Download citation
Download citation
link to html
A wide range of high-performance X-ray surface/interface characterization techniques are implemented nowadays at every synchrotron radiation source. However, these techniques are not always `non-destructive' because possible beam-induced electronic or structural changes may occur during X-ray irradiation. As these changes may be at least partially reversible, an in situ technique is required for assessing their extent. Here the integration of a scanning Kelvin probe (SKP) set-up with a synchrotron hard X-ray interface scattering instrument for the in situ detection of work function variations resulting from X-ray irradiation is reported. First results, obtained on bare sapphire and sapphire covered by a room-temperature ionic liquid, are presented. In both cases a potential change was detected, which decayed and vanished after switching off the X-ray beam. This demonstrates the usefulness of a SKP for in situ monitoring of surface/interface potentials during X-ray materials characterization experiments.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds