explained by crystal chemical arguments or a possibly inappropriate absorption correction, since the latter is expected to be essentially correct (Rint before absorption correction = 0.34, Rint after correction = 0.06; no significant remaining electron density after convergence). Therefore, a split atom model with a disorder around the twofold axis was considered for the sulfate group with occupation factors constrained to 0.5 for the O atoms (the `free' occupation factors are close to this value) and the displacement parameters refined isotropically for O2A,B and O3A,B. The separation between the split O atoms is then 0.77 (2) (O2A—O2B) and 0.45 (2) Å (O3A—O3B). This model led to better R values and a better goodness-of-fit than the previous model without splitting of the sulfate O atoms.
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS for Windows (Dowty, 1998); software used to prepare material for publication: SHELXL97.
Hg3SO4O2 | Dx = 8.450 Mg m−3 |
Mr = 729.83 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3121 | Cell parameters from 2544 reflections |
a = 7.0429 (5) Å | θ = 6.7–59.8° |
c = 10.0166 (7) Å | µ = 80.41 mm−1 |
V = 430.28 (5) Å3 | T = 293 K |
Z = 3 | Trigonal plate, yellow |
F(000) = 912 | 0.10 × 0.06 × 0.01 mm |
Siemens SMART diffractometer | 845 independent reflections |
Radiation source: fine-focus sealed tube | 801 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
ω scans | θmax = 30.2°, θmin = 3.3° |
Absorption correction: numerical The crystal shape was optimized by minimizing the internal R-value of selected reflections (I>20σ(I)) using the program HABITUS (Herrendorf, 1993-97). The habit so derived was used for the numerical absorption correction. | h = −9→9 |
Tmin = 0.030, Tmax = 0.458 | k = −9→9 |
4712 measured reflections | l = −12→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0266P)2 + 0.0858P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.021 | (Δ/σ)max < 0.001 |
wR(F2) = 0.051 | Δρmax = 1.96 e Å−3 |
S = 1.04 | Δρmin = −1.81 e Å−3 |
849 reflections | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
45 parameters | Extinction coefficient: 0.00086 (11) |
0 restraints | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.16 (4) |
Hg3SO4O2 | Z = 3 |
Mr = 729.83 | Mo Kα radiation |
Trigonal, P3121 | µ = 80.41 mm−1 |
a = 7.0429 (5) Å | T = 293 K |
c = 10.0166 (7) Å | 0.10 × 0.06 × 0.01 mm |
V = 430.28 (5) Å3 |
Siemens SMART diffractometer | 845 independent reflections |
Absorption correction: numerical The crystal shape was optimized by minimizing the internal R-value of selected reflections (I>20σ(I)) using the program HABITUS (Herrendorf, 1993-97). The habit so derived was used for the numerical absorption correction. | 801 reflections with I > 2σ(I) |
Tmin = 0.030, Tmax = 0.458 | Rint = 0.059 |
4712 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.051 | Δρmax = 1.96 e Å−3 |
S = 1.04 | Δρmin = −1.81 e Å−3 |
849 reflections | Absolute structure: Flack (1983) |
45 parameters | Absolute structure parameter: 0.16 (4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Hg1 | 0.18904 (5) | 0.50427 (9) | 0.31516 (3) | 0.01543 (11) | |
Hg2 | 0.70266 (10) | 0.0000 | 0.3333 | 0.01503 (13) | |
S | 0.2231 (6) | 0.0000 | 0.3333 | 0.0180 (7) | |
O1 | 0.1553 (9) | 0.4840 (9) | 0.0490 (7) | 0.0169 (12) | |
O2A | 0.256 (3) | 0.202 (3) | 0.2578 (15) | 0.027 (2)* | 0.50 |
O2B | 0.133 (3) | 0.123 (3) | 0.2706 (16) | 0.027 (2)* | 0.50 |
O3A | 0.399 (3) | 0.076 (3) | 0.4362 (19) | 0.025 (2)* | 0.50 |
O3B | 0.391 (3) | 0.135 (3) | 0.431 (2) | 0.025 (2)* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0116 (2) | 0.01295 (17) | 0.02007 (17) | 0.00489 (15) | −0.00111 (12) | −0.00063 (16) |
Hg2 | 0.01365 (19) | 0.0100 (2) | 0.0202 (2) | 0.00502 (12) | 0.00068 (11) | 0.0014 (2) |
S | 0.0183 (10) | 0.0179 (19) | 0.0178 (15) | 0.0089 (9) | −0.0005 (7) | −0.0011 (14) |
O1 | 0.009 (3) | 0.007 (2) | 0.028 (3) | −0.001 (3) | −0.001 (2) | −0.001 (2) |
Hg1—O1i | 2.105 (6) | S—O3A | 1.491 (19) |
Hg1—O1ii | 2.123 (6) | S—O2A | 1.523 (16) |
Hg1—O2A | 2.467 (16) | S—O2Aix | 1.523 (16) |
Hg1—O3Biii | 2.473 (19) | S—Hg1xii | 3.3828 (16) |
Hg1—O2B | 2.548 (15) | S—Hg1xiii | 3.3828 (16) |
Hg1—O3Aiv | 2.607 (19) | S—Hg2vi | 3.665 (5) |
Hg1—O3Biv | 2.64 (2) | O1—Hg2xiv | 2.070 (7) |
Hg1—O1 | 2.674 (7) | O1—Hg1xv | 2.105 (6) |
Hg1—O3Aiii | 2.750 (18) | O1—Hg1ii | 2.123 (6) |
Hg1—O2Aiii | 2.836 (17) | O2A—O2B | 0.77 (2) |
Hg1—Sv | 3.3828 (16) | O2A—Hg2xiv | 2.647 (15) |
Hg1—Hg2vi | 3.4950 (4) | O2A—Hg1xii | 2.836 (17) |
Hg2—O1vii | 2.070 (7) | O2A—Hg2vi | 3.497 (18) |
Hg2—O1viii | 2.070 (7) | O2A—Hg1xvi | 4.068 (16) |
Hg2—O2Avii | 2.647 (15) | O2B—Hg2vi | 2.775 (16) |
Hg2—O2Aviii | 2.647 (15) | O2B—Hg2xiv | 2.961 (17) |
Hg2—O3Aix | 2.657 (18) | O2B—Hg1xii | 3.528 (16) |
Hg2—O3A | 2.657 (18) | O2B—Hg1ix | 4.026 (16) |
Hg2—O2Bx | 2.775 (16) | O2B—Hg1ii | 4.053 (15) |
Hg2—O2Bxi | 2.775 (16) | O3A—O3B | 0.45 (2) |
Hg2—O3Bix | 2.96 (2) | O3A—Hg1iv | 2.607 (19) |
Hg2—O3B | 2.96 (2) | O3A—Hg1xii | 2.750 (18) |
Hg2—O2Bvii | 2.961 (17) | O3A—Hg2xvii | 3.571 (19) |
Hg2—O2Bviii | 2.961 (17) | O3A—Hg1xiii | 3.729 (17) |
S—O2B | 1.451 (15) | O3A—Hg1viii | 3.801 (17) |
S—O2Bix | 1.451 (15) | O3B—Hg1xii | 2.473 (19) |
S—O3Bix | 1.461 (19) | O3B—Hg1iv | 2.64 (2) |
S—O3B | 1.461 (19) | O3B—Hg2xvii | 3.75 (2) |
S—O3Aix | 1.491 (19) | O3B—Hg1xiii | 4.094 (17) |
O1i—Hg1—O1ii | 169.72 (6) | O3Bix—S—Hg2 | 60.9 (8) |
O1i—Hg1—O2A | 86.0 (5) | O3B—S—Hg2 | 60.9 (8) |
O1ii—Hg1—O2A | 96.8 (5) | O3Aix—S—Hg2 | 49.3 (7) |
O1i—Hg1—O3Biii | 86.2 (5) | O3A—S—Hg2 | 49.3 (7) |
O1ii—Hg1—O3Biii | 97.4 (5) | O2A—S—Hg2 | 108.4 (7) |
O2A—Hg1—O3Biii | 142.3 (6) | O2Aix—S—Hg2 | 108.4 (7) |
O1i—Hg1—O2B | 101.2 (4) | O2B—S—Hg1xii | 83.5 (6) |
O1ii—Hg1—O2B | 80.3 (4) | O2Bix—S—Hg1xii | 140.2 (6) |
O2A—Hg1—O2B | 17.5 (5) | O3Bix—S—Hg1xii | 108.8 (7) |
O3Biii—Hg1—O2B | 151.1 (6) | O3B—S—Hg1xii | 41.0 (8) |
O1i—Hg1—O3Aiv | 87.0 (4) | O3Aix—S—Hg1xii | 91.4 (6) |
O1ii—Hg1—O3Aiv | 82.8 (4) | O3A—S—Hg1xii | 52.8 (7) |
O2A—Hg1—O3Aiv | 98.1 (6) | O2A—S—Hg1xii | 56.3 (7) |
O3Biii—Hg1—O3Aiv | 118.3 (7) | O2Aix—S—Hg1xii | 146.8 (6) |
O2B—Hg1—O3Aiv | 90.2 (6) | Hg2—S—Hg1xii | 63.56 (6) |
O1i—Hg1—O3Biv | 79.2 (4) | O2B—S—Hg1xiii | 140.2 (6) |
O1ii—Hg1—O3Biv | 90.8 (4) | O2Bix—S—Hg1xiii | 83.5 (6) |
O2A—Hg1—O3Biv | 91.5 (6) | O3Bix—S—Hg1xiii | 41.0 (8) |
O3Biii—Hg1—O3Biv | 123.0 (6) | O3B—S—Hg1xiii | 108.8 (7) |
O2B—Hg1—O3Biv | 85.9 (6) | O3Aix—S—Hg1xiii | 52.8 (7) |
O3Aiv—Hg1—O3Biv | 9.8 (5) | O3A—S—Hg1xiii | 91.4 (6) |
O1i—Hg1—O1 | 113.1 (2) | O2A—S—Hg1xiii | 146.8 (6) |
O1ii—Hg1—O1 | 77.2 (2) | O2Aix—S—Hg1xiii | 56.3 (7) |
O2A—Hg1—O1 | 76.8 (4) | Hg2—S—Hg1xiii | 63.56 (6) |
O3Biii—Hg1—O1 | 72.6 (5) | Hg1xii—S—Hg1xiii | 127.13 (13) |
O2B—Hg1—O1 | 78.8 (4) | O2B—S—Hg2vi | 42.5 (7) |
O3Aiv—Hg1—O1 | 158.6 (4) | O2Bix—S—Hg2vi | 42.5 (7) |
O3Biv—Hg1—O1 | 161.9 (5) | O3Bix—S—Hg2vi | 119.1 (8) |
O1i—Hg1—O3Aiii | 78.8 (4) | O3B—S—Hg2vi | 119.1 (8) |
O1ii—Hg1—O3Aiii | 105.1 (4) | O3Aix—S—Hg2vi | 130.7 (7) |
O2A—Hg1—O3Aiii | 138.2 (6) | O3A—S—Hg2vi | 130.7 (7) |
O3Biii—Hg1—O3Aiii | 7.7 (7) | O2A—S—Hg2vi | 71.6 (7) |
O2B—Hg1—O3Aiii | 150.1 (5) | O2Aix—S—Hg2vi | 71.6 (7) |
O3Aiv—Hg1—O3Aiii | 119.5 (5) | Hg2—S—Hg2vi | 180.0 |
O3Biv—Hg1—O3Aiii | 122.8 (6) | Hg1xii—S—Hg2vi | 116.44 (6) |
O1—Hg1—O3Aiii | 73.9 (4) | Hg1xiii—S—Hg2vi | 116.44 (6) |
O1i—Hg1—O2Aiii | 99.2 (4) | Hg2xiv—O1—Hg1xv | 117.0 (3) |
O1ii—Hg1—O2Aiii | 76.7 (4) | Hg2xiv—O1—Hg1ii | 112.9 (2) |
O2A—Hg1—O2Aiii | 170.2 (4) | Hg1xv—O1—Hg1ii | 113.8 (3) |
O3Biii—Hg1—O2Aiii | 47.0 (6) | Hg2xiv—O1—Hg1 | 102.2 (3) |
O2B—Hg1—O2Aiii | 153.5 (5) | Hg1xv—O1—Hg1 | 106.0 (2) |
O3Aiv—Hg1—O2Aiii | 74.0 (5) | Hg1ii—O1—Hg1 | 102.8 (2) |
O3Biv—Hg1—O2Aiii | 81.3 (5) | O2B—O2A—S | 69.9 (17) |
O1—Hg1—O2Aiii | 108.4 (4) | O2B—O2A—Hg1 | 87.1 (18) |
O3Aiii—Hg1—O2Aiii | 51.5 (5) | S—O2A—Hg1 | 133.2 (9) |
O1i—Hg1—Sv | 85.0 (2) | O2B—O2A—Hg2xiv | 107 (2) |
O1ii—Hg1—Sv | 94.57 (19) | S—O2A—Hg2xiv | 131.9 (9) |
O2A—Hg1—Sv | 163.3 (4) | Hg1—O2A—Hg2xiv | 93.0 (5) |
O3Biii—Hg1—Sv | 22.8 (5) | O2B—O2A—Hg1xii | 151 (2) |
O2B—Hg1—Sv | 171.8 (4) | S—O2A—Hg1xii | 97.2 (8) |
O3Aiv—Hg1—Sv | 95.5 (4) | Hg1—O2A—Hg1xii | 83.5 (5) |
O3Biv—Hg1—Sv | 100.6 (5) | Hg2xiv—O2A—Hg1xii | 101.3 (6) |
O1—Hg1—Sv | 93.85 (14) | O2B—O2A—Hg2vi | 17.9 (15) |
O3Aiii—Hg1—Sv | 25.6 (4) | S—O2A—Hg2vi | 84.0 (7) |
O2Aiii—Hg1—Sv | 26.5 (3) | Hg1—O2A—Hg2vi | 69.3 (4) |
O1i—Hg1—Hg2vi | 142.53 (19) | Hg2xiv—O2A—Hg2vi | 105.9 (5) |
O1ii—Hg1—Hg2vi | 33.07 (17) | Hg1xii—O2A—Hg2vi | 142.1 (5) |
O2A—Hg1—Hg2vi | 69.4 (4) | O2B—O2A—Hg1xvi | 95.0 (18) |
O3Biii—Hg1—Hg2vi | 130.5 (5) | S—O2A—Hg1xvi | 74.0 (6) |
O2B—Hg1—Hg2vi | 51.8 (4) | Hg1—O2A—Hg1xvi | 150.6 (6) |
O3Aiv—Hg1—Hg2vi | 69.9 (4) | Hg2xiv—O2A—Hg1xvi | 58.2 (3) |
O3Biv—Hg1—Hg2vi | 73.9 (4) | Hg1xii—O2A—Hg1xvi | 106.6 (5) |
O1—Hg1—Hg2vi | 88.96 (10) | Hg2vi—O2A—Hg1xvi | 110.0 (4) |
O3Aiii—Hg1—Hg2vi | 138.1 (4) | O2B—O2A—Hg2 | 120.0 (18) |
O2Aiii—Hg1—Hg2vi | 102.0 (3) | S—O2A—Hg2 | 51.1 (6) |
Sv—Hg1—Hg2vi | 125.01 (6) | Hg1—O2A—Hg2 | 139.7 (6) |
O1vii—Hg2—O1viii | 171.3 (3) | Hg2xiv—O2A—Hg2 | 105.1 (5) |
O1vii—Hg2—O2Avii | 84.4 (4) | Hg1xii—O2A—Hg2 | 58.1 (3) |
O1viii—Hg2—O2Avii | 97.2 (4) | Hg2vi—O2A—Hg2 | 135.1 (4) |
O1vii—Hg2—O2Aviii | 97.2 (4) | Hg1xvi—O2A—Hg2 | 62.4 (2) |
O1viii—Hg2—O2Aviii | 84.4 (4) | O2A—O2B—S | 80.3 (18) |
O2Avii—Hg2—O2Aviii | 159.0 (7) | O2A—O2B—Hg1 | 75.3 (17) |
O1vii—Hg2—O3Aix | 90.5 (4) | S—O2B—Hg1 | 132.1 (9) |
O1viii—Hg2—O3Aix | 81.6 (4) | O2A—O2B—Hg2vi | 157.3 (19) |
O2Avii—Hg2—O3Aix | 76.4 (6) | S—O2B—Hg2vi | 116.8 (9) |
O2Aviii—Hg2—O3Aix | 124.4 (5) | Hg1—O2B—Hg2vi | 82.0 (4) |
O1vii—Hg2—O3A | 81.6 (4) | O2A—O2B—Hg2xiv | 58.9 (17) |
O1viii—Hg2—O3A | 90.5 (4) | S—O2B—Hg2xiv | 116.5 (8) |
O2Avii—Hg2—O3A | 124.4 (5) | Hg1—O2B—Hg2xiv | 84.4 (4) |
O2Aviii—Hg2—O3A | 76.4 (6) | Hg2vi—O2B—Hg2xiv | 118.5 (5) |
O3Aix—Hg2—O3A | 50.3 (8) | O2A—O2B—Hg1xii | 23.0 (17) |
O1vii—Hg2—O2Bx | 75.8 (3) | S—O2B—Hg1xii | 72.3 (6) |
O1viii—Hg2—O2Bx | 112.8 (3) | Hg1—O2B—Hg1xii | 69.1 (4) |
O2Avii—Hg2—O2Bx | 69.0 (5) | Hg2vi—O2B—Hg1xii | 143.7 (5) |
O2Aviii—Hg2—O2Bx | 91.0 (5) | Hg2xiv—O2B—Hg1xii | 81.1 (4) |
O3Aix—Hg2—O2Bx | 143.7 (5) | O2A—O2B—Hg1ix | 143.6 (18) |
O3A—Hg2—O2Bx | 152.5 (5) | S—O2B—Hg1ix | 66.0 (6) |
O1vii—Hg2—O2Bxi | 112.8 (3) | Hg1—O2B—Hg1ix | 138.1 (6) |
O1viii—Hg2—O2Bxi | 75.8 (3) | Hg2vi—O2B—Hg1ix | 58.4 (3) |
O2Avii—Hg2—O2Bxi | 91.0 (5) | Hg2xiv—O2B—Hg1ix | 124.6 (5) |
O2Aviii—Hg2—O2Bxi | 69.0 (5) | Hg1xii—O2B—Hg1ix | 137.5 (4) |
O3Aix—Hg2—O2Bxi | 152.5 (5) | O2A—O2B—Hg1ii | 105.8 (18) |
O3A—Hg2—O2Bxi | 143.7 (5) | S—O2B—Hg1ii | 162.8 (8) |
O2Bx—Hg2—O2Bxi | 41.4 (6) | Hg1—O2B—Hg1ii | 64.9 (3) |
O1vii—Hg2—O3Bix | 97.0 (4) | Hg2vi—O2B—Hg1ii | 62.6 (3) |
O1viii—Hg2—O3Bix | 75.0 (4) | Hg2xiv—O2B—Hg1ii | 57.3 (3) |
O2Avii—Hg2—O3Bix | 78.9 (5) | Hg1xii—O2B—Hg1ii | 119.2 (4) |
O2Aviii—Hg2—O3Bix | 121.4 (5) | Hg1ix—O2B—Hg1ii | 103.3 (4) |
O3Aix—Hg2—O3Bix | 6.8 (6) | O3B—O3A—S | 78 (4) |
O3A—Hg2—O3Bix | 50.2 (3) | O3B—O3A—Hg1iv | 89 (4) |
O2Bx—Hg2—O3Bix | 147.6 (5) | S—O3A—Hg1iv | 145.9 (11) |
O2Bxi—Hg2—O3Bix | 147.5 (5) | O3B—O3A—Hg2 | 129 (5) |
O1vii—Hg2—O3B | 75.0 (4) | S—O3A—Hg2 | 105.6 (9) |
O1viii—Hg2—O3B | 97.0 (4) | Hg1iv—O3A—Hg2 | 107.3 (7) |
O2Avii—Hg2—O3B | 121.4 (5) | O3B—O3A—Hg1xii | 48 (5) |
O2Aviii—Hg2—O3B | 78.9 (5) | S—O3A—Hg1xii | 101.7 (8) |
O3Aix—Hg2—O3B | 50.2 (3) | Hg1iv—O3A—Hg1xii | 91.3 (6) |
O3A—Hg2—O3B | 6.8 (6) | Hg2—O3A—Hg1xii | 82.4 (6) |
O2Bx—Hg2—O3B | 147.5 (5) | O3B—O3A—Hg2xvii | 110 (5) |
O2Bxi—Hg2—O3B | 147.6 (5) | S—O3A—Hg2xvii | 88.6 (8) |
O3Bix—Hg2—O3B | 51.2 (7) | Hg1iv—O3A—Hg2xvii | 66.8 (4) |
O1vii—Hg2—O2Bvii | 80.4 (3) | Hg2—O3A—Hg2xvii | 121.3 (5) |
O1viii—Hg2—O2Bvii | 103.2 (3) | Hg1xii—O3A—Hg2xvii | 151.0 (6) |
O2Avii—Hg2—O2Bvii | 14.4 (4) | O3B—O3A—Hg1xiii | 143 (5) |
O2Aviii—Hg2—O2Bvii | 145.3 (5) | S—O3A—Hg1xiii | 65.1 (6) |
O3Aix—Hg2—O2Bvii | 90.3 (5) | Hg1iv—O3A—Hg1xiii | 122.6 (6) |
O3A—Hg2—O2Bvii | 136.3 (5) | Hg2—O3A—Hg1xiii | 65.3 (3) |
O2Bx—Hg2—O2Bvii | 54.7 (6) | Hg1xii—O3A—Hg1xiii | 138.0 (6) |
O2Bxi—Hg2—O2Bvii | 80.0 (3) | Hg2xvii—O3A—Hg1xiii | 71.0 (3) |
O3Bix—Hg2—O2Bvii | 93.1 (5) | O3B—O3A—Hg1viii | 152 (5) |
O3B—Hg2—O2Bvii | 132.1 (5) | S—O3A—Hg1viii | 123.0 (8) |
O1vii—Hg2—O2Bviii | 103.2 (3) | Hg1iv—O3A—Hg1viii | 63.9 (4) |
O1viii—Hg2—O2Bviii | 80.4 (3) | Hg2—O3A—Hg1viii | 67.5 (3) |
O2Avii—Hg2—O2Bviii | 145.3 (5) | Hg1xii—O3A—Hg1viii | 130.7 (6) |
O2Aviii—Hg2—O2Bviii | 14.4 (4) | Hg2xvii—O3A—Hg1viii | 57.7 (3) |
O3Aix—Hg2—O2Bviii | 136.3 (5) | Hg1xiii—O3A—Hg1viii | 61.2 (2) |
O3A—Hg2—O2Bviii | 90.3 (5) | O3B—O3A—Hg1 | 16 (4) |
O2Bx—Hg2—O2Bviii | 80.0 (3) | S—O3A—Hg1 | 61.5 (6) |
O2Bxi—Hg2—O2Bviii | 54.7 (6) | Hg1iv—O3A—Hg1 | 101.9 (5) |
O3Bix—Hg2—O2Bviii | 132.1 (5) | Hg2—O3A—Hg1 | 130.4 (6) |
O3B—Hg2—O2Bviii | 93.1 (5) | Hg1xii—O3A—Hg1 | 57.5 (3) |
O2Bvii—Hg2—O2Bviii | 132.6 (6) | Hg2xvii—O3A—Hg1 | 106.8 (4) |
O2B—S—O2Bix | 85.1 (13) | Hg1xiii—O3A—Hg1 | 126.6 (5) |
O2B—S—O3Bix | 111.1 (11) | Hg1viii—O3A—Hg1 | 161.5 (5) |
O2Bix—S—O3Bix | 110.9 (9) | O3A—O3B—S | 85 (4) |
O2B—S—O3B | 110.9 (9) | O3A—O3B—Hg1xii | 124 (5) |
O2Bix—S—O3B | 111.1 (11) | S—O3B—Hg1xii | 116.2 (11) |
O3Bix—S—O3B | 121.8 (16) | O3A—O3B—Hg1iv | 82 (4) |
O2B—S—O3Aix | 110.0 (10) | S—O3B—Hg1iv | 145.9 (12) |
O2Bix—S—O3Aix | 128.3 (9) | Hg1xii—O3B—Hg1iv | 97.2 (6) |
O3Bix—S—O3Aix | 17.4 (9) | O3A—O3B—Hg2 | 45 (5) |
O3B—S—O3Aix | 108.6 (9) | S—O3B—Hg2 | 93.5 (8) |
O2B—S—O3A | 128.3 (9) | Hg1xii—O3B—Hg2 | 81.4 (6) |
O2Bix—S—O3A | 110.0 (10) | Hg1iv—O3B—Hg2 | 98.5 (6) |
O3Bix—S—O3A | 108.6 (9) | O3A—O3B—Hg1 | 162 (5) |
O3B—S—O3A | 17.4 (9) | S—O3B—Hg1 | 77.0 (8) |
O3Aix—S—O3A | 98.5 (14) | Hg1xii—O3B—Hg1 | 66.2 (4) |
O2B—S—O2A | 29.9 (8) | Hg1iv—O3B—Hg1 | 113.1 (6) |
O2Bix—S—O2A | 113.7 (11) | Hg2—O3B—Hg1 | 136.5 (7) |
O3Bix—S—O2A | 106.0 (9) | O3A—O3B—Hg2xvii | 64 (5) |
O3B—S—O2A | 91.8 (10) | S—O3B—Hg2xvii | 82.3 (8) |
O3Aix—S—O2A | 96.5 (10) | Hg1xii—O3B—Hg2xvii | 159.2 (7) |
O3A—S—O2A | 107.4 (10) | Hg1iv—O3B—Hg2xvii | 63.6 (4) |
O2B—S—O2Aix | 113.7 (11) | Hg2—O3B—Hg2xvii | 108.1 (5) |
O2Bix—S—O2Aix | 29.9 (8) | Hg1—O3B—Hg2xvii | 112.4 (5) |
O3Bix—S—O2Aix | 91.8 (10) | O3A—O3B—Hg1xiii | 34 (4) |
O3B—S—O2Aix | 106.0 (9) | S—O3B—Hg1xiii | 51.5 (6) |
O3Aix—S—O2Aix | 107.4 (10) | Hg1xii—O3B—Hg1xiii | 133.1 (7) |
O3A—S—O2Aix | 96.5 (10) | Hg1iv—O3B—Hg1xiii | 110.3 (5) |
O2A—S—O2Aix | 143.2 (14) | Hg2—O3B—Hg1xiii | 58.0 (3) |
O2B—S—Hg2 | 137.5 (7) | Hg1—O3B—Hg1xiii | 128.5 (5) |
O2Bix—S—Hg2 | 137.5 (7) | Hg2xvii—O3B—Hg1xiii | 65.3 (3) |
Symmetry codes: (i) −y+1, x−y+1, z+1/3; (ii) x−y, −y, −z+2/3; (iii) −x, −x+y+1, −z+1/3; (iv) y, x, −z+1; (v) x, y+1, z; (vi) x−1, y, z; (vii) x−y+1, −y, −z+2/3; (viii) −y+1, x−y, z+1/3; (ix) −x, −x+y, −z+1/3; (x) x+1, y, z; (xi) −x+1, −x+y, −z+1/3; (xii) −x+1, −x+y+1, −z+1/3; (xiii) x, y−1, z; (xiv) −x+y+1, −x+1, z−1/3; (xv) −x+y, −x+1, z−1/3; (xvi) −x+y, −x, z−1/3; (xvii) −y, x−y−1, z+1/3. |
Experimental details
Crystal data | |
Chemical formula | Hg3SO4O2 |
Mr | 729.83 |
Crystal system, space group | Trigonal, P3121 |
Temperature (K) | 293 |
a, c (Å) | 7.0429 (5), 10.0166 (7) |
V (Å3) | 430.28 (5) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 80.41 |
Crystal size (mm) | 0.10 × 0.06 × 0.01 |
Data collection | |
Diffractometer | Siemens SMART diffractometer |
Absorption correction | Numerical The crystal shape was optimized by minimizing the internal R-value of selected reflections (I>20σ(I)) using the program HABITUS (Herrendorf, 1993-97). The habit so derived was used for the numerical absorption correction. |
Tmin, Tmax | 0.030, 0.458 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4712, 845, 801 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.708 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.051, 1.04 |
No. of reflections | 849 |
No. of parameters | 45 |
Δρmax, Δρmin (e Å−3) | 1.96, −1.81 |
Absolute structure | Flack (1983) |
Absolute structure parameter | 0.16 (4) |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS for Windows (Dowty, 1998), SHELXL97.
Hg1—O1i | 2.105 (6) | Hg2—O2Avi | 2.647 (15) |
Hg1—O1ii | 2.123 (6) | Hg2—O3Avii | 2.657 (18) |
Hg1—O2A | 2.467 (16) | Hg2—O3A | 2.657 (18) |
Hg1—O3Biii | 2.473 (19) | Hg2—O2Bviii | 2.775 (16) |
Hg1—O2B | 2.548 (15) | Hg2—O2Bix | 2.775 (16) |
Hg1—O3Aiv | 2.607 (19) | Hg2—O3Bvii | 2.96 (2) |
Hg1—O3Biv | 2.64 (2) | Hg2—O3B | 2.96 (2) |
Hg1—O1 | 2.674 (7) | Hg2—O2Bv | 2.961 (17) |
Hg1—O3Aiii | 2.750 (18) | Hg2—O2Bvi | 2.961 (17) |
Hg1—O2Aiii | 2.836 (17) | S—O2B | 1.451 (15) |
Hg2—O1v | 2.070 (7) | S—O3B | 1.461 (19) |
Hg2—O1vi | 2.070 (7) | S—O3Avii | 1.491 (19) |
Hg2—O2Av | 2.647 (15) | S—O2Avii | 1.523 (16) |
O1i—Hg1—O1ii | 169.72 (6) | O3B—S—O3Avii | 108.6 (9) |
O1v—Hg2—O1vi | 171.3 (3) | O2Bvii—S—O2A | 113.7 (11) |
O2Bvii—S—O3B | 111.1 (11) | O3Bvii—S—O2A | 106.0 (9) |
O2B—S—O3Avii | 110.0 (10) | O3A—S—O2A | 107.4 (10) |
Symmetry codes: (i) −y+1, x−y+1, z+1/3; (ii) x−y, −y, −z+2/3; (iii) −x, −x+y+1, −z+1/3; (iv) y, x, −z+1; (v) x−y+1, −y, −z+2/3; (vi) −y+1, x−y, z+1/3; (vii) −x, −x+y, −z+1/3; (viii) x+1, y, z; (ix) −x+1, −x+y, −z+1/3. |
Schuetteite is a naturally occurring supergene mercury mineral found as a weathering product of cinnabar, HgS (Bailey et al., 1959). In its synthetic form this basic mercury(II) sulfate has been described for the first time as `Turbithum (Turbethum) Minerale' by Paracelsus (Theophrast von Hohenheim; 1493–1541) and was applied as a laxative.
The crystal structure of Hg3(SO4)O2 was solved by Nagorsen et al. (1962). The authors reported the determined atomic coordinates to be provisional, because no absorption correction of the highly absorbing crystal (linear absorption coefficient µ ca 80 mm-1) had been applied to the measured intensity data. For a more detailed knowledge of the crystal chemistry of mercury–oxo compounds and an improvement of the structural data it seemed desirable to re-investigate the structure of schuetteite on the basis of modern intensity measurements and especially under consideration of an appropriate absorption correction. During this work the previously determined structure has in principle been confirmed. The most important result of the re-investigation is the information that the sulfate group is disordered which was not elaborated in the original study.
The structure consists of layers perpendicular to [001] (Fig. 1). The layers are composed of slightly corrugated hexagonal [Hg3O2]2+ nets with ¯d(Hg—O) = 2.092 Å and nearly linear (O—Hg—O) angles with a mean value of 170.5°. The Hg—O distances within the nets are considerably shorter than ¯d(Hg—O) = 2.712 Å to the O atoms of the disordered SO42- tetrahedra located inside the interstices of the nets and to SO42- groups of adjacent layers. The pronounced [2 + x] coordination with two short Hg—O bonds and an almost linear (O—Hg—O) angle is a frequently observed structure unit in the crystal chemistry of mercury(II)–oxo compounds (Aurivillius, 1965; Grdenić, 1965; Stålhandske, 1980; Müller-Buschbaum, 1995). The sulfate group is disordered around the twofold axis and is slightly distorted from the geometry of an ideal tetrahedron [¯d(S—O) = 1.482 Å, mean angle of 109.5°].