laboratory notes
Low-cost disposable high-pressure setup for in situ X-ray experiments
aCenter for Surface Chemistry and Catalysis (COK), KU Leuven, Celestijnenlaan 200f, Box 2461, Heverlee 3001, Belgium
*Correspondence e-mail: eric.breynaert@kuleuven.be
A low-cost, flexible and fast method to create disposable sample cells suitable for in situ catalytic or material synthesis studies based on standard quartz capillaries, heat-shrinkable tubing and standard Swagelok components is described.
Keywords: in situ XRD/XAS; high-pressure; flexible; sample cell design; in situ X-ray experiments; hardware.
1. Introduction
In situ X-ray diffraction or X-ray absorption spectroscopy measurements at elevated pressure very often rely on dedicated sample environments to meet requirements such as heat, pressure, temperature and chemical resistance in combination with suitable optical properties (Itié et al., 2015; Hansen et al., 2015; Portale et al., 2013). Many of these environments rely on the use of quartz capillaries as they exhibit excellent chemical, thermal and optical properties for many experiments. Connecting these capillaries to Swagelok tubing by means of a temperature, pressure and chemically resistant seal enables their use in static or flow systems under variable gas pressures (Martis et al., 2014; Norby, 2006). Existing setups use two-component Loctite glue or quick-setting epoxy resin to glue the capillary in a custom-made socket, allowing to pressurize, for example, 0.7/0.5 mm (outer/inner diameter) quartz capillaries up to 135 bar (Hansen et al., 2015; Brunelli & Fitch, 2003; Llewellyn et al., 2009). Unfortunately, preparation and application of the adhesive sealant are not evident and the final assembly can be laborious (Jensen et al., 2010).
2. Sample cell design
The proposed setup circumvents the aforementioned difficulties by using a piece of heat-shrink tubing to connect the capillary to (standard) Swagelok components with a fast, chemical- and heat-resistant seal. The general procedure is illustrated in Fig. 1 for a 1 mm quartz capillary (Hilgenberg, Germany). The option to re-use Swagelok parts significantly lowers the marginal cost of the setup, providing an affordable method to carry out in situ X-ray experiments on pressurized samples. The cross-linked nature of the polyolefins forming the heat-shrink tubing provides good chemical and mechanical resistance and renders this setup suitable for demanding (catalytic) experiments (Beveridge & Sabiston, 1987).
Applicability of the setup for in situ high-pressure experimentation has been showcased by monitoring CH4 hydrate formation in the pores of a hydrated hydrophobic silica material at 40 bar CH4 and −57°C by wide-angle X-ray scattering (WAXS) (Fig. 2) at the Dutch–Belgian Beamline (European Synchrotron Radiation Facility, Grenoble, France) (Borsboom et al., 1998). These ice-like clathrate materials are typically formed at high (gas) pressures and low temperatures as a result of the favourable van der Waals interactions between non-polar guest molecules such as CH4 and the surrounding water molecules (Casco et al., 2015).
Supporting information
Video S1: the shrinkage procedure. DOI: https://doi.org/10.1107/S1600577518011165/gb5074sup1.mp4
Video S2: pressurization of the newly developed capillary setup. DOI: https://doi.org/10.1107/S1600577518011165/gb5074sup2.mp4
Acknowledgements
The authors would like to extend their gratitude to the team of the DUBBLE beamline at the ESRF, in particular Dr Daniel Hermida Merino, Dr Allessandro Longo and Mr Florian Ledrappier for their support.
Funding information
MH and EB acknowledge FWO for an SB PhD fellowship and a `Krediet aan navorsers' (1.5.061.18 N), respectively. JAM acknowledges the Flemish Government for long-term structural funding (Methusalem), the Research Foundation Flanders (FWO) and the Belgian government for Interuniversity Attraction Poles (IAP).
References
Beveridge, C. & Sabiston, A. (1987). Mater. Des. 8, 263–268. CrossRef Google Scholar
Borsboom, M., Bras, W., Cerjak, I., Detollenaere, D., Glastra van Loon, D., Goedtkindt, P., Konijnenburg, M., Lassing, P., Levine, Y. K., Munneke, B., Oversluizen, M., van Tol, R. & Vlieg, E. (1998). J. Synchrotron Rad. 5, 518–520. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brunelli, M. & Fitch, A. N. (2003). J. Synchrotron Rad. 10, 337–339. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Casco, M. E., Silvestre-Albero, J., Ramírez-Cuesta, A. J., Rey, F., Jordá, J. L., Bansode, A., Urakawa, A., Peral, I., Martínez-Escandell, M., Kaneko, K. & Rodríguez-Reinoso, F. (2015). Nat. Commun. 6, 6432. Web of Science CrossRef PubMed Google Scholar
Hansen, B. R. S., Møller, K. T., Paskevicius, M., Dippel, A.-C., Walter, P., Webb, C. J., Pistidda, C., Bergemann, N., Dornheim, M., Klassen, T., Jørgensen, J.-E. & Jensen, T. R. (2015). J. Appl. Cryst. 48, 1234–1241. Web of Science CrossRef IUCr Journals Google Scholar
Itié, J. P., Girard, E., Guignot, N., Le Godec, Y. & Mezouar, M. (2015). J. Phys. D Appl. Phys. 48, 504007. Google Scholar
Jensen, T. R., Nielsen, T. K., Filinchuk, Y., Jørgensen, J.-E., Cerenius, Y., Gray, E. M. & Webb, C. J. (2010). J. Appl. Cryst. 43, 1456–1463. Web of Science CrossRef CAS IUCr Journals Google Scholar
Llewellyn, P. L., Horcajada, P., Maurin, G., Devic, T., Rosenbach, N., Bourrelly, S., Serre, C., Vincent, D., Loera-Serna, S., Filinchuk, Y. & Férey, G. (2009). J. Am. Chem. Soc. 131, 13002–13008. Web of Science CrossRef PubMed CAS Google Scholar
Martis, V., Beale, A. M., Detollenaere, D., Banerjee, D., Moroni, M., Gosselin, F. & Bras, W. (2014). J. Synchrotron Rad. 21, 462–463. Web of Science CrossRef IUCr Journals Google Scholar
Norby, P. (2006). Curr. Opin. Colloid Interface Sci. 11, 118–125. Web of Science CrossRef CAS Google Scholar
Portale, G., Cavallo, D., Alfonso, G. C., Hermida-Merino, D., van Drongelen, M., Balzano, L., Peters, G. W. M., Goossens, J. G. P. & Bras, W. (2013). J. Appl. Cryst. 46, 1681–1689. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.