Download citation
Download citation
link to html
The crystal structures of three β-halolactic acids have been determined, namely, β-chloro­lactic acid (systematic name: 3-chloro-2-hy­droxy­propanoic acid, C3H5ClO3) (I), β-bromo­lactic acid (systematic name: 3-bromo-2-hy­droxy­propanoic acid, C3H5BrO3) (II), and β-iodo­lactic acid (systematic name: 2-hydroxy-3-iodo­propanoic acid, C3H5IO3) (III). The number of mol­ecules in the asymmetric unit of each crystal structure (Z′) was found to be two for I and II, and one for III, making I and II isostructural and III unique. The difference between the mol­ecules in the asymmetric units of I and II is due to the direction of the hydrogen bond of the alcohol group to a neighboring mol­ecule. Mol­ecular packing shows that each structure has alternating layers of inter­molecular hydrogen bonding and halogen–halogen inter­actions. Hirshfeld surfaces and two-dimensional fingerprint plots were analyzed to further explore the inter­molecular inter­actions of these structures. In I and II, energy minimization is achieved by lowering of the symmetry to adopt two independent mol­ecular conformations in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622002856/vp3024sup1.cif
Contains datablocks 21165, mo_21189_0ma_a, 21166, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622002856/vp302421165sup2.hkl
Contains datablock 21165

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622002856/vp3024mo_21189_0ma_asup3.hkl
Contains datablock mo_21189_0ma_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622002856/vp302421166sup4.hkl
Contains datablock 21166

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622002856/vp302421165sup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622002856/vp3024mo_21189_0ma_asup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622002856/vp302421166sup7.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622002856/vp3024sup8.pdf
Additional figures, tables and appendix

CCDC references: 2102491; 2102492; 2102493

Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020) and CrystalExplorer (Spackman et al., 2021).

3-Chloro-2-hydroxypropanoic acid (21165) top
Crystal data top
C3H5ClO3F(000) = 512
Mr = 124.52Dx = 1.651 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8897 (7) ÅCell parameters from 4811 reflections
b = 10.6951 (8) Åθ = 3.0–26.0°
c = 9.0496 (6) ŵ = 0.65 mm1
β = 108.059 (2)°T = 153 K
V = 1002.05 (12) Å3Plate, colourless
Z = 80.22 × 0.21 × 0.08 mm
Data collection top
Bruker Venture D8
diffractometer
1644 reflections with I > 2σ(I)
φ and ω scansRint = 0.129
Absorption correction: multi-scan
(SADABS2016; Bruker, 2016)
θmax = 27.5°, θmin = 2.7°
Tmin = 0.682, Tmax = 0.746h = 1413
34621 measured reflectionsk = 1313
2294 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.3727P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2294 reflectionsΔρmax = 0.28 e Å3
143 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.90026 (6)0.16529 (6)0.46073 (7)0.03398 (17)
O1A0.61723 (15)0.10079 (14)0.27482 (16)0.0223 (3)
H1A0.630 (2)0.044 (2)0.224 (3)0.023 (7)*
O2A0.65712 (17)0.16424 (16)0.66921 (17)0.0304 (4)
H2A0.637 (3)0.227 (3)0.708 (3)0.046 (8)*
O3A0.58743 (14)0.28048 (13)0.45347 (16)0.0216 (3)
C1A0.8043 (2)0.0385 (2)0.4917 (3)0.0234 (5)
H1AA0.8195420.0363100.4352660.028*
H1AB0.8303230.0180250.6038280.028*
C2A0.6621 (2)0.07151 (19)0.4356 (2)0.0194 (4)
H2AA0.6117590.0015650.4547560.023*
C3A0.63140 (19)0.18414 (19)0.5191 (2)0.0181 (4)
Cl1B0.07951 (5)0.39421 (6)0.36033 (7)0.03451 (17)
O1B0.36771 (15)0.41250 (15)0.42619 (17)0.0227 (4)
H1B0.438 (3)0.379 (3)0.457 (3)0.044 (8)*
O2B0.28656 (18)0.33943 (17)0.76908 (19)0.0352 (4)
H2B0.296 (3)0.273 (3)0.818 (3)0.041 (8)*
O3B0.35042 (16)0.21788 (14)0.60475 (17)0.0289 (4)
C1B0.1898 (2)0.4971 (2)0.4920 (2)0.0233 (5)
H1BA0.1965110.5760280.4378870.028*
H1BB0.1568410.5173230.5795550.028*
C2B0.3218 (2)0.4379 (2)0.5540 (2)0.0191 (4)
H2BA0.3815830.4989140.6245430.023*
C3B0.3211 (2)0.3181 (2)0.6435 (2)0.0211 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0262 (3)0.0290 (3)0.0477 (4)0.0023 (2)0.0129 (3)0.0052 (3)
O1A0.0316 (9)0.0193 (8)0.0174 (8)0.0009 (7)0.0095 (7)0.0043 (7)
O2A0.0516 (11)0.0238 (9)0.0182 (8)0.0109 (8)0.0144 (8)0.0003 (7)
O3A0.0300 (8)0.0169 (8)0.0207 (8)0.0032 (6)0.0117 (6)0.0016 (6)
C1A0.0255 (11)0.0189 (11)0.0283 (12)0.0028 (9)0.0119 (10)0.0021 (9)
C2A0.0260 (11)0.0171 (11)0.0169 (10)0.0001 (9)0.0095 (9)0.0003 (8)
C3A0.0196 (10)0.0187 (12)0.0176 (10)0.0014 (8)0.0082 (9)0.0007 (8)
Cl1B0.0243 (3)0.0377 (4)0.0383 (3)0.0027 (3)0.0049 (3)0.0039 (3)
O1B0.0245 (8)0.0270 (9)0.0205 (8)0.0054 (7)0.0126 (7)0.0036 (6)
O2B0.0592 (12)0.0280 (10)0.0288 (9)0.0098 (9)0.0287 (9)0.0090 (8)
O3B0.0426 (10)0.0180 (8)0.0309 (9)0.0001 (7)0.0182 (8)0.0014 (7)
C1B0.0273 (11)0.0198 (11)0.0252 (11)0.0024 (9)0.0119 (9)0.0001 (9)
C2B0.0229 (11)0.0186 (11)0.0176 (10)0.0015 (8)0.0091 (9)0.0009 (8)
C3B0.0235 (11)0.0227 (12)0.0175 (11)0.0018 (9)0.0071 (9)0.0001 (9)
Geometric parameters (Å, º) top
Cl1A—C1A1.786 (2)Cl1B—C1B1.785 (2)
O1A—H1A0.80 (2)O1B—H1B0.81 (3)
O1A—C2A1.418 (2)O1B—C2B1.421 (2)
O2A—H2A0.82 (3)O2B—H2B0.83 (3)
O2A—C3A1.316 (2)O2B—C3B1.323 (2)
O3A—C3A1.211 (2)O3B—C3B1.201 (2)
C1A—H1AA0.9900C1B—H1BA0.9900
C1A—H1AB0.9900C1B—H1BB0.9900
C1A—C2A1.515 (3)C1B—C2B1.510 (3)
C2A—H2AA1.0000C2B—H2BA1.0000
C2A—C3A1.513 (3)C2B—C3B1.517 (3)
C2A—O1A—H1A110.4 (16)C2B—O1B—H1B109.4 (19)
C3A—O2A—H2A108 (2)C3B—O2B—H2B107.1 (18)
Cl1A—C1A—H1AA109.5Cl1B—C1B—H1BA109.5
Cl1A—C1A—H1AB109.5Cl1B—C1B—H1BB109.5
H1AA—C1A—H1AB108.0H1BA—C1B—H1BB108.1
C2A—C1A—Cl1A110.94 (15)C2B—C1B—Cl1B110.83 (15)
C2A—C1A—H1AA109.5C2B—C1B—H1BA109.5
C2A—C1A—H1AB109.5C2B—C1B—H1BB109.5
O1A—C2A—C1A112.72 (16)O1B—C2B—C1B108.19 (16)
O1A—C2A—H2AA108.5O1B—C2B—H2BA108.7
O1A—C2A—C3A106.11 (16)O1B—C2B—C3B109.50 (17)
C1A—C2A—H2AA108.5C1B—C2B—H2BA108.7
C3A—C2A—C1A112.29 (17)C1B—C2B—C3B113.03 (17)
C3A—C2A—H2AA108.5C3B—C2B—H2BA108.7
O2A—C3A—C2A112.18 (18)O2B—C3B—C2B111.23 (18)
O3A—C3A—O2A124.67 (19)O3B—C3B—O2B125.2 (2)
O3A—C3A—C2A123.16 (18)O3B—C3B—C2B123.54 (18)
Cl1A—C1A—C2A—O1A59.7 (2)Cl1B—C1B—C2B—O1B60.43 (19)
Cl1A—C1A—C2A—C3A60.1 (2)Cl1B—C1B—C2B—C3B61.0 (2)
O1A—C2A—C3A—O2A173.88 (17)O1B—C2B—C3B—O2B176.07 (17)
O1A—C2A—C3A—O3A5.6 (3)O1B—C2B—C3B—O3B2.9 (3)
C1A—C2A—C3A—O2A62.5 (2)C1B—C2B—C3B—O2B63.2 (2)
C1A—C2A—C3A—O3A117.9 (2)C1B—C2B—C3B—O3B117.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1Bi0.80 (2)1.96 (2)2.752 (2)170 (2)
O2A—H2A···O1Aii0.82 (3)1.97 (3)2.770 (2)166 (3)
O2A—H2A···O3Aii0.82 (3)2.45 (3)2.959 (2)121 (2)
C1A—H1AA···O3Biii0.992.633.195 (3)116
C2A—H2AA···O3Biii1.002.443.114 (3)124
O1B—H1B···O3A0.81 (3)1.95 (3)2.723 (2)159 (3)
O2B—H2B···O1Bii0.83 (3)2.24 (3)3.047 (2)164 (2)
O2B—H2B···O3Bii0.83 (3)2.47 (3)2.963 (2)119 (2)
C1B—H1BB···Cl1Biv0.992.953.764 (2)141
C2B—H2BA···O3Av1.002.523.177 (3)123
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+1, z+1; (v) x+1, y+1, z+1.
3-Bromo-2-hydroxypropanoic acid (mo_21189_0ma_a) top
Crystal data top
C3H5BrO3F(000) = 656
Mr = 168.98Dx = 2.096 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3076 (4) ÅCell parameters from 9452 reflections
b = 10.8912 (3) Åθ = 2.7–27.3°
c = 9.0769 (3) ŵ = 7.57 mm1
β = 106.673 (1)°T = 301 K
V = 1070.85 (6) Å3Plate, colourless
Z = 80.4 × 0.15 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2079 reflections with I > 2σ(I)
φ and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS2016; Bruker, 2016)
θmax = 27.5°, θmin = 1.9°
Tmin = 0.488, Tmax = 0.746h = 1414
25050 measured reflectionsk = 1414
2469 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0662P)2 + 1.5353P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2469 reflectionsΔρmax = 1.28 e Å3
134 parametersΔρmin = 0.95 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.10364 (4)0.16899 (4)0.54355 (6)0.05749 (18)
Br1B0.91376 (4)0.39586 (5)0.64075 (6)0.05988 (18)
O3A0.4161 (2)0.2773 (2)0.5508 (3)0.0343 (5)
O1B0.6270 (3)0.4133 (2)0.5699 (3)0.0371 (5)
H1B0.5663910.3683310.5438450.048 (13)*
O1A0.3836 (3)0.1011 (2)0.7284 (3)0.0379 (6)
H1A0.3709030.0423100.7781620.057*
O3B0.6459 (3)0.2210 (2)0.3935 (3)0.0501 (7)
O2A0.3537 (3)0.1622 (3)0.3393 (3)0.0505 (8)
H2A0.3737570.2226730.2982290.076*
O2B0.7047 (4)0.3401 (3)0.2277 (4)0.0635 (10)
H2B0.719 (7)0.276 (7)0.203 (8)0.095*
C3A0.3753 (3)0.1828 (3)0.4872 (4)0.0292 (6)
C2A0.3451 (3)0.0719 (3)0.5701 (4)0.0302 (7)
H2AA0.3943520.0023810.5524670.036*
C2B0.6706 (3)0.4373 (3)0.4414 (4)0.0297 (6)
H2BA0.6133650.4944290.3730530.036*
C3B0.6728 (4)0.3190 (3)0.3542 (4)0.0342 (7)
C1B0.7950 (3)0.4981 (3)0.4962 (4)0.0387 (8)
H1BA0.7866120.5755530.5451010.046*
H1BB0.8250700.5155740.4085630.046*
C1A0.2097 (4)0.0372 (3)0.5129 (4)0.0396 (8)
H1AA0.1953410.0354460.5671980.048*
H1AB0.1889080.0174270.4043090.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0435 (3)0.0478 (3)0.0813 (4)0.00380 (17)0.0181 (2)0.0083 (2)
Br1B0.0396 (3)0.0708 (3)0.0643 (3)0.00844 (19)0.0070 (2)0.0066 (2)
O3A0.0491 (14)0.0264 (11)0.0308 (12)0.0073 (10)0.0168 (11)0.0023 (9)
O1B0.0428 (14)0.0438 (13)0.0303 (12)0.0075 (11)0.0193 (11)0.0090 (10)
O1A0.0561 (16)0.0347 (12)0.0237 (11)0.0012 (11)0.0124 (11)0.0070 (9)
O3B0.080 (2)0.0268 (12)0.0506 (16)0.0011 (13)0.0293 (15)0.0004 (11)
O2A0.090 (2)0.0420 (14)0.0235 (12)0.0201 (14)0.0221 (13)0.0021 (10)
O2B0.113 (3)0.0477 (17)0.0479 (17)0.0128 (18)0.0520 (19)0.0116 (14)
C3A0.0372 (17)0.0264 (14)0.0257 (15)0.0002 (12)0.0119 (13)0.0006 (11)
C2A0.0456 (19)0.0215 (13)0.0273 (15)0.0022 (12)0.0168 (14)0.0021 (11)
C2B0.0388 (17)0.0260 (14)0.0265 (15)0.0015 (12)0.0129 (13)0.0006 (11)
C3B0.0460 (19)0.0312 (16)0.0277 (16)0.0028 (14)0.0144 (14)0.0017 (12)
C1B0.043 (2)0.0343 (17)0.0424 (19)0.0029 (15)0.0177 (16)0.0026 (14)
C1A0.053 (2)0.0252 (15)0.044 (2)0.0047 (14)0.0181 (17)0.0063 (13)
Geometric parameters (Å, º) top
Br1A—C1A1.941 (4)O2B—C3B1.319 (4)
Br1B—C1B1.938 (4)C3A—C2A1.512 (4)
O3A—C3A1.206 (4)C2A—H2AA0.9800
O1B—H1B0.8200C2A—C1A1.517 (5)
O1B—C2B1.415 (4)C2B—H2BA0.9800
O1A—H1A0.8200C2B—C3B1.517 (4)
O1A—C2A1.413 (4)C2B—C1B1.504 (5)
O3B—C3B1.192 (4)C1B—H1BA0.9700
O2A—H2A0.8200C1B—H1BB0.9700
O2A—C3A1.313 (4)C1A—H1AA0.9700
O2B—H2B0.76 (8)C1A—H1AB0.9700
C2B—O1B—H1B109.5C1B—C2B—H2BA108.4
C2A—O1A—H1A109.5C1B—C2B—C3B113.2 (3)
C3A—O2A—H2A109.5O3B—C3B—O2B125.0 (3)
C3B—O2B—H2B103 (6)O3B—C3B—C2B124.1 (3)
O3A—C3A—O2A124.7 (3)O2B—C3B—C2B110.8 (3)
O3A—C3A—C2A123.6 (3)Br1B—C1B—H1BA109.3
O2A—C3A—C2A111.7 (3)Br1B—C1B—H1BB109.3
O1A—C2A—C3A106.2 (3)C2B—C1B—Br1B111.8 (2)
O1A—C2A—H2AA108.4C2B—C1B—H1BA109.3
O1A—C2A—C1A113.0 (3)C2B—C1B—H1BB109.3
C3A—C2A—H2AA108.4H1BA—C1B—H1BB107.9
C3A—C2A—C1A112.2 (3)Br1A—C1A—H1AA109.3
C1A—C2A—H2AA108.4Br1A—C1A—H1AB109.3
O1B—C2B—H2BA108.4C2A—C1A—Br1A111.8 (2)
O1B—C2B—C3B109.6 (3)C2A—C1A—H1AA109.3
O1B—C2B—C1B108.8 (3)C2A—C1A—H1AB109.3
C3B—C2B—H2BA108.4H1AA—C1A—H1AB107.9
O3A—C3A—C2A—O1A4.6 (5)O2A—C3A—C2A—O1A174.3 (3)
O3A—C3A—C2A—C1A119.3 (4)O2A—C3A—C2A—C1A61.8 (4)
O1B—C2B—C3B—O3B2.7 (5)C3A—C2A—C1A—Br1A60.5 (3)
O1B—C2B—C3B—O2B175.5 (3)C3B—C2B—C1B—Br1B62.6 (3)
O1B—C2B—C1B—Br1B59.5 (3)C1B—C2B—C3B—O3B119.0 (4)
O1A—C2A—C1A—Br1A59.5 (3)C1B—C2B—C3B—O2B62.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1Bi0.821.962.771 (3)168
O2A—H2A···O3Aii0.822.432.974 (3)125
O2A—H2A···O1Aii0.822.032.823 (4)161
O2B—H2B···Br1Bii0.76 (8)3.07 (8)3.726 (4)146 (7)
O2B—H2B···O1Bii0.76 (8)2.47 (8)3.118 (4)145 (7)
O2B—H2B···O3Bii0.76 (8)2.70 (7)2.988 (4)105 (6)
C2A—H2AA···O3Biii0.982.553.206 (4)124
C2B—H2BA···O3Aiv0.982.633.265 (4)123
C1A—H1AA···O3Biii0.972.663.240 (5)119
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
2-Hydroxy-3-iodopropanoic acid (21166) top
Crystal data top
C3H5IO3F(000) = 400
Mr = 215.97Dx = 2.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4762 (8) ÅCell parameters from 6362 reflections
b = 5.4370 (4) Åθ = 3.6–27.0°
c = 9.1941 (7) ŵ = 5.49 mm1
β = 92.848 (3)°T = 153 K
V = 572.97 (7) Å3Plate, colourless
Z = 40.27 × 0.16 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1102 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS2016; Bruker, 2016)
θmax = 27.5°, θmin = 3.6°
Tmin = 0.556, Tmax = 0.746h = 1414
16586 measured reflectionsk = 67
1308 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0197P)2 + 1.2602P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1308 reflectionsΔρmax = 0.59 e Å3
69 parametersΔρmin = 0.66 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.10060 (2)0.11577 (5)0.18694 (3)0.03582 (11)
O10.3689 (2)0.0419 (5)0.2883 (3)0.0280 (6)
H10.4354190.0968780.3125530.042*
O20.3384 (3)0.0992 (5)0.0900 (3)0.0337 (7)
H20.349 (5)0.211 (12)0.130 (7)0.07 (2)*
O30.4187 (2)0.3096 (5)0.0974 (3)0.0314 (6)
C10.2156 (3)0.1709 (7)0.1191 (4)0.0303 (8)
H1A0.2022990.3214580.1765390.036*
H1B0.1974620.2096310.0151960.036*
C20.3422 (3)0.0953 (6)0.1394 (4)0.0246 (7)
H2A0.3921670.2357370.1099110.030*
C30.3704 (3)0.1277 (6)0.0481 (4)0.0213 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02602 (14)0.03541 (17)0.04660 (17)0.00509 (11)0.00755 (10)0.00537 (12)
O10.0384 (14)0.0265 (14)0.0186 (12)0.0055 (11)0.0021 (10)0.0007 (10)
O20.0570 (19)0.0251 (15)0.0187 (13)0.0030 (13)0.0000 (12)0.0011 (12)
O30.0349 (14)0.0280 (14)0.0307 (14)0.0105 (11)0.0036 (11)0.0033 (11)
C10.034 (2)0.025 (2)0.033 (2)0.0055 (15)0.0048 (16)0.0041 (15)
C20.0328 (19)0.0201 (18)0.0209 (17)0.0033 (14)0.0017 (14)0.0009 (14)
C30.0208 (15)0.0234 (18)0.0199 (16)0.0058 (14)0.0027 (12)0.0015 (14)
Geometric parameters (Å, º) top
I1—C12.154 (4)C1—H1A0.9900
O1—H10.8400C1—H1B0.9900
O1—C21.418 (4)C1—C21.513 (5)
O2—H20.72 (6)C2—H2A1.0000
O2—C31.313 (4)C2—C31.519 (5)
O3—C31.211 (4)
C2—O1—H1109.5O1—C2—H2A108.6
C3—O2—H2110 (5)O1—C2—C3109.2 (3)
I1—C1—H1A109.3C1—C2—H2A108.6
I1—C1—H1B109.3C1—C2—C3112.2 (3)
H1A—C1—H1B108.0C3—C2—H2A108.6
C2—C1—I1111.5 (2)O2—C3—C2112.6 (3)
C2—C1—H1A109.3O3—C3—O2124.0 (3)
C2—C1—H1B109.3O3—C3—C2123.4 (3)
O1—C2—C1109.5 (3)
I1—C1—C2—O159.5 (3)O1—C2—C3—O36.6 (5)
I1—C1—C2—C361.9 (3)C1—C2—C3—O252.8 (4)
O1—C2—C3—O2174.4 (3)C1—C2—C3—O3128.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.72 (6)1.97 (6)2.684 (4)172 (7)
O2—H2···O3i0.72 (6)2.68 (6)3.101 (4)120 (6)
Symmetry code: (i) x, y+1/2, z1/2.
Selected torsion angles (°) top
C1—C2—O1—H1O3—C3—C2—O1
I, molecule A57.4 (17)-5.6 (2)
I, molecule B-179 (2)-5.6 (2)
II, molecule A58.4 (4)-4.6 (4)
II, molecule B-168.8 (3)-4.6 (4)
III139.9 (3)6.6 (5)
Hydrogen-bond geometry (Å, °) top
Hydrogen-bond IDD—H···AD—HH···AD···AD—H···A
I
aO1A—H1A···O1Bi0.80 (2)1.96 (2)2.752 (2)170 (2)
bO2A—H2A···O3Aii0.82 (3)2.44 (3)2.959 (2)122 (3)
cO2A—H2A···O1Aii0.82 (3)1.97 (3)2.770 (2)166 (3)
dO1B—H1B···O3A0.81 (3)1.95 (3)2.723 (2)159 (3)
eO2B—H2B···O1Bii0.83 (3)2.24 (3)3.047 (2)164 (3)
II
aO1A—H1A···O1Bi0.820 (3)1.964 (3)2.771 (3)167.7 (2)
bO2A—H2A···O3Aii0.820 (3)2.427 (3)2.974 (3)125.1 (2)
cO2A—H2A···O1Aii0.820 (3)2.034 (2)2.823 (4)161.1 (3)
dO1B—H1B···O3A0.820 (3)1.984 (2)2.770 (4)160.4 (2)
eO2B—H2B···O1Bii0.76 (8)2.47 (8)3.118 (4)145 (7)
III
aO1—H1···O3i0.840 (2)1.900 (2)2.728 (3)168.8 (2)
bO2—H2···O1ii0.72 (6)1.97 (6)2.684 (4)172 (7)
Symmetry codes for I: (i) -x+1, y-1/2, -z+1/2; (ii) x, -y+1/2, z-1/2. Symmetry codes for II: (i) -x+1, y-1/2, -z+3/2; (ii) x, -y+1/2, z-1/2. Symmetry codes for III: (i) x, -y+1/2, z-1/2; (ii) -x+1, y-1/2, -z+1/2.
Unitary motifs (on-diagonal) and basic binary graph sets (off-diagonal) for I and II top
Type of hydrogen bondabcde
O1A—H1A···O1BO2A—H2A···O3AO2A—H2A···O1AO1B—H1B···O3AO2B—H2B···O1B
a O1A—H1A···O1BD
b O2A—H2A···O3AD33(13)C(4)
c O2A—H2A···O1AD33(10)C22(9)[R12(5)]C(5)
d O1B—H1B···O3AC22(7)D32(7)D33(10)D
e O2B—H2B···O1BD32(8)**D33(10)C(5)
Note: (*) no link at the binary level.
Unitary motifs (on-diagonal) and basic binary graph sets (off-diagonal) for III top
Type of hydrogen bondab
O1—H1···O3O2—H2···O1
a O1—H1···O3C(5)
b O2—H2···O1C44(16)[R44(12)]C(5)
Individual element-element interactions as percentages (%) of the total Hirshfeld surface area top
IAIBIIAIIBIII
H···O/O···H46.442.945.039.742.2
H···X/X···H25.325.025.528.027.3
H···H15.619.816.119.716.1
X···X7.07.18.38.29.3
X···O/O···X2.01.71.40.02.0
O···O1.21.61.42.71.5
O···C/C···O1.41.41.41.30.4
H···C/C···H1.10.61.00.40.7
C···C0.00.00.00.00.5
X···C/C···X0.00.00.00.00.0
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds