research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
SYNCHROTRON
RADIATION
ISSN: 1600-5775

Lead apatites: structural variations among Pb5(BO4)3Cl with B = P (pyromorphite), As (mimetite) and V (vanadinite)

aDepartment of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: antao@ucalgary.ca

Edited by A. F. Craievich, University of São Paulo, Brazil (Received 5 July 2017; accepted 2 October 2017)

The crystal structure of four Pb apatite samples, Pb5(BO4)3Cl, was refined with synchrotron high-resolution powder X-ray diffraction data, Rietveld refinements, space group P63/m and Z = 2. For this isotypic series, B = P5+ is pyromorphite, B = As5+ is mimetite and B = V5+ is vanadinite. The ionic radius for As5+ (0.355 Å) is similar to that of V5+ (0.335 Å), and this is twice as large as that for P5+ (0.170 Å). However, the c unit-cell parameter for mimetite is surprisingly different from that of vanadinite, although their unit-cell volumes, V, are almost equal to each other. No explanation was available for this peculiar c-axis value for mimetite. Structural parameters such as average 〈B—O〉 [4], 〈Pb1—O9〉 [9] and 〈Pb2—O6Cl2〉 [8] distances increase linearly with V (the coordination numbers for the cations are given in square brackets). Mimetite has a short Pb2—O1 distance, so the O1 oxygen atom interacts with the 6s2 lone-pair electrons of the Pb2+ cation that causes the Cl—Cl distance (= c/2) to increase to the largest value in the series because of repulsion, which causes the c-axis to increase anomalously. Although Pb apatite minerals occur naturally in ore deposits, they are also formed as scaly deposits in lead water pipes that give rise to lead in tap water, as was found recently in Flint, Michigan, USA. It is important to identify Pb-containing phases in water-pipe deposits.

1. Introduction

Apatite is a mineral of interest in various fields because of its importance in geology and technology. Hy­droxy­lapatite, Ca5(PO4)3(OH), is well known in biological sciences because it is the main constituent of dental enamel and human bones. Apatite, Ca5(PO4)3(OH,F,Cl), is the most abundant rock-forming phosphate-group mineral and is the main phospho­rous host in crustal rocks (McConnell, 1973[McConnell, D. (1973). Apatite: Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences. New York: Springer-Verlag.]).

Lead apatites, Pb5(BO4)3(Cl), where B = P5+ is pyromorphite, B = As5+ is mimetite and B = V5+ is vanadinite, occur in various worldwide localities and as scaly deposits in lead water pipes. Recently, the issue of lead in tap water was highlighted in Flint, Michigan, USA, where high levels of lead were recorded (Robeznieks, 2015[Robeznieks, A. (2015). Mod. Healthc. 45, 9.]). Phosphate is added to drinking water in the UK to minimize the release of lead from lead water pipes (Hopwood et al., 2016[Hopwood, J. D., Derrick, G. R., Brown, D. R., Newman, C. D., Haley, J., Kershaw, R. & Collinge, M. (2016). J. Chem. 2016, 9074062.]). The phosphate addition promotes the formation of insoluble lead apatites on the walls of the water pipes where they occur as scaly deposits. Hy­droxy­lpyromorphite, Pb5(PO4)3(OH), is the lead apatite that is used often to model lead levels in tap water. However, apatites on lead water pipes were shown to be solid solutions between pyromorphite and chlorapatite, (Ca5–xPbx)(PO4)3[(OH)yCl1–y] (Hopwood et al., 2016[Hopwood, J. D., Derrick, G. R., Brown, D. R., Newman, C. D., Haley, J., Kershaw, R. & Collinge, M. (2016). J. Chem. 2016, 9074062.]). The structure of a related lead apatite mineral, phospho­hedyphane, Ca2Pb3(PO4)3Cl, is also known (Kampf et al., 2006[Kampf, A. R., Steele, I. M. & Jenkins, R. A. (2006). Am. Mineral. 91, 1909-1917.]). Oscillatory zoning in an arsenate mineral, erythrite, Co3(AsO4)2·8H2O, was recently discussed (Antao & Dhaliwal, 2017[Antao, S. M. & Dhaliwal, I. (2017). Minerals, 7, 136.]).

High ion conductivity in rare-earth silicate oxyapatites is of interest (e.g. Nakayama et al., 1995[Nakayama, S., Kageyama, T., Aono, H. & Sadaoka, Y. (1995). J. Mater. Chem. 5, 1801-1805.], 1999[Nakayama, S., Sakamoto, M., Higuchi, M., Kodaira, K., Sato, M., Kakita, S., Suzuki, T. & Itoh, K. (1999). J. Eur. Ceram. Soc. 19, 507-510.]; Ali et al., 2009[Ali, R., Yashima, M., Matsushita, Y., Yoshioka, H. & Izumi, F. (2009). J. Solid State Chem. 182, 2846-2851.]). Their conductivity at relatively low temperatures is of potential benefit for electrolyte materials in solid oxide fuel cells (Fergus, 2006[Fergus, J. W. (2006). J. Power Sources, 162, 30-40.]). There is no rigorous explanation as to why only oxide ions in rare-earth silicate oxyapatites can move freely inside the channel whereas other ions [F, Cl and (OH)] in apatites were found to be localized at the (0,0,0) or (0,0,z) position.

Studies on the crystal chemistry of apatite supergroup minerals began with the determination of the structure of fluorapatite by Mehmel (1930[Mehmel, M. (1930). Z. Kristallogr. 75, 323-331.]) and Náray-Szabó (1930[Náray-Szabó, S. (1930). Z. Kristallogr. 75, 387-398.]) and continue to recent times (e.g. Okudera, 2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.], and references therein). The crystal chemistry of apatites has been described in a few reviews (Elliott et al., 2002[Elliott, J. C., Wilson, R. M. & Dowker, S. E. P. (2002). Adv. X-ray Anal. 45, 172-181.]; White & Zhili, 2003[White, T. J. & ZhiLi, D. (2003). Acta Cryst. B59, 1-16.]; Pasero et al., 2010[Pasero, M., Kampf, A. R., Ferraris, C., Pekov, I. V., Rakovan, J. & White, T. J. (2010). Eur. J. Mineral. 22, 163-179.]).

Based on other apatite-group minerals, pyromorphite was assumed to have hexagonal space group P63/m (Hendricks et al., 1932[Hendricks, S. B., Jefferson, M. E. & Mosley, V. M. (1932). Z. Kristallogr. 81, 352-369.]). The structure was refined to an R-factor of 12% by using visual estimates of intensities from precession photographs (Trotter & Barnes, 1958[Trotter, J. & Barnes, W. H. (1958). Can. Mineral. 6, 161-173.]). The pyromorphite structure was refined with mixed isotropic and anisotropic displacement parameters (Dai & Hughes, 1989[Dai, Y. & Hughes, J. M. (1989). Can. Mineral. 27, 189-192.]). Thereafter, the pyromorphite structure was refined with anisotropic displacement parameters (ADPs) (e.g. Akao et al., 1989[Akao, A., Aoki, H., Innami, Y., Minamikata, S. & Yamada, T. (1989). Rep. Inst. Med. Dent. Eng. Tokyo Med. Dent. Univ. 23, 25-29.]; Hashimoto & Matsumoto, 1998[Hashimoto, H. & Matsumoto, T. (1998). Z. Kristallogr. 213, 585-590.]; Laufek et al., 2006[Laufek, F., Skála, R., Haloda, J. & Cisařová, I. (2006). J. Czech. Geol. Soc. 51, 271-275.]; Mills et al., 2012[Mills, S. J., Ferraris, G., Kampf, A. R. & Favreau, G. (2012). Am. Mineral. 97, 415-418.]). The mimetite structure was refined by Calos et al. (1990[Calos, N. J., Kennard, C. H. L. & Davis, R. L. (1990). Z. Kristallogr. 191, 125-129.]) and that of vanadinite by Laufek et al. (2006[Laufek, F., Skála, R., Haloda, J. & Cisařová, I. (2006). J. Czech. Geol. Soc. 51, 271-275.]). The structure of all three Pb apatites, using duplicate samples, was recently refined with ADPs (Okudera, 2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.]).

The general formula for the lead apatite isotypic series is Pb5(BO4)3Cl, Z = 2, space group P63/m, with B = P5+ (pyromorphite), V5+ (vanadinite) and As5+ (mimetite). In these isomorphs, the O atoms occupy special positions, O1 and O2, and a general position, O3. The divalent Pb1 and Pb2 cation sites are at the 4f and 6h positions, respectively. The Cl anion occurs at the 2b position (0,0,0). The Pb1 site is coordinated by nine O atoms of six BO4 tetrahedral groups. The Pb2 site is eight-coordinated by six O and two Cl atoms. The Cl atom is octahedrally coordinated by six Pb2 atoms and each O atom is tetrahedrally coordinated by one B and three Pb atoms (Fig. 1[link]). The Pb2 site is commonly found in an off-centred coordination environment in lead-containing apatites (Rouse et al., 1984[Rouse, R. C., Dunn, P. J. & Peacor, D. R. (1984). Am. Mineral. 69, 920-927.]; Kampf et al., 2006[Kampf, A. R., Steele, I. M. & Jenkins, R. A. (2006). Am. Mineral. 91, 1909-1917.]).

[Figure 1]
Figure 1
Structure of vanadinite (space group P63/m) projected down [001]. The structure contains VO4 tetrahedra (grey) and Pb1O9 polyhedra (orange). The Pb2O6Cl2 polyhedra are not shown. The Cl atoms (blue) are in the 63 channels and form Cl—Pb26 octahedra (blue). The Pb2 sites are shown in red and O sites in black. The hexagonal unit-cell edges are outlined.

In the isotypic Pb apatites, the main difference is in the effective ionic radius (IR) of the B tetrahedral cation (P5+ = 0.170, V5+ = 0.335, As5+ = 0.355 Å and O2− = 1.380 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. 32, 751-767.]). Based on IR, one may expect the unit-cell parameters for the As and V apatites to be nearly equal, but their c parameters are quite different. The reason for this difference is not known. Based on radii sum, one may also expect distances close to the following: P—O = 1.550, V—O = 1.735 and As—O = 1.715 Å. However, experimentally, P—O = 1.542 (8), V—O = 1.710 (12) and As—O = 1.664 (16) Å (Okudera, 2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.]), so there appears to be significant differences for both the V—O and As—O distances. Based on IR, the unit-cell volume for vanadinite is expected to be slightly smaller than mimetite, but the opposite is found. Moreover, significant differences occur for the c unit-cell parameter between mimetite and vanadinite although the IR for As and V are nearly the same. The reasons for these discrepancies are not clear and will be examined in this study.

There are some experimental difficulties associated with structure refinements of lead apatites, despite the availability of high-quality museum specimens. X-ray scattering is dominated by highly absorbing Pb atoms among lighter atoms and the interaction of V atoms with neutrons is negligible. As a result, published crystal structure refinements for all Pb apatites contain errors for positional coordinates in the third decimal place for the light O atoms, so errors occur in the second decimal place for bond distances (e.g. Flis et al., 2010[Flis, J., Borkiewicz, O., Bajda, T., Manecki, M. & Klasa, J. (2010). J. Synchrotron Rad. 17, 207-214.]; Okudera, 2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.]). Therefore, despite successful structure refinements for Pb apatites, the errors are still large. However, synchrotron high-resolution powder X-ray diffraction (HRPXRD) data were successfully used to refine the crystal structures of Pb-containing materials such as PbCO3 and PbSO4 (Antao & Hassan, 2009[Antao, S. M. & Hassan, I. (2009). Can. Mineral. 47, 1245-1255.]; Antao, 2012[Antao, S. M. (2012). Am. Mineral. 97, 661-665.]).

The study examines the crystal structure of Pb apatites (pyromorphite, mimetite and vanadinite) using Rietveld structure refinements and HRPXRD data. The reason for the unusual unit-cell parameter for mimetite is explained based on Cl—Cl repulsion arising from interactions of the O1 atom with the 6s2 lone-pair electrons on the Pb2+ cation. Structural variations among Pb apatites are discussed.

2. Experimental methods

2.1. Sample locality and description

Experiments were performed on samples of pyromorphite from (1) the Daoping Mine, Gunagxi Province, China, and (2) Ontario, Canada; (3) mimetite from the Pingtouling Mine, Guangdong, China, and (4) vanadinite from Mibladén, Morocco. All samples contain euhedral crystals with well developed faces. The colours of the crystals are (1) pale green, (2) yellow, (3) orange and (4) red. Except for the Ontario sample, single-crystal structure refinements of samples from localities (1), (3) and (4) above were carried out (e.g. Laufek et al., 2006[Laufek, F., Skála, R., Haloda, J. & Cisařová, I. (2006). J. Czech. Geol. Soc. 51, 271-275.]; Okudera, 2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.]). The pyromorphite sample used by Dai & Hughes (1989[Dai, Y. & Hughes, J. M. (1989). Can. Mineral. 27, 189-192.]) was from Globe, Arizona, USA, and their vanadinite was from New South Wales, Australia. A mimetite sample from Durango, Mexico, was studied by Dai et al. (1991[Dai, Y., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369-376.]). Moreover, previous results from single-crystal and Rietvield structure refinements are compared in this study.

2.2. Electron-probe micro-analyzer

Quantitative chemical compositions and backscattered electron images were collected with a Jeol JXA-8200 WD-ED electron-probe micro-analyzer (EPMA). The Jeol operating program on a Solaris platform was used for ZAF correction and data reduction. The wavelength-dispersive operating conditions were 15 kV accelerating voltage, 20 nA beam current and 5 µm beam diameter. Kα radiation and the following standards were used: gallium arsenide (As), vanadium oxide (V), pyromorphite (Pb, P), scapolite (Cl), hornblende (Fe, Na, Ca), cobalt (Co), nickel oxide (Ni), zinc oxide (Zn), barite (Ba) and strontianite (Sr). The EPMA results are listed in Table 1[link]. The chemical composition of the Pb apatite samples are close to their ideal chemical formulae, which were used in previous structure refinements (see, for example, Okudera, 2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.]).

Table 1
Chemical analyses for Pb apatite samples with formula M5(BO4)3Cl

Wt% sample (1) Pyromorphite (China) (2) Pyromorphite (Ontario) (3) Mimetite (China) (4) Vanadinite (Morocco)
PbO wt% 82.14 81.56 74.24 78.43
FeO 0.01 0.01 0.00 0.01
CoO 0.01 0.01 0.03 0.00
NiO 0.00 0.03 0.01 0.02
BaO 0.49 0.90 0.17 0.13
ZnO 0.02 0.00 0.05 0.03
CaO 0.08 0.36 0.01 0.01
Na2O 0.00 0.01 0.01 0.02
SrO 0.00 0.00 0.01 0.00
P2O5 15.87 16.09 0.06 0.46
As2O5 0.00 0.00 23.01 0.00
V2O5 0.03 0.04 0.03 18.72
Cl 2.65 2.68 2.38 2.51
  101.30 101.69 100.01 100.34
—O≡Cl 0.60 0.60 0.54 0.57
Total 100.70 101.09 99.47 99.77
 
  Numbers of ions on the basis of 16 (M + B)
Pb cations 9.863 9.656 9.912 9.934
Fe 0.002 0.002 0.000 0.004
Co 0.005 0.003 0.012 0.001
Ni 0.001 0.009 0.002 0.008
Ba 0.085 0.155 0.033 0.024
Zn 0.005 0.000 0.020 0.009
Ca 0.039 0.170 0.006 0.002
Na 0.000 0.005 0.012 0.018
Sr 0.000 0.000 0.003 0.000
ΣM 10.000 10.000 10.000 10.000
 
P 5.991 5.989 0.025 0.180
As 0.000 0.000 5.966 0.000
V 0.009 0.011 0.009 5.820
ΣB 6.000 6.000 6.000 6.000
 
Cl 2.000 2.000 2.000 2.000

2.3. Synchrotron high-resolution powder X-ray diffraction

The samples were studied using HRPXRD that was performed at beamline 11-BM, Advanced Photon Source, Argonne National Laboratory, USA. A small fragment (about 2 mm in diameter) of the sample was crushed to a fine powder using an agate mortar and pestle. The crushed sample was loaded into a Kapton capillary (0.8 mm internal diameter) and rotated during the experiment at a rate of 90 rotations per second. The data were collected at 23°C to a maximum 2θ of about 50° with a step size of 0.001° and a step time of 0.1 s per step. The HRPXRD traces were collected with a unique multi-analyzer detection assembly consisting of 12 independent silicon (111) crystal analyzers and LaCl3 scintillation detectors that reduce the angular range to be scanned and allow rapid acquisition of data. A silicon (NIST 640c) and alumina (NIST 676a) standard (ratio of [{1\over3}{\rm{Si}}:{2\over3}{\rm{Al}}_2{\rm{O}}_3] by weight) was used to calibrate the instrument and refine the monochromatic wavelength used in the experiment (see Table 2[link]). Additional details of the experimental setup are given elsewhere (Antao et al., 2008[Antao, S. M., Hassan, I., Wang, J., Lee, P. L. & Toby, B. H. (2008). Can. Mineral. 46, 1501-1509.]; Lee et al., 2008[Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). J. Synchrotron Rad. 15, 427-432.]; Wang et al., 2008[Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. & Beno, M. A. (2008). Rev. Sci. Instrum. 79, 085105.]). Similar experiments were successfully used to examine other minerals (e.g. Antao et al., 2002[Antao, S. M., Duane, M. J. & Hassan, I. (2002). Can. Mineral. 40, 1403-1409.]; Antao & Hassan, 2002[Antao, S. M. & Hassan, I. (2002). Can. Mineral. 40, 163-172.]; Ehm et al., 2007[Ehm, L., Antao, S. M., Chen, J. H., Locke, D. R., Marc Michel, F., David Martin, C., Yu, T., Parise, J. B., Antao, S. M., Lee, P. L., Chupas, P. J., Shastri, S. D. & Guo, Q. (2007). Powder Diffr. 22, 108-112.]; Skinner et al., 2012[Skinner, L. B., Benmore, C. J., Antao, S. M., Soignard, E., Amin, S. A., Bychkov, E., Rissi, E., Parise, J. B. & Yarger, J. L. (2012). J. Phys. Chem. C, 116, 2212-2217.]).

Table 2
HRPXRD data and Rietveld refinement statistical indicators

  (1) Pyromorphite (China) (2) Pyromorphite (Ontario) (3) Mimetite (China) (4) Vanadinite (Morocco) (4) − (3)
a (Å) 9.96350 (3) 9.99496 (3) 10.24824 (3) 10.32465 (3) 0.07641 (4)
c (Å) 7.32427 (1) 7.33997 (2) 7.45340 (2) 7.34508 (2) −0.10832 (3)
V3) 629.678 (3) 635.019 (3) 677.927 (3) 678.075 (3) 0.148 (4)
Reduced χ2 1.747 1.548 1.863 1.002  
R(F2) 0.0774 0.0752 0.0768 0.0541  
Data points 42502 37399 37528 38000  
Nobs 1563 1136 1232 1236  
λ (Å) 0.41323 (2) 0.41330 (2) 0.41421 (2) 0.41397 (2)  
R(F2) = overall R structure factor based on observed and calculated structure amplitudes = [∑(Fo2Fc2)/∑(Fo2)]1/2. 2θ range = 2.5–40.0°. Sample (1) is more crystalline than sample (2), so it has a much larger Nobs value, and the errors for the structural parameters are much smaller.

2.4. Rietveld structure refinements

The HRPXRD traces were modelled using the Rietveld method (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]), as implemented in the GSAS program (Larson & Von Dreele, 2000[Larson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]), and using the EXPGUI interface (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). Scattering curves for neutral atoms were used in all refinements. For the structure of Pb apatite, the starting atom coordinates, unit-cell parameters and space group P63/m were taken from Hughes et al. (1989[Hughes, J. M., Cameron, M. & Crowley, K. D. (1989). Am. Mineral. 74, 870-876.]).

In the GSAS program, the reflection-peak profiles were fitted using a type-3 profile (pseudo-Voigt; Caglioti et al., 1958[Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Instrum. 3, 223-228.]; Thompson et al., 1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]). The background was modelled with a Chebyschev polynomial (eight terms). A full-matrix least-squares refinement varying a scale factor, unit-cell parameters, zero shift, atom coordinates and isotropic displacement parameters converged rapidly. The number of data points and the number of observed reflections in the HRPXRD trace for each sample are given in Table 2[link]. Synchrotron powder X-ray diffraction patterns are shown in Fig. 2[link]. Table 2[link] contains the Rietveld refinement statistical indicators and unit-cell parameters. The atom coordinates are given in Table 3[link]. Some site occupancy factors were refined and those for the O atoms were fixed (Table 3[link]). Selected bond distances and angles are given in Table 4[link].

Table 3
Atom coordinates, isotropic displacement parameters (U × 102 Å2) and site occupancy factors (sofs)

Site   (1) Pyromorphite (China) (2) Pyromorphite (Ontario) (3) Mimetite (China) (4) Vanadinite (Morocco)
Pb1 x 1/3 1/3 1/3 1/3
  y 2/3 2/3 2/3 2/3
  z 0.0039 (2) 0.0051 (2) 0.0066 (2) 0.0071 (1)
  U 1.04 (1) 2.40 (2) 1.31 (2) 1.37 (1)
  sof 0.948 (5) 1.0 1.02 (1) 0.948 (9)
Pb2 x 0.25449 (7) 0.25475 (8) 0.25099 (6) 0.25512 (5)
  y 0.0055 (1) 0.0059 (1) 0.00500 (9) 0.01238 (7)
  U 1.04 (1) 2.34 (1) 1.42 (1) 1.43 (1)
  sof 0.959 (5) 1.0 1.02 (1) 0.946 (9)
B x 0.4093 (4) 0.4099 (5) 0.4081 (1) 0.4096 (2)
  y 0.3773 (4) 0.3803 (5) 0.3838 (1) 0.3838 (2)
  U 0.77 (9) 1.5 (1) 0.70 (4) 0.46 (8)
  sof 1.0 1.0 1.04 (1) 0.94 (1)
O1 x 0.3426 (9) 0.3450 (9) 0.3207 (8) 0.3317 (9)
  y 0.4905 (8) 0.4919 (9) 0.4927 (8) 0.4979 (8)
  U 1.0 (2) 2.4 (3) 1.0 (3) 2.7 (3)
O2 x 0.5898 (9) 0.5886 (9) 0.6007 (9) 0.5984 (8)
  y 0.4778 (9) 0.4741 (9) 0.4873 (8) 0.4842 (8)
  U 1.1 (3) 1.7 (3) 2.0 (3) 1.6 (3)
O3 x 0.3639 (6) 0.3598 (8) 0.3591 (6) 0.3561 (6)
  y 0.2755 (6) 0.2698 (8) 0.2730 (6) 0.2686 (6)
  z 0.0784 (6) 0.0813 (8) 0.0649 (8) 0.0636 (7)
  U 1.6 (2) 3.0 (2) 3.9 (3) 2.1 (2)
Cl U 1.2 (1) 1.4 (1) 1.4 (1) 1.2 (1)
  sof 0.95 (1) 1.0 0.99 (1) 0.94 (1)
†Cl is at (0, 0, 0) and z = 1/4 for Pb2, B, O1 and O2. B = P (pyromorphite), As (mimetite) and V (vanadinite). The sofs for the O atoms were fixed at 1. The sofs for the other atoms were either refined or fixed at 1.0.

Table 4
Pb apatites: selected bond distances (Å) and angles (°)

BVS was calculated with the program VaList (A. S. Wills), which is available from http://www.ccp14.ac.uk.

  (1) Pyromorphite (China) (2) Pyromorphite (Ontario) (3) Mimetite (China) (4) Vanadinite (Morocco) (4) − (3)
Pb1—O1 × 3 2.550 (6) 2.550 (7) 2.501 (5) 2.488 (5) −0.013 (7)
Pb1—O2 × 3 2.687 (6) 2.682 (8) 2.769 (6) 2.754 (6) −0.015 (8)
Pb1—O3 × 3 2.839 (5) 2.875 (7) 2.942 (6) 2.976 (5) 0.034 (8)
〈Pb1—O〉 [9] 2.692 (1) 2.702 (1) 2.737 (1) 2.739 (1) 0.002 (1)
BVS 2.09 2.06 1.99 2.01  
Pb2—Cl × 2 3.1058 (4) 3.1150 (5) 3.1558 (3) 3.1606 (4) 0.005 (4)
Pb2—O1 3.078 (8) 3.112 (11) 3.016 (7) 3.194 (8) 0.178 (11)
Pb2—O2 2.326 (8) 2.362 (10) 2.334 (8) 2.349 (7) 0.015 (11)
Pb2—O3 × 2 2.659 (5) 2.612 (7) 2.763 (6) 2.684 (5) −0.079 (8)
Pb2—O3′ × 2 2.627 (5) 2.646 (6) 2.577 (6) 2.556 (5) −0.021 (8)
〈Pb2—O〉 [6] 2.663 (3) 2.665 (3) 2.672 (3) 2.671 (2) −0.001 (4)
〈Pb2—O,Cl〉 [8] 2.773 (2) 2.778 (3) 2.793 (2) 2.793 (2) 0.000 (3)
BVS 2.00 1.98 1.92 1.96  
B—O1 1.569 (9) 1.545 (13) 1.745 (7) 1.727 (8) −0.018 (11)
B—O2 1.560 (8) 1.547 (10) 1.711 (8) 1.690 (7) −0.021 (11)
B—O3 × 2 1.534 (5) 1.565 (7) 1.695 (6) 1.714 (5) 0.019 (8)
B—O〉 [4] 1.549 (3) 1.556 (5) 1.712 (3) 1.711 (3) 0.000 (5)
BVS 4.82 4.73 4.67 5.14  
O1—B—O2 107.8 (5) 109.7 (7) 113.9 (4) 111.7 (4) −2.2 (6)
O1—B—O3 × 2 112.6 (3) 114.1 (4) 110.7 (2) 112.0 (2) 1.3 (3)
O2—B—O3 × 2 106.8 (3) 107.0 (4) 106.2 (2) 107.4 (2) 1.2 (3)
O3—B—O3′ 110.0 (4) 104.5 (6) 108.9 (4) 106.1 (4) −2.8 (6)
〈O—B—O〉 [6] 109.42 109.40 109.43 109.43 0.0
BVS for Cl 1.16 1.13 1.02 1.01  
Cl—Cl (= c/2) 3.66213 (1) 3.66999 (1) 3.72670 (1) 3.67254 (1) −0.054
[Figure 2]
Figure 2
Comparison of HRPXRD traces at 23°C for Pb apatites: (a) pyro­morphite, (b) mimetite and (c) vanadinite together with the calculated (continuous line) and observed (crosses) profiles. The difference curve (IobsIcalc) with the same intensity scale is shown at the bottom of the trace. Short vertical lines indicate allowed reflection positions. The intensities for the trace and difference curve that are above 20° 2θ are multiplied by 5. The intensity scale for mimetite is ten times those for the other samples.

3. Results and discussion

3.1. Structure of Pb apatites

This study reports Rietveld structure refinements of Pb apatite samples from some classical localities. Other researchers have also used samples from these localities, so the results from several studies can be compared. Pyromorphite and mimetite samples from China and vanadinite from Mibladén, Morocco, were also examined by other researchers (Laufek et al., 2006[Laufek, F., Skála, R., Haloda, J. & Cisařová, I. (2006). J. Czech. Geol. Soc. 51, 271-275.]; Okudera, 2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.]). These studies reported the ideal chemical formulae Pb5(BO4)3Cl based on EPMA results and the ideal formulae were used in their structure refinements. In this study, some site occupancy factors (sofs) were refined (Table 3[link]). Our sofs agree well with our EPMA results.

The crystal structure of Pb apatite is shown in Fig. 1[link]. The Pb1 site is surrounded by nine O atoms, and the Pb2 site is surrounded by six O atoms and two Cl atoms. The B site is surrounded by four O atoms. The bond distances and angles of the two pyromorphite samples are in good agreement (Table 4[link]). The distortions in the BO4 tetrahedra are similar to each other.

The structure of Pb apatite isotypes is similar to those previously reported. The minerals crystallize with the chlorapatite structure, space group P63/m, and the Cl atom occurs at the 2b position with no evidence of site splitting. The Pb2 site is commonly found in an off-centric coordination environment (Rouse et al., 1984[Rouse, R. C., Dunn, P. J. & Peacor, D. R. (1984). Am. Mineral. 69, 920-927.]; Kampf et al., 2006[Kampf, A. R., Steele, I. M. & Jenkins, R. A. (2006). Am. Mineral. 91, 1909-1917.]).

The bond-valence sums (BVS) for the Pb2+ and B5+ cations are close to their formal valences (Table 4[link]). The BVS value for Cl is close to 1.0 valence unit (v.u.) for mimetite and vanadinite, but it is 1.16 v.u. for pyromorphite (Table 4[link]). BVS values higher than 1.25 v.u. for Cl were calculated for phospho­hedyphane, Ca2Pb3(PO4)3Cl (Kampf et al., 2006[Kampf, A. R., Steele, I. M. & Jenkins, R. A. (2006). Am. Mineral. 91, 1909-1917.]), Sr2Ba3(AsO4)3Cl (Đordević et al., 2008[Đordević, T., Šutović, S., Stojanović, J. & Karanović, Lj. (2008). Acta Cryst. C64, i82-i86.]), synthetic alforsite, Ba5(PO4)3Cl (Hata et al., 1979[Hata, M., Marumo, F., Iwai, S. & Aoki, H. (1979). Acta Cryst. B35, 2382-2384.]), and lower than 1.1 v.u. in Sr5(VO4)3Cl (Beck et al., 2006[Beck, H. P., Douiheche, M., Haberkorn, R. & Kohlmann, H. (2006). Solid State Sci. 8, 64-70.]).

3.2. Variations among unit-cell parameters in Pb apatites

The relationships between unit-cell parameters are shown in Fig. 3[link]. Data from the literature are included for comparison (see Fig. 3[link] and its caption for references). The unit-cell parameters fall along two straight lines representing the P–As and As–V apatite series. The volumes for mimetite and vanadinite are almost equal. However, vanadinite has the largest a unit-cell parameter (Fig. 3a[link]). The c parameter for mimetite is significantly larger than that for vanadinite, which is nearly the same as that for pyromorphite (Fig. 3b[link]). The c/a ratio for mimetite is larger than that for vanadinite (Fig. 3c[link]). Pyromorphite and vanadinite have similar values for the c parameter, but that for mimetite is the largest (Fig. 3d[link]). All unit-cell data from the literature seem reasonable, including single-crystal data, so there appears to be no difficulties in obtaining good unit-cell parameters.

[Figure 3]
Figure 3
Unusual relationships among unit-cell parameters. (a) Non-linear relations occur between a and V. V is nearly the same for mimetite and vanadinite, but the latter has the largest a parameter. (b) The c parameter for mimetite is larger than that for vanadinite, which is nearly the same as that for pyromorphite. (c) Pyromorphite has the largest c/a parameter. (d) Pyromorphite and vanadinite have a similar c parameter, but that for mimetite is the largest. Our data for the pyromorphite sample from China have the smallest V, which is different from other studies for samples from this locality. Unit-cell data shown as yellow triangles are from the literature (Dai & Hughes, 1989[Dai, Y. & Hughes, J. M. (1989). Can. Mineral. 27, 189-192.]; Calos et al., 1990[Calos, N. J., Kennard, C. H. L. & Davis, R. L. (1990). Z. Kristallogr. 191, 125-129.]; Dai et al., 1991[Dai, Y., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369-376.]; Hashimoto & Matsumoto, 1998[Hashimoto, H. & Matsumoto, T. (1998). Z. Kristallogr. 213, 585-590.]; Laufek et al., 2006[Laufek, F., Skála, R., Haloda, J. & Cisařová, I. (2006). J. Czech. Geol. Soc. 51, 271-275.]; Sejkora et al., 2011[Sejkora, J., Plášil, J., Císařová, I., Škoda, R., Hloušek, J., Veselovský, F. & Jebavá, I. (2011). J. Geosci. 56, 257-271.]; Mills et al., 2012[Mills, S. J., Ferraris, G., Kampf, A. R. & Favreau, G. (2012). Am. Mineral. 97, 415-418.]).

The unit-cell parameters occur in three groups, which may indicate limited solid solutions in nature. However, this observation may arise from the small number of natural samples examined. The unit-cell parameters of the synthetic samples show complete solid solutions between the pyromorphite–mimetite series (Flis et al., 2010[Flis, J., Borkiewicz, O., Bajda, T., Manecki, M. & Klasa, J. (2010). J. Synchrotron Rad. 17, 207-214.]). Although complete solid solutions may be possible along the mimetite–vanadinite and pyromorphite–vanadinite joins, unit-cell data are needed for synthetic samples along these joins. In nature, solid solutions occur to a very limited extent, so samples from different localities have similar unit-cell parameters that cluster in three groups. Why is the c parameter between mimetite and vanadinite so different (0.108 Å), whereas the effective ionic radii difference between As (0.335 Å) and V (0.355 Å) is quite small (Δc = 0.020 Å)? In contrast, the c parameter between pyromorphite and mimetite differ by a similar amount (Δr = 0.113 Å), but the effective ionic radii difference between P (0.170 Å) and As (0.335 Å) is quite large (0.165 Å). The answer to this question is based on the significant differences between mimetite and vanadinite and is related to the Cl—Cl and Pb2—O1 distances, as explained below.

Our two pyromorphite samples have different unit-cell parameters. The sample from Ontario has unit-cell data that coincide with that of the synthetic end-member, but the other sample from China has the smallest V, which indicates subtle chemical differences between the two samples (Table 1[link]).

3.3. Structural variations in Pb apatites

Linear variations of selected distances with the unit-cell volume, V, are shown in Fig. 4[link]. The average 〈Pb1—O〉 [9] distances increase linearly with V (Fig. 4a[link]). The Pb2—Cl distance also increases linearly with V (Fig. 4b[link]). The Cl—Cl distance (= c/2) increases linearly with the c parameter, as expected (not shown). Both the average 〈Pb2—O〉 [6] and 〈Pb2—O6,Cl2〉 [8] distances increase linearly with V [Figs. 4(c) and 4(d)[link]]. The average 〈B—O〉 distance also increases linearly with V (Fig. 4e[link]). Both mimetite and vanadinite have similar structural parameters because the radii for As and V are nearly the same (Fig. 4f[link]).

[Figure 4]
Figure 4
Linear variations of structural parameters. (a) The average 〈Pb1—O〉 [9] distances increase linearly with V. (b) The Pb2—Cl distance increases linearly with V. The (c) average 〈Pb2—O〉 [6] and (d) 〈Pb2—O6,Cl2〉 [8] distances increase linearly with V. (e) The average 〈B—O〉 distance and (f) effective ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. 32, 751-767.]) increase linearly with V. Mimetite and vanadinite have similar structural parameters. Some discrepancies are observed between the present data and some of those from the literature, especially for the 〈B—O〉 distance from Hashimoto & Matsumoto (1998[Hashimoto, H. & Matsumoto, T. (1998). Z. Kristallogr. 213, 585-590.]) and average 〈Pb2—O〉 [6] and 〈Pb2—O,Cl〉 [8] distances from Okudera (2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.]). Structural data shown as yellow triangles are from the literature (Dai & Hughes, 1989[Dai, Y. & Hughes, J. M. (1989). Can. Mineral. 27, 189-192.]; Calos et al., 1990[Calos, N. J., Kennard, C. H. L. & Davis, R. L. (1990). Z. Kristallogr. 191, 125-129.]; Dai et al., 1991[Dai, Y., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369-376.]; Hashimoto & Matsumoto, 1998[Hashimoto, H. & Matsumoto, T. (1998). Z. Kristallogr. 213, 585-590.]; Laufek et al., 2006[Laufek, F., Skála, R., Haloda, J. & Cisařová, I. (2006). J. Czech. Geol. Soc. 51, 271-275.]; Sejkora et al., 2011[Sejkora, J., Plášil, J., Císařová, I., Škoda, R., Hloušek, J., Veselovský, F. & Jebavá, I. (2011). J. Geosci. 56, 257-271.]; Mills et al., 2012[Mills, S. J., Ferraris, G., Kampf, A. R. & Favreau, G. (2012). Am. Mineral. 97, 415-418.]).

A regular tetrahedron has six equal angles of 109.47°. Across the series, the O—B—O angles do not vary in a systematic manner. However, their average 〈O—B—O〉 [6] angle is close to the regular tetrahedron value (Table 4[link]).

Some discrepancies are clearly observed between the present data and those from the literature (Fig. 4[link]). Okudera (2013[Okudera, H. (2013). Am. Mineral. 98, 1573-1579.]) selected two crystals from each of his three samples and presented six data points (duplicate runs). Chemical analyses of crystals from the same sample are not variable, so the differences observed between his duplicate samples arise only from experimental errors. This is clearly observed for some parameters shown for mimetite and vanadinite [Figs. 4(c) and 4(d)[link]]. Other data from the literature, indicated by triangles, are off the red trend lines for data from this study, especially for pyromorphite [Figs. 4(c) and 4(d)[link]]. For the synthetic samples along the pyromorphite–mimetite join [Figs. 4(a), 4(c) and 4(d)[link]], the structural data fall on black trend lines that are different from the red trend lines of this study.

In Table 4[link], differences between mimetite and vanadinite are shown. The largest difference is between their c unit-cell parameter, Pb2—O1, and Cl—Cl distances. The Pb2—O1 distance is short in mimetite, whereas the Cl—Cl (= c/2) distance is long. The opposite is observed for vanadinite where the Pb2—O1 distance is long and the Cl—Cl distance is short.

The coordination of the Pb2 site in vanadinite is shown together with the distances within the Pb2—O6Cl2 polyhedra (Fig. 5[link]). A large open space exists between the two Cl and O1 oxygen atoms where the 6s2 lone-pair electrons on the Pb2+ cation occurs (Kampf et al., 2006[Kampf, A. R., Steele, I. M. & Jenkins, R. A. (2006). Am. Mineral. 91, 1909-1917.]). As Pb2—O1 becomes shorter, the 6s2 lone-pair electrons move towards the two Cl atoms and cause them to move apart because of Cl—Cl repulsion. The opposite is the case for vanadinite. This feature explains the different and unusual c unit-cell parameters for mimetite and vanadinite, as discussed above.

[Figure 5]
Figure 5
The coordination of the Pb2 site in vanadinite. The distances within the Pb2—O6Cl2 polyhedra are given. The Pb2—O1 distance is shortest in mimetite and the Cl—Cl (= c/2) distance is the longest, whereas the opposite is observed for vanadinite. Between the two Cl and O1 atoms is a large open space where the 6s2 electron lone pair on the Pb2+ cation occurs. As Pb2—O1 becomes shorter, the 6s2 lone-pair electrons move towards the two Cl atoms and cause them to move apart because of repulsion. The opposite is the case for vanadinite. This feature explains the different c unit-cell parameters for mimetite and vanadinite.

From a structural point of view, solid solutions are expected among pyromorphite, mimetite and vanadinite (Figs. 3[link] and 4[link]). However, synthetic samples for the various joins are needed and the structure of such samples needs to be well characterized. An analysis of compositions of natural members of the pyromorphite–mimetite–turneaureite–chlorapatite system suggests the existence of a complete solid solution among pyromorphite, mimetite, hedyphane and phospho­hedyphane [Ca2Pb3(PO4)3Cl]. No stable solid solutions appear to exist between the joins phospho­hedyphane–hedyphane and chlorapatite–turneaureite in natural systems (Kampf et al., 2006[Kampf, A. R., Steele, I. M. & Jenkins, R. A. (2006). Am. Mineral. 91, 1909-1917.]).

Calcian pyromorphite has been identified as the major lead-bearing phase in mine waste soils from the South Pennine orefield, UK (Cotter-Howells et al., 1994[Cotter-Howells, J. D., Champness, P. E., Charnocky, J. M. & Pattrick, R. A. D. (1994). Eur. J. Soil Sci. 45, 393-402.]), and the Charterhouse mine in the Mendip Hills, UK (Cotter-Howells & Caporn, 1996[Cotter-Howells, J. D. & Caporn, S. (1996). Appl. Geochem. 11, 335-342.]). In experiments on the use of apatite amendments to Pb-contaminated soil (including associated grass roots) from a residential area near Oakland, California, USA, Laperche et al. (1997[Laperche, V., Logan, T. J., Gaddam, P. & Traina, S. J. (1997). Environ. Sci. Technol. 31, 2745-2753.]) noted that, when the soils were treated with phosphate rock (containing fluorapatite as the major constituent), all pyromorphite formed contained significant Ca. The apparent stability in natural systems of members of the chlorapatite–pyromorphite series between pyromorphite and phospho­hedyphane, but not between phospho­hedyphane and chlorapatite, may have important implications for the use of apatite to reclaim Pb-contaminated waters and soils.

This study shows that HRPXRD is a powerful technique that can be used to obtain reliable structural parameters on gem-quality crystals that diffract poorly. Moreover, highly penetrating synchrotron X-rays can also be used to study samples that contain strongly absorbing atoms.

Supporting information


Computing details top

Software used to prepare material for publication: PLATON (Spek, 2003).

(pyromor_ch_publ) top
Crystal data top
Cl0.32O4PPb1.59V = 629.68 (1) Å3
Mr = 2614.89Z = 1
Hexagonal, P63/mF(000) = 1097
Hall symbol: -P 6cDx = 6.896 Mg m3
a = 9.96350 (2) ÅSynchrotron radiation
c = 7.32427 (1) ÅT = 296 K
Data collection top
11BM
diffractometer
Detector resolution: 18.4 pixels mm-1
Radiation source: synchrotron, synchrotron
Refinement top
Least-squares matrix: full0 restraints
49498 data points(Δ/σ)max = 0.030
36 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.333330.666670.0039 (2)0.0104 (1)*0.948 (5)
Pb20.25449 (7)0.00550 (10)0.250000.0104 (1)*0.960 (4)
P0.4093 (4)0.3773 (4)0.250000.0077 (9)*
Cl0.000000.000000.000000.0115 (12)*0.947 (9)
O10.3426 (9)0.4905 (8)0.250000.011 (2)*
O20.5897 (9)0.4778 (9)0.250000.011 (2)*
O30.3639 (6)0.2755 (6)0.0784 (6)0.0155 (17)*
Geometric parameters (Å, º) top
Pb1—O12.550 (6)Pb2—O32.659 (5)
Pb1—O2i2.687 (10)Pb2—O2ix2.326 (11)
Pb1—O1ii2.550 (7)Pb2—O3x2.627 (5)
Pb1—O2iii2.687 (7)Pb2—O3xi2.627 (5)
Pb1—O1iv2.550 (9)Pb2—O3xii2.659 (5)
Pb1—O2v2.687 (8)P—O11.570 (10)
Pb1—O3vi2.839 (7)P—O21.560 (10)
Pb1—O3vii2.839 (7)P—O31.534 (5)
Pb1—O3viii2.839 (6)P—O3xii1.534 (5)
O1—Pb1—O2i126.9 (2)O2v—Pb1—O3viii123.3 (2)
O1—Pb1—O1ii75.5 (2)O3vi—Pb1—O3vii115.62 (17)
O1—Pb1—O2iii90.13 (19)O3vi—Pb1—O3viii115.62 (19)
O1—Pb1—O1iv75.5 (3)O3vii—Pb1—O3viii115.6 (2)
O1—Pb1—O2v149.9 (3)O2ix—Pb2—O375.1 (3)
O1—Pb1—O3vi83.6 (2)O3—Pb2—O3x136.69 (18)
O1—Pb1—O3vii146.60 (18)O3—Pb2—O3xi82.08 (18)
O1—Pb1—O3viii74.1 (2)O3—Pb2—O3xii56.41 (14)
O1ii—Pb1—O2i149.9 (3)O2ix—Pb2—O3x83.39 (19)
O2i—Pb1—O2iii77.4 (3)O2ix—Pb2—O3xi83.39 (19)
O1iv—Pb1—O2i90.1 (3)O2ix—Pb2—O3xii75.1 (3)
O2i—Pb1—O2v77.4 (3)O3x—Pb2—O3xi132.6 (2)
O2i—Pb1—O3vi123.3 (2)O3x—Pb2—O3xii82.08 (18)
O2i—Pb1—O3vii66.9 (2)O3xi—Pb2—O3xii136.69 (18)
O2i—Pb1—O3viii53.3 (2)O1—P—O2107.7 (5)
O1ii—Pb1—O2iii126.9 (3)O1—P—O3112.6 (3)
O1ii—Pb1—O1iv75.5 (3)O1—P—O3xii112.6 (3)
O1ii—Pb1—O2v90.1 (2)O2—P—O3106.8 (3)
O1ii—Pb1—O3vi74.1 (2)O2—P—O3xii106.8 (3)
O1ii—Pb1—O3vii83.6 (2)O3—P—O3xii110.0 (3)
O1ii—Pb1—O3viii146.6 (2)Pb1—O1—P132.0 (2)
O1iv—Pb1—O2iii149.9 (2)Pb1—O1—Pb1xiii90.0 (3)
O2iii—Pb1—O2v77.4 (2)Pb1xiii—O1—P132.0 (2)
O2iii—Pb1—O3vi53.3 (2)Pb1xiv—O2—P101.7 (3)
O2iii—Pb1—O3vii123.27 (17)Pb2xv—O2—P130.5 (5)
O2iii—Pb1—O3viii66.9 (2)Pb1vi—O2—P101.7 (3)
O1iv—Pb1—O2v126.9 (3)Pb1xiv—O2—Pb1vi87.6 (3)
O1iv—Pb1—O3vi146.6 (2)Pb2—O3—P96.8 (2)
O1iv—Pb1—O3vii74.1 (2)Pb2—O3—Pb2i114.22 (19)
O1iv—Pb1—O3viii83.6 (2)Pb2i—O3—P140.8 (4)
O2v—Pb1—O3vi66.9 (3)Pb1vi—O3—P96.2 (3)
O2v—Pb1—O3vii53.3 (3)
O3x—Pb2—O3—P17.4 (5)O3—P—O1—Pb145.5 (7)
O3xi—Pb2—O3—P165.5 (4)O1—P—O3—Pb2128.8 (4)
O3xii—Pb2—O3—P1.6 (3)O2—P—O3—Pb2113.1 (4)
O3—Pb2—O3xii—P1.6 (3)O3xii—P—O3—Pb22.4 (5)
O2—P—O1—Pb172.0 (5)O3—P—O3xii—Pb22.4 (5)
Symmetry codes: (i) xy, x, z1/2; (ii) y+1, xy+1, z; (iii) x+1, y+1, z1/2; (iv) x+y, x+1, z; (v) y, x+y+1, z1/2; (vi) x+1, y+1, z; (vii) y, x+y+1, z; (viii) xy, x, z; (ix) y+1, xy, z; (x) y, x+y, z+1/2; (xi) y, x+y, z; (xii) x, y, z+1/2; (xiii) x+y, x+1, z+1/2; (xiv) xy+1, x, z+1/2; (xv) x+y+1, x+1, z.
 
(pyromorphite_publ) top
Crystal data top
ClO12P3Pb5V = 635.02 (1) Å3
Mr = 1356.36Z = 2
Hexagonal, P63/mF(000) = 1136
Hall symbol: -P 6cDx = 7.094 Mg m3
a = 9.99497 (2) ÅSynchrotron radiation
c = 7.33997 (2) ÅT = 296 K
Data collection top
11BM
diffractometer
Detector resolution: 18.4 pixels mm-1
Radiation source: synchrotron, synchrotron
Refinement top
Least-squares matrix: full0 restraints
49497 data points(Δ/σ)max = 0.010
33 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.333330.666670.0052 (2)0.0241 (2)*
Pb20.25474 (8)0.00590 (10)0.250000.0234 (1)*
Cl0.000000.000000.000000.0141 (12)*
P0.4098 (5)0.3802 (5)0.250000.0150 (12)*
O10.3450 (10)0.4920 (10)0.250000.023 (3)*
O20.5890 (10)0.4740 (10)0.250000.017 (3)*
O30.3596 (8)0.2696 (8)0.0814 (8)0.030 (2)*
Geometric parameters (Å, º) top
Pb1—O12.548 (7)Pb2—O32.610 (7)
Pb1—O2i2.680 (10)Pb2—Clix3.1150 (8)
Pb1—O1ii2.548 (9)Pb2—O2x2.363 (12)
Pb1—O2iii2.680 (7)Pb2—O3xi2.646 (7)
Pb1—O1iv2.548 (11)Pb2—O3xii2.646 (7)
Pb1—O2v2.680 (9)Pb2—O3xiii2.610 (7)
Pb1—O3vi2.877 (9)P—O11.547 (11)
Pb1—O3vii2.877 (9)P—O21.552 (12)
Pb1—O3viii2.877 (7)P—O31.565 (7)
Pb2—Cl3.1150 (8)P—O3xiii1.565 (7)
O1—Pb1—O2i127.2 (3)Clix—Pb2—O2x138.34 (14)
O1—Pb1—O1ii75.8 (3)Clix—Pb2—O3xi69.2 (2)
O1—Pb1—O2iii90.5 (2)Clix—Pb2—O3xii136.7 (2)
O1—Pb1—O1iv75.8 (3)Clix—Pb2—O3xiii69.61 (18)
O1—Pb1—O2v150.0 (4)O2x—Pb2—O3xi84.7 (2)
O1—Pb1—O3vi84.2 (3)O2x—Pb2—O3xii84.7 (2)
O1—Pb1—O3vii147.2 (2)O2x—Pb2—O3xiii75.2 (3)
O1—Pb1—O3viii74.3 (2)O3xi—Pb2—O3xii133.7 (3)
O1ii—Pb1—O2i150.0 (4)O3xi—Pb2—O3xiii82.1 (2)
O2i—Pb1—O2iii76.5 (3)O3xii—Pb2—O3xiii137.3 (2)
O1iv—Pb1—O2i90.5 (3)Pb2—Cl—Pb2i91.18 (2)
O2i—Pb1—O2v76.5 (3)Pb2—Cl—Pb2xiv88.82 (2)
O2i—Pb1—O3vi122.3 (3)Pb2—Cl—Pb2xv180.00
O2i—Pb1—O3vii66.3 (3)Pb2—Cl—Pb2xvi88.82 (2)
O2i—Pb1—O3viii53.5 (2)Pb2—Cl—Pb2xvii91.18 (2)
O1ii—Pb1—O2iii127.2 (3)Pb2i—Cl—Pb2xiv91.18 (2)
O1ii—Pb1—O1iv75.8 (3)Pb2i—Cl—Pb2xv88.82 (2)
O1ii—Pb1—O2v90.5 (3)Pb2i—Cl—Pb2xvi180.00
O1ii—Pb1—O3vi74.3 (3)Pb2i—Cl—Pb2xvii88.82 (2)
O1ii—Pb1—O3vii84.2 (3)Pb2xiv—Cl—Pb2xv91.18 (2)
O1ii—Pb1—O3viii147.2 (2)Pb2xiv—Cl—Pb2xvi88.82 (2)
O1iv—Pb1—O2iii150.0 (3)Pb2xiv—Cl—Pb2xvii180.00
O2iii—Pb1—O2v76.5 (3)Pb2xv—Cl—Pb2xvi91.18 (2)
O2iii—Pb1—O3vi53.5 (3)Pb2xv—Cl—Pb2xvii88.82 (2)
O2iii—Pb1—O3vii122.3 (2)Pb2xvi—Cl—Pb2xvii91.18 (2)
O2iii—Pb1—O3viii66.3 (3)O1—P—O2109.7 (6)
O1iv—Pb1—O2v127.2 (3)O1—P—O3114.1 (4)
O1iv—Pb1—O3vi147.2 (3)O1—P—O3xiii114.1 (4)
O1iv—Pb1—O3vii74.3 (3)O2—P—O3107.0 (4)
O1iv—Pb1—O3viii84.2 (3)O2—P—O3xiii107.0 (4)
O2v—Pb1—O3vi66.3 (3)O3—P—O3xiii104.5 (4)
O2v—Pb1—O3vii53.5 (3)Pb1—O1—P132.4 (3)
O2v—Pb1—O3viii122.3 (2)Pb1—O1—Pb1xviii89.7 (3)
O3vi—Pb1—O3vii115.3 (2)Pb1xviii—O1—P132.4 (3)
O3vi—Pb1—O3viii115.3 (3)Pb1xix—O2—P103.5 (3)
O3vii—Pb1—O3viii115.3 (3)Pb2xx—O2—P128.0 (6)
Cl—Pb2—O369.61 (18)Pb1vi—O2—P103.5 (3)
Cl—Pb2—Clix72.18 (2)Pb1xix—O2—Pb2xx112.9 (3)
Cl—Pb2—O2x138.34 (14)Pb1xix—O2—Pb1vi88.7 (3)
Cl—Pb2—O3xi136.7 (2)Pb1vi—O2—Pb2xx112.9 (3)
Cl—Pb2—O3xii69.2 (2)Pb2—O3—P99.4 (3)
Cl—Pb2—O3xiii102.13 (18)Pb2—O3—Pb2i115.7 (3)
Clix—Pb2—O3102.13 (18)Pb1vi—O3—Pb2100.0 (3)
O2x—Pb2—O375.2 (3)Pb2i—O3—P138.1 (4)
O3—Pb2—O3xi137.3 (2)Pb1vi—O3—P95.1 (4)
O3—Pb2—O3xii82.1 (2)Pb1vi—O3—Pb2i100.3 (2)
O3—Pb2—O3xiii56.60 (19)
Cl—Pb2—O3—P123.2 (5)O3—P—O1—Pb147.3 (9)
O3xi—Pb2—O3—P14.8 (7)O1—P—O3—Pb2128.5 (4)
O3xii—Pb2—O3—P166.1 (5)O2—P—O3—Pb2109.9 (4)
O3xiii—Pb2—O3—P2.3 (4)O3xiii—P—O3—Pb23.3 (6)
O3—Pb2—O3xiii—P2.3 (4)O3—P—O3xiii—Pb23.3 (6)
O2—P—O1—Pb172.7 (6)
Symmetry codes: (i) xy, x, z1/2; (ii) y+1, xy+1, z; (iii) x+1, y+1, z1/2; (iv) x+y, x+1, z; (v) y, x+y+1, z1/2; (vi) x+1, y+1, z; (vii) y, x+y+1, z; (viii) xy, x, z; (ix) xy, x, z+1/2; (x) y+1, xy, z; (xi) y, x+y, z+1/2; (xii) y, x+y, z; (xiii) x, y, z+1/2; (xiv) y, xy, z; (xv) x, y, z1/2; (xvi) x+y, x, z; (xvii) y, x+y, z1/2; (xviii) x+y, x+1, z+1/2; (xix) xy+1, x, z+1/2; (xx) x+y+1, x+1, z.
 
(2profs_mimetite-chin_publ) top
Crystal data top
As3ClO12Pb5V = 677.93 (1) Å3
Mr = 1488.21Z = 2
Hexagonal, P63/mF(000) = 1244
Hall symbol: -P 6cDx = 7.291 Mg m3
a = 10.24823 (2) ÅSynchrotron radiation
c = 7.45339 (2) ÅT = 296 K
Data collection top
11BM
diffractometer
Detector resolution: 18.4 pixels mm-1
Radiation source: synchrotron, synchrotron
Refinement top
Least-squares matrix: full0 restraints
49497 data points(Δ/σ)max = 0.220
35 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.333330.666670.5064 (2)0.0139 (1)*
Pb20.00500 (9)0.25099 (6)0.250000.0139 (1)*
As0.38380 (10)0.40810 (10)0.250000.0047 (3)*
Cl0.000000.000000.000000.0141 (10)*
O10.4932 (8)0.3226 (8)0.250000.013 (2)*
O20.4853 (8)0.5986 (9)0.250000.022 (2)*
O30.2735 (6)0.3588 (6)0.0666 (7)0.042 (2)*
Geometric parameters (Å, º) top
Pb1—As3.5088 (12)Pb2—Cl3.1558 (5)
Pb1—O22.766 (7)Pb2—O32.761 (6)
Pb1—O1i2.505 (6)Pb2—Cli3.1558 (5)
Pb1—Asii3.5088 (13)Pb2—O3i2.587 (6)
Pb1—O2ii2.766 (8)Pb2—O1viii3.031 (10)
Pb1—O1iii2.505 (6)Pb2—O2iv2.353 (7)
Pb1—Asiv3.5088 (15)Pb2—O3vii2.761 (6)
Pb1—O2iv2.766 (8)Pb2—O3ix2.587 (6)
Pb1—O1v2.505 (7)As—O11.734 (9)
Pb1—O3vi2.948 (9)As—O21.692 (8)
Pb1—O3vii2.948 (6)As—O31.682 (6)
Pb2—As3.3782 (14)As—O3vii1.682 (6)
As—Pb1—O228.24 (17)O2iv—Pb2—O374.8 (3)
As—Pb1—O1i98.98 (18)O3—Pb2—O3vii59.36 (17)
As—Pb1—Asii93.16 (3)O3—Pb2—O3ix80.9 (2)
As—Pb1—O2ii99.62 (17)Cli—Pb2—O3i70.93 (15)
As—Pb1—O1iii93.36 (16)Cli—Pb2—O1viii102.36 (15)
As—Pb1—Asiv93.16 (4)Cli—Pb2—O2iv137.93 (15)
As—Pb1—O2iv65.5 (2)Cli—Pb2—O3vii68.93 (11)
As—Pb1—O1v165.88 (18)Cli—Pb2—O3ix138.64 (12)
As—Pb1—O3vi121.64 (11)O1viii—Pb2—O3i68.11 (18)
As—Pb1—O3vii28.55 (11)O2iv—Pb2—O3i83.22 (17)
O1i—Pb1—O2125.5 (3)O3i—Pb2—O3vii80.9 (2)
Asii—Pb1—O265.48 (16)O3i—Pb2—O3ix131.6 (3)
O2—Pb1—O2ii77.5 (2)O1viii—Pb2—O2iv97.7 (4)
O1iii—Pb1—O292.0 (2)O1viii—Pb2—O3vii148.86 (13)
Asiv—Pb1—O299.62 (15)O1viii—Pb2—O3ix68.11 (18)
O2—Pb1—O2iv77.5 (3)O2iv—Pb2—O3vii74.8 (3)
O1v—Pb1—O2152.4 (3)O2iv—Pb2—O3ix83.22 (17)
O2—Pb1—O3vi125.29 (18)O3vii—Pb2—O3ix138.2 (2)
O2—Pb1—O3vii56.3 (2)Pb1—As—Pb277.98 (2)
Asii—Pb1—O1i165.88 (13)Pb1—As—O1139.31 (14)
O1i—Pb1—O2ii152.4 (3)Pb1—As—O250.7 (2)
O1i—Pb1—O1iii73.3 (3)Pb1—As—O3109.8 (2)
Asiv—Pb1—O1i93.4 (2)Pb1—As—Pb1vi66.00 (3)
O1i—Pb1—O2iv92.0 (2)Pb1—As—O3vii56.88 (19)
O1i—Pb1—O1v73.3 (2)Pb2—As—O1129.7 (3)
O1i—Pb1—O3vi86.8 (3)Pb2—As—O2116.6 (3)
O1i—Pb1—O3vii70.5 (2)Pb2—As—O354.4 (2)
Asii—Pb1—O2ii28.2 (2)Pb1vi—As—Pb277.98 (2)
Asii—Pb1—O1iii98.98 (16)Pb2—As—O3vii54.4 (2)
Asii—Pb1—Asiv93.16 (4)O1—As—O2113.8 (4)
Asii—Pb1—O2iv99.62 (13)O1—As—O3110.8 (2)
Asii—Pb1—O1v93.36 (19)Pb1vi—As—O1139.31 (14)
Asii—Pb1—O3vi93.00 (11)O1—As—O3vii110.8 (2)
Asii—Pb1—O3vii121.64 (12)O2—As—O3106.2 (3)
O1iii—Pb1—O2ii125.5 (3)Pb1vi—As—O250.7 (2)
Asiv—Pb1—O2ii65.5 (2)O2—As—O3vii106.2 (3)
O2ii—Pb1—O2iv77.5 (2)Pb1vi—As—O356.88 (19)
O1v—Pb1—O2ii92.0 (2)O3—As—O3vii108.7 (3)
O2ii—Pb1—O3vi66.1 (3)Pb1vi—As—O3vii109.8 (2)
O2ii—Pb1—O3vii125.29 (19)Pb2—Cl—Pb2x91.32 (2)
Asiv—Pb1—O1iii165.88 (16)Pb2—Cl—Pb2viii88.69 (2)
O1iii—Pb1—O2iv152.4 (2)Pb2—Cl—Pb2xi180.00
O1iii—Pb1—O1v73.3 (3)Pb2—Cl—Pb2xii88.69 (2)
O1iii—Pb1—O3vi142.32 (19)Pb2—Cl—Pb2xiii91.32 (2)
O1iii—Pb1—O3vii86.8 (2)Pb2x—Cl—Pb2viii91.32 (2)
Asiv—Pb1—O2iv28.2 (2)Pb2x—Cl—Pb2xi88.69 (2)
Asiv—Pb1—O1v99.0 (2)Pb2x—Cl—Pb2xii180.00
Asiv—Pb1—O3vi28.55 (10)Pb2x—Cl—Pb2xiii88.69 (2)
Asiv—Pb1—O3vii93.00 (13)Pb2viii—Cl—Pb2xi91.32 (2)
O1v—Pb1—O2iv125.5 (3)Pb2viii—Cl—Pb2xii88.69 (2)
O2iv—Pb1—O3vi56.3 (3)Pb2viii—Cl—Pb2xiii180.00
O2iv—Pb1—O3vii66.1 (2)Pb2xi—Cl—Pb2xii91.32 (2)
O1v—Pb1—O3vi70.5 (2)Pb2xi—Cl—Pb2xiii88.69 (2)
O1v—Pb1—O3vii142.3 (2)Pb2xii—Cl—Pb2xiii91.32 (2)
O3vi—Pb1—O3vii116.67 (17)Pb1xiv—O1—As127.0 (2)
As—Pb2—Cl86.27 (2)Pb2xii—O1—As99.6 (3)
As—Pb2—O329.69 (12)Pb1xv—O1—As127.0 (2)
As—Pb2—Cli86.27 (2)Pb1xiv—O1—Pb2xii103.3 (2)
As—Pb2—O3i109.55 (17)Pb1xiv—O1—Pb1xv92.9 (3)
As—Pb2—O1viii169.24 (19)Pb1xv—O1—Pb2xii103.3 (2)
As—Pb2—O2iv71.5 (3)Pb1—O2—As101.1 (3)
As—Pb2—O3vii29.69 (12)Pb1—O2—Pb2ii115.5 (2)
As—Pb2—O3ix109.55 (17)Pb1—O2—Pb1vi87.4 (3)
Cl—Pb2—O368.93 (11)Pb2ii—O2—As128.1 (5)
Cl—Pb2—Cli72.38 (1)Pb1vi—O2—As101.1 (3)
Cl—Pb2—O3i138.64 (12)Pb1vi—O2—Pb2ii115.5 (2)
Cl—Pb2—O1viii102.36 (15)Pb2—O3—As95.9 (2)
Cl—Pb2—O2iv137.93 (15)Pb2—O3—Pb2xiii115.1 (2)
Cl—Pb2—O3vii103.02 (13)Pb1vi—O3—Pb298.7 (2)
Cl—Pb2—O3ix70.93 (15)Pb2xiii—O3—As140.5 (4)
Cli—Pb2—O3103.02 (13)Pb1vi—O3—As94.6 (2)
O3—Pb2—O3i138.2 (2)Pb1vi—O3—Pb2xiii103.55 (18)
O1viii—Pb2—O3148.86 (13)
O2—Pb1—As—Pb2139.9 (3)Cl—Pb2—O3—As122.3 (2)
O2—Pb1—As—O181.2 (4)O3i—Pb2—O3—As18.6 (4)
O2—Pb1—As—O395.1 (4)O3vii—Pb2—O3—As1.75 (19)
O3vi—Pb1—As—O311.6 (2)O3ix—Pb2—O3—As164.7 (3)
O3vii—Pb1—As—O399.9 (3)O3—Pb2—O3vii—Pb197.3 (2)
Cl—Pb2—As—Pb1177.56 (2)O3—Pb2—O3vii—As1.75 (19)
Cl—Pb2—As—O136.28 (1)Pb2—As—O2—Pb144.75 (18)
Cl—Pb2—As—O2143.72 (1)O1—As—O2—Pb1135.25 (18)
Cl—Pb2—As—O352.2 (2)O3—As—O2—Pb1102.6 (3)
O3—Pb2—As—Pb1125.4 (2)Pb1—As—O3—Pb257.97 (18)
O3—Pb2—As—O188.5 (2)O1—As—O3—Pb2124.6 (3)
O3—Pb2—As—O291.5 (2)O2—As—O3—Pb2111.4 (3)
O3—Pb2—As—O3vii177.0 (3)O3vii—As—O3—Pb22.6 (3)
O3i—Pb2—As—O3167.0 (3)O3—As—O3vii—Pb1101.9 (2)
O3vii—Pb2—As—O3177.0 (3)O3—As—O3vii—Pb22.6 (3)
O3ix—Pb2—As—O316.1 (3)
Symmetry codes: (i) xy, x, z+1/2; (ii) y+1, xy+1, z; (iii) x+1, y+1, z+1/2; (iv) x+y, x+1, z; (v) y, x+y+1, z+1/2; (vi) x+y, x+1, z+1/2; (vii) x, y, z+1/2; (viii) y, xy, z; (ix) xy, x, z; (x) xy, x, z1/2; (xi) x, y, z1/2; (xii) x+y, x, z; (xiii) y, x+y, z1/2; (xiv) xy+1, x, z1/2; (xv) x+1, y+1, z+1.
 
(2profs_vanadinite_publ) top
Crystal data top
ClO12Pb5V3V = 678.07 (1) Å3
Mr = 1416.27Z = 2
Hexagonal, P63/mF(000) = 1184
Hall symbol: -P 6cDx = 6.937 Mg m3
a = 10.32464 (2) ÅSynchrotron radiation
c = 7.34508 (2) ÅT = 296 K
Data collection top
11BM
diffractometer
Detector resolution: 18.4 pixels mm-1
Radiation source: synchrotron, synchrotron
Refinement top
Least-squares matrix: full0 restraints
49495 data points(Δ/σ)max = 0.130
35 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.333330.666670.00710 (10)0.0137 (1)*
Pb20.25517 (5)0.01245 (7)0.250000.0142 (1)*
V0.4096 (2)0.3838 (2)0.250000.0061 (6)*
Cl0.000000.000000.000000.0125 (8)*
O10.3321 (9)0.4985 (8)0.250000.020 (3)*
O20.5987 (8)0.4839 (8)0.250000.008 (2)*
O30.3567 (6)0.2690 (6)0.0633 (6)0.0136 (17)*
Geometric parameters (Å, º) top
Pb1—O12.485 (6)Pb2—O32.687 (5)
Pb1—O2i2.751 (9)Pb2—Clix3.1608 (5)
Pb1—O1ii2.485 (7)Pb2—O2x2.351 (10)
Pb1—O2iii2.751 (6)Pb2—O3xi2.556 (5)
Pb1—O1iv2.485 (9)Pb2—O3xii2.556 (5)
Pb1—O2v2.751 (7)Pb2—O3xiii2.687 (5)
Pb1—O3vi2.971 (7)V—O11.729 (9)
Pb1—O3vii2.971 (7)V—O21.692 (9)
Pb1—O3viii2.971 (6)V—O31.714 (5)
Pb2—Cl3.1608 (5)V—O3xiii1.714 (5)
O1—Pb1—O2i126.7 (2)Clix—Pb2—O2x139.71 (11)
O1—Pb1—O1ii74.2 (3)Clix—Pb2—O3xi71.01 (16)
O1—Pb1—O2iii90.67 (19)Clix—Pb2—O3xii136.11 (17)
O1—Pb1—O1iv74.2 (3)Clix—Pb2—O3xiii69.51 (14)
O1—Pb1—O2v150.4 (3)O2x—Pb2—O3xi84.18 (19)
O1—Pb1—O3vi84.8 (2)O2x—Pb2—O3xii84.18 (19)
O1—Pb1—O3vii142.77 (19)O2x—Pb2—O3xiii76.3 (3)
O1—Pb1—O3viii70.7 (2)O3xi—Pb2—O3xii128.4 (2)
O1ii—Pb1—O2i150.4 (3)O3xi—Pb2—O3xiii82.31 (18)
O2i—Pb1—O2iii78.1 (2)O3xii—Pb2—O3xiii141.74 (19)
O1iv—Pb1—O2i90.7 (3)O1—V—O2111.7 (4)
O2i—Pb1—O2v78.1 (2)O1—V—O3112.2 (3)
O2i—Pb1—O3vi126.3 (2)O1—V—O3xiii112.2 (3)
O2i—Pb1—O3vii66.0 (2)O2—V—O3107.1 (3)
O2i—Pb1—O3viii57.05 (19)O2—V—O3xiii107.1 (3)
O1ii—Pb1—O2iii126.7 (3)O3—V—O3xiii106.3 (3)
O1ii—Pb1—O1iv74.2 (3)Pb2—Cl—Pb2i90.36 (2)
O1ii—Pb1—O2v90.7 (2)Pb2—Cl—Pb2xiv89.64 (2)
O1ii—Pb1—O3vi70.7 (2)Pb2—Cl—Pb2xv180.00
O1ii—Pb1—O3vii84.8 (3)Pb2—Cl—Pb2xvi89.64 (2)
O1ii—Pb1—O3viii142.8 (2)Pb2—Cl—Pb2xvii90.36 (2)
O1iv—Pb1—O2iii150.4 (2)Pb2i—Cl—Pb2xiv90.36 (2)
O2iii—Pb1—O2v78.1 (2)Pb2i—Cl—Pb2xv89.64 (2)
O2iii—Pb1—O3vi57.1 (2)Pb2i—Cl—Pb2xvi180.00
O2iii—Pb1—O3vii126.31 (15)Pb2i—Cl—Pb2xvii89.64 (2)
O2iii—Pb1—O3viii66.0 (2)Pb2xiv—Cl—Pb2xv90.36 (2)
O1iv—Pb1—O2v126.7 (3)Pb2xiv—Cl—Pb2xvi89.64 (2)
O1iv—Pb1—O3vi142.8 (2)Pb2xiv—Cl—Pb2xvii180.00
O1iv—Pb1—O3vii70.7 (2)Pb2xv—Cl—Pb2xvi90.36 (2)
O1iv—Pb1—O3viii84.8 (2)Pb2xv—Cl—Pb2xvii89.64 (2)
O2v—Pb1—O3vi66.0 (2)Pb2xvi—Cl—Pb2xvii90.36 (2)
O2v—Pb1—O3vii57.1 (2)Pb1—O1—V129.5 (3)
O2v—Pb1—O3viii126.31 (17)Pb1—O1—Pb1xviii91.8 (3)
O3vi—Pb1—O3vii117.04 (17)Pb1xviii—O1—V129.5 (3)
O3vi—Pb1—O3viii117.04 (19)Pb1xix—O2—V101.4 (2)
O3vii—Pb1—O3viii117.0 (2)Pb2xx—O2—V129.0 (5)
Cl—Pb2—O369.51 (14)Pb1vi—O2—V101.4 (2)
Cl—Pb2—Clix71.04 (1)Pb1xix—O2—Pb2xx114.8 (2)
Cl—Pb2—O2x139.71 (11)Pb1xix—O2—Pb1vi86.7 (2)
Cl—Pb2—O3xi136.11 (17)Pb1vi—O2—Pb2xx114.8 (2)
Cl—Pb2—O3xii71.01 (16)Pb2—O3—V96.1 (2)
Cl—Pb2—O3xiii104.06 (14)Pb2—O3—Pb2i117.6 (2)
Clix—Pb2—O3104.06 (14)Pb1vi—O3—Pb298.9 (2)
O2x—Pb2—O376.3 (3)Pb2i—O3—V137.5 (3)
O3—Pb2—O3xi141.74 (19)Pb1vi—O3—V92.8 (3)
O3—Pb2—O3xii82.31 (18)Pb1vi—O3—Pb2i105.68 (17)
O3—Pb2—O3xiii61.38 (14)
Cl—Pb2—O3—V122.5 (3)O3—V—O1—Pb151.7 (6)
O3xi—Pb2—O3—V17.7 (5)O1—V—O3—Pb2126.6 (3)
O3xii—Pb2—O3—V164.9 (3)O2—V—O3—Pb2110.5 (3)
O3xiii—Pb2—O3—V2.6 (2)O3xiii—V—O3—Pb23.7 (4)
O3—Pb2—O3xiii—V2.6 (2)O3—V—O3xiii—Pb23.7 (4)
O2—V—O1—Pb168.5 (4)
Symmetry codes: (i) xy, x, z1/2; (ii) y+1, xy+1, z; (iii) x+1, y+1, z1/2; (iv) x+y, x+1, z; (v) y, x+y+1, z1/2; (vi) x+1, y+1, z; (vii) y, x+y+1, z; (viii) xy, x, z; (ix) xy, x, z+1/2; (x) y+1, xy, z; (xi) y, x+y, z+1/2; (xii) y, x+y, z; (xiii) x, y, z+1/2; (xiv) y, xy, z; (xv) x, y, z1/2; (xvi) x+y, x, z; (xvii) y, x+y, z1/2; (xviii) x+y, x+1, z+1/2; (xix) xy+1, x, z+1/2; (xx) x+y+1, x+1, z.
 

Acknowledgements

We thank the two anonymous reviewers and the Co-editor, A. F. Craievich, for useful comments that helped to improve this manuscript. R. Marr is thanked for his help with the electron probe. The HRPXRD data were collected at the X-ray Operations and Research beamline 11-BM, Advanced Photon Source, Argonne National Laboratory, USA. Use of the Advanced Photon Source was supported by the US Department. of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (grant to SMA).

References

First citationAkao, A., Aoki, H., Innami, Y., Minamikata, S. & Yamada, T. (1989). Rep. Inst. Med. Dent. Eng. Tokyo Med. Dent. Univ. 23, 25–29.  Google Scholar
First citationAli, R., Yashima, M., Matsushita, Y., Yoshioka, H. & Izumi, F. (2009). J. Solid State Chem. 182, 2846–2851.  CrossRef Google Scholar
First citationAntao, S. M. (2012). Am. Mineral. 97, 661–665.  CrossRef Google Scholar
First citationAntao, S. M. & Dhaliwal, I. (2017). Minerals, 7, 136.  CrossRef Google Scholar
First citationAntao, S. M., Duane, M. J. & Hassan, I. (2002). Can. Mineral. 40, 1403–1409.  Web of Science CrossRef CAS Google Scholar
First citationAntao, S. M. & Hassan, I. (2002). Can. Mineral. 40, 163–172.  Web of Science CrossRef CAS Google Scholar
First citationAntao, S. M. & Hassan, I. (2009). Can. Mineral. 47, 1245–1255.  Web of Science CrossRef CAS Google Scholar
First citationAntao, S. M., Hassan, I., Wang, J., Lee, P. L. & Toby, B. H. (2008). Can. Mineral. 46, 1501–1509.  Web of Science CrossRef CAS Google Scholar
First citationBeck, H. P., Douiheche, M., Haberkorn, R. & Kohlmann, H. (2006). Solid State Sci. 8, 64–70.  Web of Science CrossRef CAS Google Scholar
First citationCaglioti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Instrum. 3, 223–228.  CrossRef CAS Web of Science Google Scholar
First citationCalos, N. J., Kennard, C. H. L. & Davis, R. L. (1990). Z. Kristallogr. 191, 125–129.  CrossRef Google Scholar
First citationCotter-Howells, J. D. & Caporn, S. (1996). Appl. Geochem. 11, 335–342.  CAS Google Scholar
First citationCotter-Howells, J. D., Champness, P. E., Charnocky, J. M. & Pattrick, R. A. D. (1994). Eur. J. Soil Sci. 45, 393–402.  CAS Google Scholar
First citationDai, Y. & Hughes, J. M. (1989). Can. Mineral. 27, 189–192.  CAS Google Scholar
First citationDai, Y., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369–376.  CAS Google Scholar
First citationĐordević, T., Šutović, S., Stojanović, J. & Karanović, Lj. (2008). Acta Cryst. C64, i82–i86.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEhm, L., Antao, S. M., Chen, J. H., Locke, D. R., Marc Michel, F., David Martin, C., Yu, T., Parise, J. B., Antao, S. M., Lee, P. L., Chupas, P. J., Shastri, S. D. & Guo, Q. (2007). Powder Diffr. 22, 108–112.  Web of Science CrossRef CAS Google Scholar
First citationElliott, J. C., Wilson, R. M. & Dowker, S. E. P. (2002). Adv. X-ray Anal. 45, 172–181.  CAS Google Scholar
First citationFergus, J. W. (2006). J. Power Sources, 162, 30–40.  Web of Science CrossRef CAS Google Scholar
First citationFlis, J., Borkiewicz, O., Bajda, T., Manecki, M. & Klasa, J. (2010). J. Synchrotron Rad. 17, 207–214.  CrossRef IUCr Journals Google Scholar
First citationHashimoto, H. & Matsumoto, T. (1998). Z. Kristallogr. 213, 585–590.  Web of Science CrossRef CAS Google Scholar
First citationHata, M., Marumo, F., Iwai, S. & Aoki, H. (1979). Acta Cryst. B35, 2382–2384.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHendricks, S. B., Jefferson, M. E. & Mosley, V. M. (1932). Z. Kristallogr. 81, 352–369.  Google Scholar
First citationHopwood, J. D., Derrick, G. R., Brown, D. R., Newman, C. D., Haley, J., Kershaw, R. & Collinge, M. (2016). J. Chem. 2016, 9074062.  CrossRef Google Scholar
First citationHughes, J. M., Cameron, M. & Crowley, K. D. (1989). Am. Mineral. 74, 870–876.  CAS Google Scholar
First citationKampf, A. R., Steele, I. M. & Jenkins, R. A. (2006). Am. Mineral. 91, 1909–1917.  Web of Science CrossRef CAS Google Scholar
First citationLaperche, V., Logan, T. J., Gaddam, P. & Traina, S. J. (1997). Environ. Sci. Technol. 31, 2745–2753.  CrossRef CAS Web of Science Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report LAUR 86–748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLaufek, F., Skála, R., Haloda, J. & Cisařová, I. (2006). J. Czech. Geol. Soc. 51, 271–275.  Google Scholar
First citationLee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. & Toby, B. H. (2008). J. Synchrotron Rad. 15, 427–432.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcConnell, D. (1973). Apatite: Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences. New York: Springer-Verlag.  Google Scholar
First citationMehmel, M. (1930). Z. Kristallogr. 75, 323–331.  CAS Google Scholar
First citationMills, S. J., Ferraris, G., Kampf, A. R. & Favreau, G. (2012). Am. Mineral. 97, 415–418.  CrossRef Google Scholar
First citationNakayama, S., Kageyama, T., Aono, H. & Sadaoka, Y. (1995). J. Mater. Chem. 5, 1801–1805.  CrossRef CAS Web of Science Google Scholar
First citationNakayama, S., Sakamoto, M., Higuchi, M., Kodaira, K., Sato, M., Kakita, S., Suzuki, T. & Itoh, K. (1999). J. Eur. Ceram. Soc. 19, 507–510.  CrossRef Google Scholar
First citationNáray-Szabó, S. (1930). Z. Kristallogr. 75, 387–398.  Google Scholar
First citationOkudera, H. (2013). Am. Mineral. 98, 1573–1579.  CrossRef Google Scholar
First citationPasero, M., Kampf, A. R., Ferraris, C., Pekov, I. V., Rakovan, J. & White, T. J. (2010). Eur. J. Mineral. 22, 163–179.  Web of Science CrossRef CAS Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobeznieks, A. (2015). Mod. Healthc. 45, 9.  Google Scholar
First citationRouse, R. C., Dunn, P. J. & Peacor, D. R. (1984). Am. Mineral. 69, 920–927.  CAS Google Scholar
First citationSejkora, J., Plášil, J., Císařová, I., Škoda, R., Hloušek, J., Veselovský, F. & Jebavá, I. (2011). J. Geosci. 56, 257–271.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. 32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSkinner, L. B., Benmore, C. J., Antao, S. M., Soignard, E., Amin, S. A., Bychkov, E., Rissi, E., Parise, J. B. & Yarger, J. L. (2012). J. Phys. Chem. C, 116, 2212–2217.  CrossRef Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrotter, J. & Barnes, W. H. (1958). Can. Mineral. 6, 161–173.  CAS Google Scholar
First citationWang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. & Beno, M. A. (2008). Rev. Sci. Instrum. 79, 085105.  Web of Science CrossRef PubMed Google Scholar
First citationWhite, T. J. & ZhiLi, D. (2003). Acta Cryst. B59, 1–16.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoJOURNAL OF
SYNCHROTRON
RADIATION
ISSN: 1600-5775
Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds