Download citation
Download citation
link to html
In the title compound, [Ni(H2O)6](NO3)2·2C6H12N4·4H2O, the Ni atom lies on the crystallographic inversion center and is coordinated by six water mol­ecules in an octahedral environment. The coordinated water mol­ecules are involved in hydrogen bonding with the hexa­methyl­enetetr­amine, nitrate and lattice water mol­ecules, thus furnishing a three-dimensional network motif. The hexa­methyl­enetetr­amine entity is linked to three different [Ni(H2O)6]2+ octahedra, as well as to a lattice water mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802014071/ya6120sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802014071/ya6120Isup2.hkl
Contains datablock I

CCDC reference: 197450

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-N) = 0.004 Å
  • R factor = 0.043
  • wR factor = 0.095
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.90 From the CIF: _reflns_number_total 3095 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3323 Completeness (_total/calc) 93.14% Alert C: < 95% complete PLAT_731 Alert C Bond Calc 0.85(3), Rep 0.850(10) .... 3.00 s.u-Ratio O5W -H5W1 1.555 1.555 PLAT_735 Alert C D-H Calc 0.85(3), Rep 0.850(10) .... 3.00 s.u-Ratio O4W -H4W1 1.555 1.555 PLAT_735 Alert C D-H Calc 0.85(3), Rep 0.850(10) .... 3.00 s.u-Ratio O5W -H5W1 1.555 1.555 PLAT_736 Alert C H...A Calc 1.97(3), Rep 1.970(10) .... 3.00 s.u-Ratio H4W1 -O5W 1.555 2.756 PLAT_736 Alert C H...A Calc 2.06(3), Rep 2.060(10) .... 3.00 s.u-Ratio H5W1 -O2 1.555 2.657
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
6 Alert Level C = Please check

Comment top

Hexamethylenetetramine, a nitrogen-donor ligand, functions as a bridging entity in a number of its complexes with metal salts (Carlucci et al., 1995; 1997); occasionally, it exists as a host molecule in inclusion compounds (Reddy et al., 1993, 1994). Both classes have been investigated in detail (Ganesh et al., 1990; Zheng et al., 2001). The reaction of nickel(II) acetate with this ligand furnished mixed crystal of dinickel tetraacetate with hexamethylenetetramine (Wang et al., 2002); the crystal adopts a chain architecture.

The analogous reaction with nickel nitrate in place of nickel acetate afforded the title hexaaquanickel dinitrate bis(hexamethylenetetramine) tetrahydrate, (I); each hexamethylenetetramine entity uses three of the four nitrogen sites to interact, indirectly, with the Ni atom through the coordinated water molecules. The Ni atom, which lies at the crystallographic inversion center, shows octahedral coordination (Fig. 1). The hexamethylenetetramine, nitrate and lattice water entities lie in general positions in the crystal structure. The ligand forms four hydrogen bonds, and each water molecule forms a pair of hydrogen bonds to give rise to a tightly-held three-dimensional structure.

Experimental top

10 ml of water solution of nickel nitrate tetrahydrate (0.26 g, 1 mmol) was mixed with 10 ml of water solution of hexamethylenetetramine (0.28 g, 2 mm mol). The mixture was filtered, and after the solution was set aside for several weeks, blue crystals precipitated.

Refinement top

The water-bound H atoms were located and refined, subject to O—H 0.85±0.01 Å and H···H = 1.39±0.01 Å; their displacement parameters were set to be 1.2 times those of the parent O atoms.

Computing details top

Data collection: SMART (Siemens, 1997); cell refinement: SAINT (Siemens, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the unit-cell contents at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
Hexaaquanickel dinitrate bis(hexamethylenetetramine) tetrahydrate top
Crystal data top
[Ni(H2O)6](NO3)2·2C6H12N4·4H2OZ = 1
Mr = 643.28F(000) = 342
Triclinic, P1Dx = 1.536 Mg m3
a = 9.087 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.343 (2) ÅCell parameters from 1562 reflections
c = 9.682 (2) Åθ = 2.2–27.9°
α = 87.761 (3)°µ = 0.78 mm1
β = 75.719 (2)°T = 298 K
γ = 61.275 (2)°Block, blue
V = 695.5 (2) Å30.42 × 0.32 × 0.25 mm
Data collection top
Siemens CCD area-detectorr
diffractometer
3095 independent reflections
Radiation source: fine-focus sealed tube2192 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.734, Tmax = 0.828k = 911
4434 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
3095 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.55 e Å3
15 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ni(H2O)6](NO3)2·2C6H12N4·4H2Oγ = 61.275 (2)°
Mr = 643.28V = 695.5 (2) Å3
Triclinic, P1Z = 1
a = 9.087 (2) ÅMo Kα radiation
b = 9.343 (2) ŵ = 0.78 mm1
c = 9.682 (2) ÅT = 298 K
α = 87.761 (3)°0.42 × 0.32 × 0.25 mm
β = 75.719 (2)°
Data collection top
Siemens CCD area-detectorr
diffractometer
3095 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2192 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.828Rint = 0.023
4434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04315 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.55 e Å3
3095 reflectionsΔρmin = 0.45 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.0297 (2)
O10.3993 (4)0.4270 (3)0.9214 (3)0.0918 (8)
O20.3654 (3)0.3576 (3)1.1353 (2)0.0734 (7)
O30.5271 (5)0.1806 (4)0.9601 (4)0.131 (1)
O1w0.6070 (2)0.3201 (2)0.6311 (2)0.0387 (4)
O2w0.4917 (2)0.6768 (2)0.6270 (2)0.0416 (5)
O3w0.7427 (2)0.4506 (2)0.3926 (2)0.0382 (4)
O4w0.9808 (3)0.2315 (3)0.1767 (2)0.0606 (6)
O5w0.6961 (3)0.0916 (3)0.7571 (3)0.0736 (7)
N10.9521 (3)0.2074 (3)0.6605 (2)0.0365 (5)
N21.0489 (3)0.2021 (3)0.8762 (2)0.0394 (5)
N31.1527 (3)0.3107 (3)0.6625 (2)0.0381 (5)
N41.2528 (3)0.0167 (3)0.6630 (2)0.0371 (5)
N50.4321 (3)0.3219 (4)1.0049 (3)0.0542 (7)
C10.9046 (3)0.2235 (3)0.8183 (3)0.0420 (7)
C21.0059 (3)0.3301 (3)0.6099 (3)0.0412 (7)
C31.1030 (3)0.0435 (3)0.6095 (3)0.0385 (6)
C41.1972 (3)0.0382 (3)0.8210 (3)0.0417 (7)
C51.0998 (4)0.3253 (3)0.8193 (3)0.0451 (7)
C61.2986 (3)0.1443 (3)0.6126 (3)0.0399 (6)
H1w10.550 (2)0.343 (3)0.718 (1)0.046*
H1w20.714 (1)0.281 (3)0.626 (2)0.046*
H2w10.531 (3)0.657 (3)0.701 (2)0.050*
H2w20.426 (3)0.780 (1)0.628 (3)0.050*
H3w10.802 (3)0.381 (2)0.320 (2)0.046*
H3w20.764 (3)0.530 (2)0.385 (3)0.046*
H4w11.079 (2)0.183 (4)0.195 (3)0.073*
H4w20.992 (4)0.225 (4)0.088 (1)0.073*
H5w10.666 (4)0.159 (3)0.799 (3)0.088*
H5w20.641 (4)0.001 (2)0.808 (3)0.088*
H1a0.87050.14220.85280.050*
H1b0.80540.33100.85320.050*
H2a1.03900.31980.50610.049*
H2b0.90830.43910.64230.049*
H3a1.13690.03190.50570.046*
H3b1.07040.03940.64130.046*
H4a1.16510.04430.85580.050*
H4b1.29400.02180.85760.050*
H5a1.00260.43400.85350.054*
H5b1.19520.31280.85580.054*
H6a1.33400.13250.50880.048*
H6b1.39650.12930.64660.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0289 (3)0.0312 (3)0.0259 (3)0.0125 (2)0.0059 (2)0.0002 (2)
O10.105 (2)0.095 (2)0.058 (2)0.038 (2)0.021 (2)0.021 (2)
O20.079 (2)0.091 (2)0.041 (1)0.036 (1)0.012 (1)0.001 (2)
O30.142 (3)0.070 (2)0.109 (3)0.013 (2)0.010 (2)0.026 (2)
O1w0.035 (1)0.045 (1)0.034 (1)0.017 (1)0.012 (1)0.010 (1)
O2w0.049 (1)0.032 (1)0.041 (1)0.013 (1)0.021 (1)0.002 (1)
O3w0.034 (1)0.038 (1)0.039 (1)0.019 (1)0.001 (1)0.005 (1)
O4w0.053 (1)0.073 (2)0.036 (1)0.021 (1)0.002 (1)0.008 (1)
O5w0.075 (2)0.076 (2)0.062 (2)0.033 (2)0.012 (1)0.003 (1)
N10.034 (1)0.041 (1)0.037 (1)0.018 (1)0.012 (1)0.006 (1)
N20.037 (1)0.045 (1)0.032 (1)0.018 (1)0.006 (1)0.003 (1)
N30.034 (1)0.039 (1)0.041 (1)0.020 (1)0.005 (1)0.001 (1)
N40.034 (1)0.035 (1)0.036 (1)0.011 (1)0.010 (1)0.002 (1)
N50.049 (2)0.063 (2)0.045 (2)0.022 (1)0.012 (1)0.002 (1)
C10.035 (2)0.045 (2)0.043 (2)0.019 (1)0.004 (1)0.001 (1)
C20.038 (2)0.036 (2)0.045 (2)0.015 (1)0.010 (1)0.007 (1)
C30.043 (2)0.039 (2)0.036 (2)0.021 (1)0.013 (1)0.001 (1)
C40.041 (2)0.045 (2)0.038 (2)0.018 (1)0.017 (1)0.007 (1)
C50.045 (2)0.046 (2)0.045 (2)0.022 (1)0.009 (1)0.010 (1)
C60.031 (1)0.048 (2)0.039 (2)0.019 (1)0.005 (1)0.003 (1)
Geometric parameters (Å, º) top
Ni1—O1w2.063 (2)O1w—H1w20.85 (1)
Ni1—O1wi2.063 (2)O2w—H2w10.85 (1)
Ni1—O2w2.059 (2)O2w—H2w20.85 (1)
Ni1—O2wi2.059 (2)O3w—H3w10.85 (1)
Ni1—O3w2.022 (2)O3w—H3w20.85 (1)
Ni1—O3wi2.022 (2)O4w—H4w10.85 (1)
O1—N51.218 (3)O4w—H4w20.84 (1)
O2—N51.239 (3)O5w—H5w10.85 (1)
O3—N51.200 (3)O5w—H5w20.85 (1)
N1—C11.474 (3)C1—H1a0.9700
N1—C21.473 (3)C1—H1b0.9700
N1—C31.475 (3)C2—H2a0.9700
N2—C11.475 (3)C2—H2b0.9700
N2—C41.473 (3)C3—H3a0.9700
N2—C51.476 (3)C3—H3b0.9700
N3—C21.472 (3)C4—H4a0.9700
N3—C51.466 (3)C4—H4b0.9700
N3—C61.473 (3)C5—H5a0.9700
N4—C31.481 (3)C5—H5b0.9700
N4—C41.477 (3)C6—H6a0.9700
N4—C61.472 (3)C6—H6b0.9700
O1w—H1w10.84 (1)
O1w—Ni1—O1wi180.0Ni1—O2w—H2w1123 (2)
O1w—Ni1—O2w92.5 (1)Ni1—O2w—H2w2125 (2)
O1w—Ni1—O2wi87.5 (1)H2w1—O2w—H2w2110 (2)
O1w—Ni1—O3w88.8 (1)Ni1—O3w—H3w1123 (2)
O1w—Ni1—O3wi91.2 (1)Ni1—O3w—H3w2117 (2)
O1wi—Ni1—O2w87.5 (1)H3w1—O3w—H3w2111 (2)
O1wi—Ni1—O2wi92.5 (1)H4w1—O4w—H4w2111 (2)
O1wi—Ni1—O3w91.2 (1)H5w1—O5w—H5w2110 (2)
O1wi—Ni1—O3wi88.8 (1)N1—C1—H1a109.2
O2w—Ni1—O2wi180.0 (1)N2—C1—H1a109.2
O2w—Ni1—O3w87.8 (1)N1—C1—H1b109.2
O2w—Ni1—O3wi92.2 (1)N2—C1—H1b109.2
O2wi—Ni1—O3w92.2 (1)H1a—C1—H1b107.9
O2wi—Ni1—O2wi87.8 (1)N3—C2—H2a109.2
O3w—Ni1—O3wi180.0N1—C2—H2a109.2
C3—N1—C1108.4 (2)N3—C2—H2b109.2
C3—N1—C2107.8 (2)N1—C2—H2b109.2
C1—N1—C2108.4 (2)H2a—C2—H2b107.9
C4—N2—C1107.8 (2)N1—C3—H3a109.3
C4—N2—C5108.1 (2)N4—C3—H3a109.3
C1—N2—C5107.7 (2)N1—C3—H3b109.3
C5—N3—C2108.0 (2)N4—C3—H3b109.3
C5—N3—C6108.3 (2)H3a—C3—H3b107.9
C2—N3—C6108.1 (2)N2—C4—H4a109.2
C6—N4—C4108.3 (2)N4—C4—H4a109.2
C6—N4—C3107.7 (2)N2—C4—H4b109.2
C4—N4—C3108.3 (2)N4—C4—H4b109.2
O3—N5—O1119.6 (3)H4a—C4—H4b107.9
O3—N5—O2119.2 (3)N3—C5—H5a109.1
O1—N5—O2121.2 (3)N2—C5—H5a109.1
N1—C1—N2112.2 (2)N3—C5—H5b109.1
N3—C2—N1112.0 (2)N2—C5—H5b109.1
N1—C3—N4111.8 (2)H5a—C5—H5b107.8
N2—C4—N4112.2 (2)N4—C6—H6a109.2
N3—C5—N2112.7 (2)N3—C6—H6a109.2
N4—C6—N3112.2 (2)N4—C6—H6b109.2
Ni1—O1w—H1w1114 (2)N3—C6—H6b109.2
Ni1—O1w—H1w2118 (2)H6a—C6—H6b107.9
H1w1—O1w—H1w2110 (2)
C3—N1—C1—N258.8 (3)C1—N2—C4—N458.6 (3)
C2—N1—C1—N258.0 (3)C5—N2—C4—N457.6 (3)
C4—N2—C1—N158.7 (3)C6—N4—C4—N258.1 (3)
C5—N2—C1—N157.7 (3)C3—N4—C4—N258.4 (3)
C5—N3—C2—N158.3 (3)C2—N3—C5—N258.8 (3)
C6—N3—C2—N158.6 (3)C6—N3—C5—N258.0 (3)
C3—N1—C2—N359.0 (3)C4—N2—C5—N357.8 (3)
C1—N1—C2—N358.2 (3)C1—N2—C5—N358.4 (3)
C1—N1—C3—N458.1 (3)C4—N4—C6—N358.1 (3)
C2—N1—C3—N459.1 (3)C3—N4—C6—N358.8 (3)
C6—N4—C3—N159.0 (3)C5—N3—C6—N458.1 (3)
C4—N4—C3—N157.9 (3)C2—N3—C6—N458.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O10.84 (1)2.03 (1)2.872 (3)173 (3)
O1w—H1w2···N10.85 (1)2.04 (1)2.875 (3)167 (2)
O2w—H2w1···O2ii0.85 (1)2.01 (1)2.846 (3)169 (2)
O2w—H2w2···N4iii0.85 (1)1.99 (1)2.829 (3)171 (3)
O3w—H3w1···O4w0.85 (1)1.84 (1)2.662 (3)164 (3)
O3w—H3w2···N3iv0.85 (1)1.97 (1)2.802 (3)170 (2)
O4w—H4w1···O5wv0.85 (1)1.97 (1)2.813 (3)174 (3)
O4w—H4w2···N2vi0.84 (1)1.98 (1)2.817 (3)173 (3)
O5w—H5w1···O2vii0.85 (1)2.06 (1)2.901 (4)168 (3)
O5w—H5w2···O30.85 (1)1.96 (1)2.799 (4)168 (3)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x1, y+1, z; (iv) x+2, y+1, z+1; (v) x+2, y, z+1; (vi) x, y, z1; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni(H2O)6](NO3)2·2C6H12N4·4H2O
Mr643.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.087 (2), 9.343 (2), 9.682 (2)
α, β, γ (°)87.761 (3), 75.719 (2), 61.275 (2)
V3)695.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.42 × 0.32 × 0.25
Data collection
DiffractometerSiemens CCD area-detectorr
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.734, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
4434, 3095, 2192
Rint0.023
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.095, 0.88
No. of reflections3095
No. of parameters208
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.45

Computer programs: SMART (Siemens, 1997), SAINT (Siemens, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O1w2.063 (2)Ni1—O3w2.022 (2)
Ni1—O2w2.059 (2)
O1w—Ni1—O2w92.5 (1)O1w—Ni1—O3wi91.2 (1)
O1w—Ni1—O2wi87.5 (1)O2w—Ni1—O3w87.8 (1)
O1w—Ni1—O3w88.8 (1)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O10.84 (1)2.03 (1)2.872 (3)173 (3)
O1w—H1w2···N10.85 (1)2.04 (1)2.875 (3)167 (2)
O2w—H2w1···O2ii0.85 (1)2.01 (1)2.846 (3)169 (2)
O2w—H2w2···N4iii0.85 (1)1.99 (1)2.829 (3)171 (3)
O3w—H3w1···O4w0.85 (1)1.84 (1)2.662 (3)164 (3)
O3w—H3w2···N3iv0.85 (1)1.97 (1)2.802 (3)170 (2)
O4w—H4w1···O5wv0.85 (1)1.97 (1)2.813 (3)174 (3)
O4w—H4w2···N2vi0.84 (1)1.98 (1)2.817 (3)173 (3)
O5w—H5w1···O2vii0.85 (1)2.06 (1)2.901 (4)168 (3)
O5w—H5w2···O30.85 (1)1.96 (1)2.799 (4)168 (3)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x1, y+1, z; (iv) x+2, y+1, z+1; (v) x+2, y, z+1; (vi) x, y, z1; (vii) x+1, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds