research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
SYNCHROTRON
RADIATION
ISSN: 1600-5775

Effect of the third undulator field harmonic on spontaneous and stimulated undulator radiation

CROSSMARK_Color_square_no_text.svg

aDepartment of Theoretical Physics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
*Correspondence e-mail: zhukovsk@physics.msu.ru

Edited by M. Yamamoto, RIKEN SPring-8 Center, Japan (Received 3 January 2019; accepted 13 June 2019; online 15 August 2019)

The effect of undulator field harmonics on spontaneous and stimulated undulator radiation, both on and off the undulator axis, is studied. Bessel factors for the undulators with field harmonics have been analytically calculated and numerically verified. The influence of the third undulator field harmonic on single-pass free-electron laser radiation is explored. Harmonic generation at the LCLS and SPring-8 free-electron lasers is modeled and analyzed.

1. Introduction

In an undulator, electrons with high relativistic factor γ pass through a spatially periodic magnetic field and emit undulator radiation (UR). Undulators in free-electron lasers (FELs) generate coherent UR (McNeil & Thompson, 2010[McNeil, B. W. J. & Thompson, N. R. (2010). Nat. Photon. 4, 814-821.]; Pellegrini et al., 2016[Pellegrini, C., Marinelli, A. & Reiche, S. (2016). Rev. Mod. Phys. 88, 015006.]; Huang & Kim, 2007[Huang, Z. & Kim, K.-J. (2007). Phys. Rev. ST Accel. Beams, 10, 034801.]; Saldin et al., 2000[Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. (2000). The Physics of Free Electron Lasers. Springer.]; Margaritondo & Ribic, 2011[Margaritondo, G. & Rebernik Ribic, P. (2011). J. Synchrotron Rad. 18, 101-108.]; Pellegrini, 2016[Pellegrini, C. (2016). Phys. Scr. T169, 014004.]). This process can be modeled numerically or using phenomenological formulae. The former approach implies a numerical solution of an equation system for the electron motion and interaction with the wavefield. This can be done in one or three dimensions and requires serious computational resources and trained personnel. The analytical approach gives an effective FEL description and can reproduce fairly well the harmonic growth in real devices. Going beyond the usual assumption of a sinusoidal undulator on-axis field, we study the following undulator field,

[{\bf{H}} = \left( 0,H_0 \big\{ 0+\big[\sin\left(zk_\lambda\right)+d\sin\left(hzk_\lambda\right)\big] \big\}, 0 \right), \eqno(1)]

with amplitude H0, main period λu, kλ = 2π/λu, second period λu/h and second amplitude dH0, h = 2, 3, 4…. A relatively weak, h ≃ 0.1–0.5, third field harmonic can be present in real devices. There have been controversial conclusions (Zhukovsky, 2015a[Zhukovsky, K. V. (2015a). Moscow Univ. Phys. 70, 232-239.],b[Zhukovsky, K. (2015b). Opt. Commun. 353, 35-41.], 2016a[Zhukovsky, K. (2016a). Laser Part. Beams 34, 447.],b[Zhukovsky, K. (2016b). Nucl. Instrum. Methods Phys. Res. B, 369, 9-14.]; Jeevakhan & Mishra, 2011[Jeevakhan, H. & Mishra, G. (2011). Nucl. Instrum. Methods Phys. Res. A, 656, 101-106.]; Mishra et al., 2009[Mishra, G., Gehlot, M. & Hussain, J. K. (2009). Nucl. Instrum. Methods Phys. Res. A, 603, 495-503.]; Jia, 2011[Jia, Q. (2011). Phys. Rev. ST Accel. Beams, 14, 060702.]) on its effect on the UR harmonics. We rigorously obtained the analytical expressions for the Bessel functions Tn for the undulator field (1)[link] by computing the radiation integral

[\eqalignno{ {{{\rm{d}}^2I}\over{{\rm{d}}\omega\,{\rm{d}}\Omega}} = {}& {{e^{2}}\over{4\pi^{2}c}} \Bigg| \,\omega\!\!\int\limits_{-\infty}^{\infty} \big[{\bf{n}}\times\left({\bf{n}}\times{\boldbeta}\right)\big] \exp\left[i\omega\left(t-{\bf{n}}{\bf{r}}/c\right)\right] \,{\rm{d}}t \Bigg|^2, &(2) }]

where

[{\bf{n}} \cong \left\{\theta\cos\phi,\theta\sin\phi,1-\theta^2/2\right\}]

where [{\bf{r}}] are coordinates and [\boldbeta] are velocities.

The exponential in (2)[link] yields the generalized Bessel function

[\eqalignno{ J_n = {}& {{1}\over{2\pi}} \int\limits_{0}^{2\pi} \cos \Big\{ \xi_1\sin\phi + \xi\sin(2\phi) + \xi_{-}\sin\left[(h-1)\phi\right] \cr& + \xi_{+}\sin\left[(h+1)\phi\right] + \xi_{h}\sin(2h\phi)+n\phi \Big\} \,{\rm{d}}\phi, & (3) }]

which involves the parameter k = [H_0\lambda_{\rm{u}}e/2{\pi}mc^2] as follows,

[\eqalign{ \xi & = {{nk^2/4}\over{1+(k^2/2)\left[1+(d^2/h^2)\right]_{\vphantom{\big|}}}}, \cr \xi_1 & = {{8\xi\gamma\theta}\over{k}}, \qquad \xi_{-}={{4d\xi}\over{h(h-1)}}, \cr \xi_{+} & = {{4d\xi}\over{h(h+1)}}, \qquad \xi_{h}={{d^2\xi}\over{h^3}}. } \eqno(4)]

The Bessel coefficients [f_{n\semi{x}}] = [|T_{n\semi{x}}|] for the harmonic n = 1, 2, 3,… taking account of the off-axis radiation at angle θ read as follows,

[{T_{n,x}} = {J_{n - 1}} + {J_{n + 1}} + {d \over h}\left(\,{{J_{n + h}} + {J_{n - h}}} \right) + a{J_n},\quad {T_{n,y}} = b{J_n}, \eqno(5)]

where a = [2\gamma\theta\cos\phi/k], b = [2\gamma\theta\sin\phi/k], θ is the off-axis angle and ϕ is the polar angle. The wavelength of the nth UR harmonic from a planar undulator is

[\lambda_n = {{{\lambda_{\rm{u}}}} \over {2n{\gamma ^2}}} \left[{1 + k_{\rm{eff}}^2 + {{\left({\gamma\theta}\right)}^2}}\right], \quad k_{\rm{eff}}^2 = {{{k^2}}\over{2}}\left({1+{{{d^2}}\over{{h^2}}}}\right). \eqno(6)]

In the following we present the Bessel functions also for the elliptic undulator with field harmonics. We explore in particular the effect of the third undulator field harmonic on the UR. We compute analytically the UR intensity in the field (1)[link] and compare it with proper numerical results. Furthermore, we calculate the UR intensity for an elliptic undulator and we model the harmonic power in several FEL experiments. We analyze the harmonic generation in the SPring-8 and LCLS FELs for several setups and study possible effects of the undulator field harmonics.

2. Spontaneous UR and validation of the Bessel factors

The intensity of the spontaneous UR in the undulator with N periods taking into account the energy spread σe is given by the convolution

[\eqalignno{ {{{\rm{d}}^2I_n}\over{{\rm{d}}\omega\,{\rm{d}}\Omega}} \cong {}& C\left(\left|T_{n,x}\right|^2+\left|T_{n,y}\right|^2\right) \int\limits_{-\infty}^{\infty} \exp\left(-\varepsilon^2/2\sigma_{\rm{e}}^2\right) \cr& \times {\rm{sinc}}^2\left(\nu_{\rm{n}}+2{\pi}nN\varepsilon\right) \,{\rm{d}}\varepsilon, & (7) }]

where C = [e^2N^2\gamma^2k^2n^2/c\sqrt{2\pi}\sigma_{\rm{e}}(1+k_{\rm{eff}}^2)^2], e is the electron charge, c is the speed of light and [\nu_n] = [2{\pi}nN[(\lambda_n/\lambda)-1]] is the detuning parameter. On the axis of a common planar undulator, where d = θ = 0, only x-polarization is radiated. The proper Bessel coefficient fn,x = [J_{(n-1)/2}(-\xi_0)+J_{(n+1)/2}(-\xi_0)] contains common Bessel functions [J_n(\xi_0\equiv\xi|_{d\,=\,0})]. In the presence of the additional field harmonic the Bessel coefficients fn of the planar undulator (1)[link] depend on k and d [see (3)[link]–(5)[link]]. An example of such a dependence for h = 3 is shown in Fig. 1[link]. The energy spread decreases the effective value of fn as shown in Fig. 2[link].

[Figure 1]
Figure 1
Bessel coefficients f1,3,5 and their ratio f3/f1 for k and d, h = 3.
[Figure 2]
Figure 2
Bessel factors, weighted with the energy spread σe = 10−4 (left) and σe = 10−3 (right), γθ = 0.0123, k = 2.1, h = d = 0.

It follows from the analysis of Fig. 1[link] that the Bessel factors and the UR harmonics weakly sense the third undulator field harmonic for k ≅ 1.5. For k < 1.5 the third field harmonic with negative phase, d < 0, slightly enhances the UR harmonics. The positive phase of the field harmonic, d > 0, weakens the UR harmonics (see Fig. 1[link]). For k > 1.5 the effect of the field dH0 in (1)[link] is the opposite: high UR harmonics with n = 3, 5,… become stronger for d > 0 and weaker for d < 0 (see Fig. 1[link]). This observation clarifies contradicting reports on the harmonic behavior in various references (Zhukovsky, 2015a[Zhukovsky, K. V. (2015a). Moscow Univ. Phys. 70, 232-239.],b[Zhukovsky, K. (2015b). Opt. Commun. 353, 35-41.], 2016a[Zhukovsky, K. (2016a). Laser Part. Beams 34, 447.],b[Zhukovsky, K. (2016b). Nucl. Instrum. Methods Phys. Res. B, 369, 9-14.]; Jeevakhan & Mishra, 2011[Jeevakhan, H. & Mishra, G. (2011). Nucl. Instrum. Methods Phys. Res. A, 656, 101-106.]; Mishra et al., 2009[Mishra, G., Gehlot, M. & Hussain, J. K. (2009). Nucl. Instrum. Methods Phys. Res. A, 603, 495-503.]; Jia, 2011[Jia, Q. (2011). Phys. Rev. ST Accel. Beams, 14, 060702.]). Indeed (see Fig. 1[link]), for k > 1.5 the rate f3,5/f1 increases for higher values of d > 0 and decreases for lower values d < 0. For k < 1.5, on the contrary, the rate f3,5/f1 of high harmonics increases for lower values of d < 0. The variation of f3,5/f1 can be about ±20%, depending on d.

We have computed the UR harmonic intensity numerically using the SPECTRA program (Tanaka & Kitamura, 2001[Tanaka, T. & Kitamura, H. (2001). J. Synchrotron Rad. 8, 1221-1228.]; Tanaka, 2014[Tanaka, T. (2014). Phys. Rev. ST Accel. Beams, 17, 060702.]), which allows field harmonics for planar undulators. Examples for k = 2.1, h = 3, d = ±0.42, σe = 1.5 × 10−3 are shown in Figs. 3[link] and 4[link], where color bars show our analytical results and thin black lines show the data from SPECTRA. The agreement is quite good. The ratio In/I1 of the spontaneous UR harmonic intensities changes, for d = ±0.42, by about ±25% for n = 1, 3, 7; this ratio almost does not change for harmonic n = 5 in our example for k = 2.1 (compare Fig. 3[link] with Fig. 4[link]); this agrees with the results in Fig. 1[link]. The power variation for high harmonics with n > 7 can be ∼300%, but they remain rather weak. Odd harmonics are very weak.

[Figure 3]
Figure 3
Spontaneous UR harmonic intensity (in relative units) from the undulator with k = 2.1, h = 3, d = +0.42, σe = 1.5 × 10−3 for the harmonic number n.
[Figure 4]
Figure 4
Spontaneous UR harmonic intensity (in relative units) from the undulator with k = 2.1, h = 3, d = −0.42, σe = 1.5 × 10−3 for the harmonic number n.

In Fig. 5[link] we demonstrate the shape of the periodic magnetic field with harmonics. The third undulator field harmonic with negative phase, d < 0, increases the amplitude of the magnetic field (see Fig. 5[link]). For d > 0, the amplitude of the magnetic field may even decrease (see Fig. 5[link]).

[Figure 5]
Figure 5
The undulator magnetic field for k = 2.1, h = 3, d = ±0.1 (left plot), d = ±0.42 (right plot), d = 0 (solid lines), d > 0 (dotted lines), d < 0 (dashed lines).

3. Phenomenological description of FEL harmonics evolution

The analytical formulation of the power evolution in a single-pass FEL was developed by Dattoli and co-workers (Dattoli & Ottaviani, 2002[Dattoli, G. & Ottaviani, P. L. (2002). Opt. Commun. 204, 283-297.]; Dattoli et al., 2004[Dattoli, G., Giannessi, L., Ottaviani, P. L. & Ronsivalle, C. (2004). J. Appl. Phys. 95, 3206-3210.], 2005a[Dattoli, G., Ottaviani, P. L. & Renieri, A. (2005a). Laser Part. Beams, 23, 303.],b[Dattoli, G., Ottaviani, P. L. & Pagnutti, S. (2005b). J. Appl. Phys. 97, 113102.]); it employs the logistic function. The model was improved and calibrated with FEL experiments by Zhukovsky and co-workers (Zhukovsky & Potapov, 2017[Zhukovsky, K. & Potapov, I. (2017). Laser Part. Beams 35, 326.]; Zhukovsky, 2017a[Zhukovsky, K. (2017a). J. Phys. D Appl. Phys. 50, 505601.],b[Zhukovsky, K. J. (2017b). J. Appl. Phys. 122, 233103.], 2018[Zhukovsky, K. V. (2018). Russ. Phys. J. 60, 1630-1637.]; Zhukovsky & Kalitenko, 2019a[Zhukovsky, K. & Kalitenko, A. (2019a). J. Synchrotron Rad. 26, 159-169.],b[Zhukovsky, K. & Kalitenko, A. (2019b). J. Synchrotron Rad. 26, 605-606.]). In the following we present its development, which describes high harmonic growth around the saturated region. The Pierce parameter for the nth FEL harmonic (Dattoli et al., 2005b[Dattoli, G., Ottaviani, P. L. & Pagnutti, S. (2005b). J. Appl. Phys. 97, 113102.]) reads as follows,

[\eqalign{ & {\rho_{\rm{n}}} = {{ {J^{1/3}}{{\left({{\lambda_{\rm{u}}}k\,{f_n}}\right)}^{{{\rm{2}}/3}}} }\over{ 2\gamma{{\left({4{\pi}i}\right)}^{1/3} }}}, \quad {\tilde \rho _n} = {{{\rho _n}} \over {{{\left({1 + {\mu _{D,n}}} \right)}^{{1/3}}}}}, \cr&\qquad\qquad\,\,\,\, {\mu _{D,n}} \cong {{{\lambda_{\rm{u}}}{\lambda _n}} \over {16\pi {\rho _n}\Sigma }}, } \eqno(8)]

where accounting for diffraction comes through the beam section [\Sigma] = [2\pi({\beta_x}\varepsilon_x{\beta_y}\varepsilon_y)^{1/2}] for harmonic wavelength λn and undulator period λu; J is the current and fn is the Bessel coefficient. The corrected gain length is [{L_{n,{\rm{g}}}} \cong] [{{{\Phi_n}\,{\lambda_{\rm{u}}}}/{4\pi\sqrt{3}{n^{{1/3}}}{{\tilde\rho}_n}}}], the saturation occurs at [{L_{\rm{s}}} \cong] [1.07{L_{1,\,{\rm{g}}}}\ln({{9{\eta_1}{P_F}}/{{P_{1,0}}}})], the saturated harmonic powers are [{P_F} \cong] [\sqrt{2}{P_{\rm{e}}}{{{\eta_1}\tilde\rho_1^{\,2}}/{{\rho _1}}}], Pn,F = [{{{\eta_n}{P_F}\,f_n^{\,2}}/{{n^{{5/2}}}\,f_1^{\,2}}}] and Pe is the electron beam power. The following phenomenological corrections account for the beam size and the energy spread σe,

[\eta_n \cong \Big\{ \exp\Big[-\Phi_n\left(\Phi_n-0.9\right)\Big] + 1.57\left(\Phi_n-0.9\right)/\Phi_n^3\Big\}/1.062, \eqno(9)]

[\eqalign{ \Phi_n & \cong \left(\zeta^n+0.165\mu_{\varepsilon,n}^2\right) \exp\left(0.034\mu_{\varepsilon,n}^2\right), \cr \mu_{\varepsilon,n}(\sigma_\varepsilon) & \cong 2\sigma_\varepsilon/n^{1/3}{\tilde\rho}_n,} \eqno(10)]

[\zeta \cong 1+0.07\textstyle\sum\limits_i \mu_i+0.35\textstyle\sum\limits_i \mu_i^2, \eqno(11)]

[{\mu_{\tilde x,\tilde y}} = {1 \over {\tilde \rho }}{{{\gamma ^2}{\varepsilon _{x,y}}} \over {(1 + {{{k^2}}/2}){\lambda_{\rm{u}}}{\beta _{x,y}}}}, \quad {\mu _{x,y}} = {1 \over {\tilde \rho }}{{{\gamma ^2}\omega _\beta ^2{\varepsilon _{x,y}}} \over {(1 + {{{k^2}}/2}){\gamma _{x,y}}}}, \eqno(12)]

where x,y are the emittances, βx,y and γx,y are the Twiss parameters, [{\omega_\beta}] = [{{\pi k}/{\gamma {\lambda_{\rm{u}}}}}] is the betatron frequency, [{\tilde \rho_n}] < [\rho] by ∼15–30%, [\zeta] ≃ 1–1.05. The conditions for stable amplification (McNeil & Thompson, 2010[McNeil, B. W. J. & Thompson, N. R. (2010). Nat. Photon. 4, 814-821.]; Pellegrini et al., 2016[Pellegrini, C., Marinelli, A. & Reiche, S. (2016). Rev. Mod. Phys. 88, 015006.]; Huang & Kim, 2007[Huang, Z. & Kim, K.-J. (2007). Phys. Rev. ST Accel. Beams, 10, 034801.]; Saldin et al., 2000[Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. (2000). The Physics of Free Electron Lasers. Springer.]) are [{\sigma _\varepsilon }] [\le] [{{{{\tilde \rho }_n}}/2}], [{\varepsilon_{x,y}}] [\le] [{{{\lambda_n}}/{4\pi}}]. The radiation power exponentially grows along the FEL; for the initially unbunched beam it reads (Dattoli et al., 2004[Dattoli, G., Giannessi, L., Ottaviani, P. L. & Ronsivalle, C. (2004). J. Appl. Phys. 95, 3206-3210.], 2005a[Dattoli, G., Ottaviani, P. L. & Renieri, A. (2005a). Laser Part. Beams, 23, 303.],b[Dattoli, G., Ottaviani, P. L. & Pagnutti, S. (2005b). J. Appl. Phys. 97, 113102.]) as follows,

[\eqalignno{ {P_{L,n}}\left(z \right) & \cong {{{P_{0,n}}\,A\left({n,z} \right)\,{\exp\left({{0.223z}/{{Z_s}}}\right)}} \over {1 + \left[{A\left({n,z} \right) - 1} \right]{{{P_{0,n}}}/{{P_{n,F}}}}}}, &(13) \cr A\left({n,z} \right) & \cong {1 \over 3} + {{\cosh ({z/{{L_{n,{\rm{g}}}}}})} \over {4.5}} + {{\cos ({{\sqrt{3}z}/{2{L_{n,{\rm{g}}}}}}) \cosh({z/{2{L_{n,{\rm{g}}}}}})} \over {0.444}}, }]

where P0,n is the initial power for the nth harmonic. The nonlinear power term, induced by the fundamental tone, is (Dattoli et al., 2005b[Dattoli, G., Ottaviani, P. L. & Pagnutti, S. (2005b). J. Appl. Phys. 97, 113102.])

[{Q_n}\left(z \right) \cong {P_{n,0}}{{\exp \left({{{n\,z}/{{L_{\rm{g}}}}}} \right)} \over {1 + \left[{\exp \left({{{n\,z}/{{L_{\rm{g}}}}}} \right) - 1} \right]{{{P_{n,0}}}/{{P_{n,F}}}}}}, \eqno(14)]

where [{P_{n,0}} \cong b_n^2\,{P_{n,F}}] is the equivalent initial power due to the induced bunching bn2 [\cong] [{({{{{P_{0,1}}}/{9{P_{\rm{e}}}\,{{\tilde \rho }_1}}}})^n}]. The power evolution in sectioned undulators, the bunching coefficients, energy spread and other details can be found elsewhere (Dattoli et al., 2005a[Dattoli, G., Ottaviani, P. L. & Renieri, A. (2005a). Laser Part. Beams, 23, 303.],b[Dattoli, G., Ottaviani, P. L. & Pagnutti, S. (2005b). J. Appl. Phys. 97, 113102.], 2017a[Zhukovsky, K. (2017a). J. Phys. D Appl. Phys. 50, 505601.],b[Zhukovsky, K. J. (2017b). J. Appl. Phys. 122, 233103.], 2018[Zhukovsky, K. V. (2018). Russ. Phys. J. 60, 1630-1637.]; Zhukovsky & Potapov, 2017[Zhukovsky, K. & Potapov, I. (2017). Laser Part. Beams 35, 326.]; Zhukovsky & Kalitenko, 2019a[Zhukovsky, K. & Kalitenko, A. (2019a). J. Synchrotron Rad. 26, 159-169.]).

Equations (13)[link] and (14)[link] though do not describe the harmonic evolution close to saturation. In reality the harmonic power saturates gradually, while the sum of (13)[link] and (14)[link] describes the saturation in one step. To address multi-stage harmonic saturation we introduce another broadening coefficient, [{\tilde \mu _{\varepsilon, n}}({\sigma _\varepsilon })] [\cong] [{{2n{\sigma _\varepsilon }}/{({n^{{1/3}}}{{\tilde \rho }_n})}}], which involves an additional factor n to describe higher losses for high UR harmonics and their spectrum line broadening in accordance with Zhukovsky (2015a[Zhukovsky, K. V. (2015a). Moscow Univ. Phys. 70, 232-239.],b[Zhukovsky, K. (2015b). Opt. Commun. 353, 35-41.], 2016b[Zhukovsky, K. (2016b). Nucl. Instrum. Methods Phys. Res. B, 369, 9-14.]). This yields other broadening coefficients,

[\tilde\eta_n \cong \Big\{ \exp\left[-\tilde\Phi_n\left(\tilde\Phi_n-0.9\right)\right] + 1.57\left(\tilde\Phi_n-0.9\right)/\tilde\Phi_n^3 \Big\} / 1.062, \eqno(15)]

[\eqalign{ {\tilde \Phi _n} & \cong \left({{\zeta ^{\,n}} + 0.165\tilde \mu _{\varepsilon, n}^2} \right) \exp\left(0.034\tilde\mu_{\varepsilon,n}^2\right), \cr {\tilde \mu _{\varepsilon, n}}({\sigma _\varepsilon }) & \cong {{2{n^{{2/3}}}{\sigma _\varepsilon}}/{{{\tilde \rho }_n}}}.} \eqno(16)]

They in turn modify the power values [{\tilde P_{n,F}}] = [{{{{\tilde \eta }_n}{{\tilde P}_F}f_n^2}/{{n^{{5/2}}}\,f_1^{\,2}}}], [{\tilde P_F}] [\cong] [\sqrt 2 {P_{\rm{e}}}{{{{\tilde \eta }_1}\tilde \rho _1^{\,2}}/{{\rho _1}}}], [{\tilde P_{n,0}}] [\cong] [{d_n}b_n^2{\tilde P_{n,F}}] and the gain length [{\tilde L_{n,{\rm{g}}}}] [\cong] [{{{{\tilde \Phi }_n}{\lambda_{\rm{u}}}}/{4\pi \sqrt 3 {n^{{1/3}}}{{\tilde \rho }_n}}}]; the coefficients dn [\cong] { 1, 3, 8, 40, 120 } describe the anticipated harmonic power growth up to the first stage of saturation. A new nonlinear term appears,

[{\tilde Q_n}\left(z\right) \cong {\tilde P_{n,0}}\,{{\exp \left({{{n\,z}/{{L_{\rm{g}}}}}} \right)} \over {1 + \left[{\exp \left({{{n\,z}/{{L_{\rm{g}}}}}} \right) - 1} \right]{{{{\tilde P}_{n,0}}}/{{{\tilde P}_{n,F}}}}}}, \eqno(17)]

which should be taken into account together with (14)[link]. The results of the modeling with (8)[link]–(17)[link] are presented in the following section. The phenomenological model is flexible: intersectional losses, imposed by harmonic filtering or phase shifters, can be introduced etc. It can be easily implemented in any computer program, such as Mathematica, and it allows instant analysis of FELs.

4. Effect of the third field harmonic on the planar FEL radiation

Using our new formulation of the total FEL power, [{P_{L,n}} + {Q_n} + {\tilde Q_n}], we modeled several well documented FEL experiments; below we present some examples, comparisons with the measurements and numerical simulations. We modeled an LCLS experiment, where the radiation at λ1 = 0.15 nm was produced in the FEL, built with 17 undulators, each 3.4 m long, with 15 cm gaps between them, k = 3.5, λu = 3 cm. The electron energy was E = 13.6 GeV, the energy spread σe = 1 × 10−4, the emittance x,y = 0.4 µm rad [see Emma et al. (2010[Emma, P. et al. (2010). Nat. Photon. 4, 641-647.]) for details]. The saturated power in our model was ≃20 GW, the gain length Lg = 3.7 m, the saturation length Ls ≃ 56.5 m of pure undulators; Ls ≃ 60 m, including the gaps. The measurements (Ratner et al., 2011[Ratner, D., Brachmann, A., Decker, F. J., Ding, Y., Dowell, D., Emma, P., Fisher, A., Frisch, J., Gilevich, S., Huang, Z., Hering, P., Iverson, R., Krzywinski, J., Loos, H., Messerschmidt, M., Nuhn, H. D., Smith, T., Turner, J., Welch, J., White, W. & Wu, J. (2011). Phys. Rev. ST Accel. Beams, 14, 060701.]) gave the power rate of high harmonics as 0.2 to <2% of the fundamental, which included all high harmonic contributions. The fifth harmonic power was estimated at ∼0.1 of the power of the third harmonic; the second harmonic was not registered in the experiment. Our modeling results and the experimental values agree very well.

Soft X-rays, λ1 = 1.5 nm, were produced in the LCLS experiment for E = 4.3 GeV, I0 = 1 kA, σe = 3 × 10−4, x,y = 0.4 mm mrad. In this case the measured power of the third harmonic was 2–3% of the fundamental, the fifth harmonic was estimated at ∼0.1 of the third harmonic power and the second harmonic power was <0.1%. A comparison of the results of our modeling with the experimental range is presented in Fig. 6[link]. The harmonic powers are within or close to the experimental range, denoted by the shadowed areas on the right in Fig. 6[link]. The effect of the third undulator field harmonic on the radiated UR harmonics is shown in Fig. 6[link], where we omitted the noise contribution to show pure power growth. Note the four-stage evolution of the harmonic powers, described by our model: the lethargy region <5 m is followed by the independent harmonic growth (13)[link], after 15 m the non-linear generation (17)[link] develops until the first saturation at ∼20 m, and then the growth still proceeds (14)[link] until the final saturation power is reached.

[Figure 6]
Figure 6
Effect of the third undulator field harmonic on the FEL power in the low-energy LCLS experiment with E = 4.3 GeV, I0 = 1 kA, σe = 3 × 10−4, x,y = 0.4 mm mrad, β = 15 m, λu = 3 cm, k = 3.5. Modeled power for harmonics: n = 1 (red), n = 2 (orange), n = 3 (green), n = 5 (blue); d = −0.3 (dashed lines), d = +0.3 (dotted lines). The experimental saturated power range for harmonics is denoted by shadowed areas.

For d = −0.3 (dashed lines in Fig. 6[link]) we obtained some shorter gain and saturation lengths, a slightly stronger fundamental and slightly weaker high harmonics. For d = +0.3 (dotted lines in Fig. 6[link]), the effect was the opposite. It was noticeable more for the gain length than for the saturated harmonic powers, although the latter changed by ∼25%. The second FEL harmonic was much weaker than the fifth, though its saturated power was higher than the initial power of the fundamental tone.

In the LEUTL FEL experiment (Milton et al., 2001[Milton, S. V., Gluskin, E., Arnold, N. D., Benson, C., Berg, W., Biedron, S. G., Borland, M., Chae, Y. C., Dejus, R. J., Den Hartog, P. K., Deriy, B., Erdmann, M., Eidelman, Y. I., Hahne, M. W., Huang, Z., Kim, K. J., Lewellen, J. W., Li, Y., Lumpkin, A. H., Makarov, O., Moog, E. R., Nassiri, A., Sajaev, V., Soliday, R., Tieman, B. J., Trakhtenberg, E. M., Travish, G., Vasserman, I. B., Vinokurov, N. A., Wang, X. J., Wiemerslage, G. & Yang, B. X. (2001). Science, 292, 2037-2041.]) the radiation at λ1 = 385 nm was produced by the current I0 = 184 A of electrons with γ = 500. Our modeling agrees well with the experimental results: the saturation power 0.1 GW, length Ls ≃ 15 m and gain Lg = 0.8 m are all well reproduced. The harmonic powers reach saturation in two stages and stay within the experimental range. The effect of the third field harmonic is similar to that in Fig. 6[link] and we omit it for brevity.

Similarly good was the match with the SPARC experiment (Giannessi et al., 2011[Giannessi, L. et al. (2011). Phys. Rev. ST Accel. Beams, 14, 060712.]), where quite low energy electrons with γ = 297 emitted radiation at 0.5 µm. The phenomenological modeling yields a pure undulator FEL length Ls = 13.3 m and Lg = 0.64 m; this agrees with the measurements of Giannessi et al. (2011[Giannessi, L. et al. (2011). Phys. Rev. ST Accel. Beams, 14, 060712.]), with GENESIS numerical simulations by Alesini et al. (2004[Alesini, D., Bertolucci, S., Biagini, M. E., Biscari, C., Boni, R., Boscolo, M., Castellano, M., Clozza, A., Di Pirro, G., Drago, A., Esposito, A., Ferrario, M., Fusco, V., Gallo, A., Ghigo, A., Guiducci, S., Incurvati, M., Ligi, C., Marcellini, F., Migliorati, M., Milardi, C., Mostacci, A., Palumbo, L., Pellegrino, L., Preger, M., Raimondi, P., Ricci, R., Sanelli, C., Serio, M., Sgamma, F., Spataro, B., Stecchi, A., Stella, A., Tazzioli, F., Vaccarezza, C., Vescovi, M., Vicario, C., Zobov, M., Alessandria, F., Bacci, A., Boscolo, I., Broggi, F., Cialdi, S., DeMartinis, C., Giove, D., Maroli, C., Mauri, M., Petrillo, V., Romè, M., Serafini, L., Levi, D., Mattioli, M., Medici, G., Catani, L., Chiadroni, E., Tazzari, S., Bartolini, R., Ciocci, F., Dattoli, G., Doria, A., Flora, F., Gallerano, G. P., Giannessi, L., Giovenale, E., Messina, G., Mezi, L., Ottaviani, P. L., Pagnutti, S., Picardi, L., Quattromini, M., Renieri, A., Ronsivalle, C., Cianchi, A., Angelo, A. D., Di Salvo, R., Fantini, A., Moricciani, D., Schaerf, C. & Rosenzweig, J. B. (2004). Nucl. Instrum. Methods Phys. Res. A, 528, 586-590.]) and with our own numerical simulations. Details of the above examples are given by Zhukovsky (2019[Zhukovsky, K. V. (2019). Results Phys. 13, 102248.]).

We modeled FEL experiments at the SPring-8 X-ray source in its upgraded (Owada et al., 2018[Owada, S., Togawa, K., Inagaki, T., Hara, T., Tanaka, T., Joti, Y., Koyama, T., Nakajima, K., Ohashi, H., Senba, Y., Togashi, T., Tono, K., Yamaga, M., Yumoto, H., Yabashi, M., Tanaka, H. & Ishikawa, T. (2018). J. Synchrotron Rad. 25, 282-288.]) and original (Shintake et al., 2009[Shintake, T. et al. (2009). Phys. Rev. ST Accel. Beams, 12, 070701.]) setups. The FEL power evolution in the SACLA FEL experiment (Owada et al., 2018[Owada, S., Togawa, K., Inagaki, T., Hara, T., Tanaka, T., Joti, Y., Koyama, T., Nakajima, K., Ohashi, H., Senba, Y., Togashi, T., Tono, K., Yamaga, M., Yumoto, H., Yabashi, M., Tanaka, H. & Ishikawa, T. (2018). J. Synchrotron Rad. 25, 282-288.]) with the current I = 120 A, γ = 1570, σe = 3 × 10−4, x,yn = 1 mm mrad, λu = 1.8 cm, k = 2.1 is shown in Fig. 7[link]. We obtained a gain length Lg = 1 m and saturation length Ls = 12.7 m, as reported by Owada et al. (2018[Owada, S., Togawa, K., Inagaki, T., Hara, T., Tanaka, T., Joti, Y., Koyama, T., Nakajima, K., Ohashi, H., Senba, Y., Togashi, T., Tono, K., Yamaga, M., Yumoto, H., Yabashi, M., Tanaka, H. & Ishikawa, T. (2018). J. Synchrotron Rad. 25, 282-288.]); the harmonic powers for the radiation at λ1 = 12 nm, λ3 = 4 nm, λ5 = 2.4 nm are PF,n ≃ 1 × 108, 1 × 106, 8 × 104 W. The rate PF,3/PF,1 ≃ 0.9% agrees quite well with the 0.5% reported by Owada et al. (2018[Owada, S., Togawa, K., Inagaki, T., Hara, T., Tanaka, T., Joti, Y., Koyama, T., Nakajima, K., Ohashi, H., Senba, Y., Togashi, T., Tono, K., Yamaga, M., Yumoto, H., Yabashi, M., Tanaka, H. & Ishikawa, T. (2018). J. Synchrotron Rad. 25, 282-288.]) as well as PF,5/PF,3 ≃ 7%. The effect of the third undulator field harmonic with d = ±0.3 in (1)[link] on the FEL radiation was insignificant in this experimental setup; it has been omitted in Fig. 7[link].

[Figure 7]
Figure 7
FEL harmonic power evolution in the SACLA FEL experiment with I = 120 A, γ = 1570, σe = 3 × 10−4, x,yn = 1 mm mrad, λu = 1.8 cm, k = 2.1. Harmonics: n = 1 (red), n = 3 (green), n = 5 (blue), n = 2 (orange dashed), n = 4 (violet dotted).

In SPring-8 installations the undulator parameter k varies over a wide range. We modeled another experimental setup (Shintake et al., 2009[Shintake, T. et al. (2009). Phys. Rev. ST Accel. Beams, 12, 070701.]) with k = 0.7, λu = 1.5 cm, I = 300 A, γ = 489, σe = 2 × 10−4, x,yn = 2.7 mm mrad, λ1 = 39 nm, λ3 = 13 nm, λ5 = 8 nm (see the FEL power in Fig. 8[link]).

[Figure 8]
Figure 8
FEL harmonic power evolution in the SPring-8 FEL experiment with I = 300 A, γ = 489, σe = 2 × 10−4, x,yn = 2.7 mm mrad, λu = 1.5 cm, k = 0.7. Harmonics: n = 1 (red), n = 3 (green), n = 5 (blue), n = 2 (orange). d = 0 (solid lines), d = −0.3 (dashed lines), d = 0.3 (dotted lines).

In Fig. 8, solid lines describe radiated harmonics from the FEL undulator with an ideal sinusoidal field, d = 0. The additional third undulator field harmonic strongly influences the FEL harmonic powers in this setup (see Fig. 8[link]). The third FEL harmonic power reaches 160 kW for d = −0.3, 55 kW for d = 0, and just 7 kW for d = 0.3; the variation is ∼200%. The fifth FEL harmonic is weak; it does not develop for d = 0.3 and it reaches 0.5 kW for d = −0.3. The first and second harmonics are almost not affected (see Fig. 8[link]).

5. Effect of the third field harmonic on the elliptic FEL radiation

In some elliptic undulators the harmonics of the undulator magnetic field can be significant. Lee et al. (2015[Lee, K., Mun, J., Hee Park, S., Jang, K., Uk Jeong, Y. & Vinokurov, N. A. (2015). Nucl. Instrum. Methods Phys. Res. A, 776, 27-33.]) studied a bi-harmonic undulator numerically; the amplitude of the main undulator field was 9.7 kG and the amplitude of the third field harmonic was 0.8 kG. The magnetic field in the undulator was

[{\bf{H}} = {H_0}\left[\matrix{ \sin ({k_\lambda }z) - d\sin (h{k_\lambda }z) \cr \cos ({k_\lambda }z) + d\cos (h{k_\lambda }z) \cr 0} \right], \eqno(18)]

the undulator period was λ = 2.3 cm, k = 2.21622, h = 3, d = 0.0825. The wavelength of the UR from the undulator with the field (18)[link] is given by (6)[link], where keff 2 = k 2[1+(d2/h2)]. We have performed rigorous analytical calculations and obtained the Bessel functions for this undulator. The radiation integral for the undulator field (18)[link] yields the following generalized Bessel functions,

[\eqalignno{ J_n^{\,h}\left({{\xi_1},{\xi_2},{\xi_3},{\xi_4},{\xi_5}}\right) = {}& {{1}\over{2\pi}} \int\limits_{-\pi}^\pi {\rm{d}}\alpha \exp \Big( i \Big\{ n\alpha+\xi_1\cos\alpha \cr& + \xi_2\cos\left(h\alpha\right) - \xi_3\sin\alpha + \xi_4\sin\left(h\alpha\right) \cr& - \xi_5\sin\left[\left(h+1\right)\alpha\right] \Big\} \Big), & (19)}]

[\eqalign{ {\xi_1} & = {{2nk\gamma\theta\cos\phi}\over{1+{k^2}{{\left[{1+{{\left({d/h}\right)}^2}+{\gamma^2}{\theta^2}}\right]}}}}, \cr {\xi_2} & = {{d}\over{h^2}}\,{\xi_1}, \quad {\xi_3}={\xi_1}\tan\phi, \quad {\xi_4} = {{d}\over{h^2}}\,{\xi_1}\tan\phi, \cr {\xi_5} & ={{2ndk^2}\over{h\left(h+1\right){{\left\{{1+{k^2}\left[{1+{{\left({d/h}\right)}^2}+{\gamma^2}{\theta^2}}\right]}\right\}}}}}. } \eqno(20)]

The UR intensity is given by (7)[link], where keff 2 = k2[1+(d2/h2)]. The generalized Bessel functions (19)[link] yield the following amplitudes for the spontaneous UR in the angle θ off the axis,

[{T_{n\semi x}} = {{2\gamma } \over k}\theta \cos \phi\,\, J_n^{\,h} + i\left({J_{n + 1}^{\,h} \!- J_{n - 1}^{\,h}} \right) + i{d \over h}\left({J_{n + 1}^{\,h} \!- J_{n - h}^{\,h}} \right), \eqno(21)]

[{T_{n\semi y}} = {{2\gamma } \over k}\,\theta \sin \phi\,\, J_n^{\,h} - \left({J_{n + 1}^{\,h} + J_{n - 1}^{\,h}} \right) + {d \over h}\left({J_{n + h}^{\,h} + J_{n - h}^{\,h}} \right). \eqno(22)]

The intensities of the spontaneous UR in the undulator (18)[link] with the data taken from Lee et al. (2015[Lee, K., Mun, J., Hee Park, S., Jang, K., Uk Jeong, Y. & Vinokurov, N. A. (2015). Nucl. Instrum. Methods Phys. Res. A, 776, 27-33.]) are shown in Fig. 9[link] for d = 0.0825 and d = 0.3 in the upper and lower plots, respectively.

[Figure 9]
Figure 9
Spontaneous UR harmonic intensity in the undulator (18)[link] for h = 3, d = 0.0825 (top plot) and d = 0.3 (bottom plot) (in relative units).

The second harmonic is evident in the UR spectrum; its power is 8.7% of the fundamental tone; ideally, only the first harmonic should be radiated by the helical undulator on the axis. Note also that the fifth harmonic is stronger than the third; this is due to the third undulator field harmonic with amplitude d in (18)[link]. For d = 0.3 its power is 15.5% of the fundamental (see lower plot in Fig. 9[link]). The Bessel coefficients are [{f_{n\semi x,y}}] = [|{{T_{n\semi x,y}}}|]. On the undulator axis θ = 0, only the ξ5 argument survives in [J_n^{\,h}({{\xi _i}})] and we obtain (21)[link] and (22)[link] with [J_n^{\,h}({{\xi_5}})] = [\textstyle\int_{-\pi}^\pi {\rm{d}}\alpha \exp(i\{n\alpha-\xi_5\sin[(h+1)\alpha]\})/2\pi]. For d = 0 we obtain a common result for the spiral undulator: [{f_{1\semi x,y}}] = 1 and [{f_{n \ne 1}}] = 0.

We have applied the phenomenological FEL model to describe the evolution of the harmonic power in the FEL with the bi-harmonic helical undulator (18)[link]. We considered the beam of the LCLS installation with the low-energy value, E = 4.3 GeV, and the SACLA beam with E = 800 MeV, where the planar undulator with close value of k was employed. The modeling data are the following: γ = 8400, PE = 4292 GW, J = 2.23 × 1011 A, Σbeam = 4.49 × 10−9 m2, I0 = 1 kA, σe = 0.0003, n = 0.4 × 10−6 µm rad, β = 15 m, ζ = 1.05, k = 2.21622, h = 3, λu = 2.3 cm, Ls = 24.5 m, Lg = 1.5 m, λ1 = 0.97 nm, λ2 = 0.49 nm, λ3 = 0.32 nm, λ4 = 0.24 nm, λ5 = 0.19 nm.

For d = 0.3,

[\eqalign{f_{n\semi y,x} & = \{0.9958, 0.0550, 0.0380, 0.0162, 0.0984\}, \cr \rho_{n\semi y,x} & \simeq \{0.00080, 0.00011, 0.00008, 0.00005, 0.00017\}, \cr P_{n,y,x,F} & \simeq \{4.4\!\times10^9, 44.3\times10^3, 4.41\times10^3, 4.4, 211\!\times10^3\}\,{\rm{W}}. }]

For d = 0.08247,

[\eqalign{ f_{n\semi y,x} & = {0.9980,0.0557,0.0109,0.0047,0.0275}, \cr \rho_{n\semi y,x} & \simeq \{0.00080,0.00011,0.00003,0.00002,0.00007\}, \cr P_{n,y,x,F} & \simeq \{4.45\times10^9, 47.3\times10^3, 0, 04, 560\}\,\,{\rm{W}}. }]

The simulations of the FEL power evolution along the undulators for d = 0.08247 and for d = 0.3 are shown in Fig. 10[link].

[Figure 10]
Figure 10
Harmonic power evolution in the cos–sin spiral undulator FEL with the field (18)[link] for γ = 1570, I0 = 120 A, n = 10−6 mm mrad, β = 0.37 m, k = 2.216, h = 3, λu = 2.3 cm; both x- and y-polarization have the same power. Harmonics: n = 1 (red), n = 2 (yellow), n = 3 (green), n = 4 (green dashed), n = 5 (blue dotted). Undulator with d = 0.0824742 (left plot) and d = 0.3 (right plot).

The power of the fundamental FEL harmonic is the same for x- and y-polarizations: ∼4 GW. Note in Fig. 10[link] that the powers of the high harmonics are rather weak, but for the fifth harmonic the power reaches 0.2 MW for d = 0.3 and 0.5 kW for d = 0.08247. The second harmonic has a power of ∼45 kW. It is evident upon comparison of the plots in Fig. 10[link] that the third and the fifth FEL harmonics are stronger in the undulator (18)[link] for higher values of d, i.e. for stronger undulator field harmonics. The bunching evolution, corresponding to the FEL power evolution in the right-hand plot in Fig. 10[link], is demonstrated in Fig. 11[link].

[Figure 11]
Figure 11
Bunching evolution in the cos–sin spiral undulator FEL with the field (18)[link] for γ = 1570, I0 = 120 A, n = 10−6 mm mrad, β = 0.37 m, k = 2.216, h = 3, d = 0.3, λu = 2.3 cm. Harmonics: n = 1 (red), n = 2 (yellow), n = 3 (green), n = 4 (green dashed), n = 5 (blue dotted).

We also studied the radiation from the FEL with the bi-harmonic elliptic undulator (18)[link] and SACLA installation beam. Assuming SACLA standard focusing, β = 5 m, the second harmonic is quite weak (see Fig. 12[link]); the fifth FEL harmonic is weak, but it is amplified due to the third undulator field harmonic [see (18)[link]], especially for d = 0.3 (see blue dotted lines in Figs. 12[link] and 10[link]). The modeling data for the FEL with the SACLA beam and the undulator (18)[link] for d = 0.08247 are as follows: γ = 1570, PE = 96.27 GW, J = 6 × 109 A, Σbeam = 2 × 10−8 m2, I0 = 120 A, σe = 0.0002, n = 10−6 µm rad, β = 5 m, ζ = 1.05, k = 2.21622, h = 3, d = 0.08247, λu = 2.3 cm, Ls = 11.8 m, Lg = 0.97 m, λ1 = 27.6 nm, λ2 = 13.8 nm, λ3 = 9.2 nm, λ4 = 6.90 nm, λ5 = 5.52 nm,

[\eqalign{ f_{n\semi y,x} & = \{0.9974,0.0657,0.0113,0.0056,0.0271\}, \cr \rho_{n\semi y,x} & \simeq \{0.00117,0.00016,0.00004,0.000025,0.00009\}, \cr P_{n,y,x,F} & \simeq \{1.37\times10^8, 28.7\times10^3, 0.8, 0, 220\}\,\,{\rm{W}}. } ]

[Figure 12]
Figure 12
Harmonic power evolution in the cos–sin elliptic undulator FEL with the field (18)[link] for the SACLA beam: β = 5 m, k = 2.21622, h = 3, λu = 2.3 cm; both x- and y-polarization have the same power. Harmonics: n = 1 (red), n = 2 (yellow), n = 3 (green), n = 4 (green dashed), n = 5 (blue dotted). Undulator with d = 0.0824742 (left plot) and d = 0.3 (right plot).

The gain length of the considered bi-harmonic elliptic FEL is Lg ≃ 1 m and the saturation length is Ls ≃ 12 m independent of d. The saturated power of the fundamental tone reaches 0.14 GW. Already for d ≃ 0.08 the fifth UR harmonic gets some boost (see left-hand plot in Fig. 12[link]); for d = 0.3 its power exceeds 10 kW and the third UR harmonic appears (see right-hand plot in Fig. 12[link]). Thus, a relatively weak third undulator field harmonic with d ≃ 0.1–0.3 and off-axis effects can generate noticeable second and fifth UR harmonics of the spontaneous and stimulated radiation. The effect of the undulator field harmonic is stronger on the spontaneous UR than on the FEL radiation. The fifth UR harmonic is stronger than the third.

6. Conclusions

We analyzed the influence of the third harmonic of the undulator field on the spontaneous and stimulated radiation for planar and elliptic undulators. We obtained exact analytical expressions for the Bessel coefficients. They depend on the undulator parameter k and on the third field harmonic rate d in (1)[link] and in (18)[link]. For the planar undulator we found that if k < 1.5 then the third field harmonic with d < 0 (negative phase) enhances UR harmonics with n = 3, 5,…, and for d > 0 (positive phase) the power of the high harmonics decreases (see Fig. 1[link]). If k > 1.5, then the effect of the magnetic field harmonic in (1)[link] is the opposite: high UR harmonics n = 3, 5,… are stronger for d > 0 and weaker for d < 0 (see Fig. 1[link]). This observation corrects and clarifies previous reports in the literature (Zhukovsky, 2015a[Zhukovsky, K. V. (2015a). Moscow Univ. Phys. 70, 232-239.],b[Zhukovsky, K. (2015b). Opt. Commun. 353, 35-41.], 2016a[Zhukovsky, K. (2016a). Laser Part. Beams 34, 447.],b[Zhukovsky, K. (2016b). Nucl. Instrum. Methods Phys. Res. B, 369, 9-14.]; Jeevakhan & Mishra, 2011[Jeevakhan, H. & Mishra, G. (2011). Nucl. Instrum. Methods Phys. Res. A, 656, 101-106.]; Mishra et al., 2009[Mishra, G., Gehlot, M. & Hussain, J. K. (2009). Nucl. Instrum. Methods Phys. Res. A, 603, 495-503.]; Jia, 2011[Jia, Q. (2011). Phys. Rev. ST Accel. Beams, 14, 060702.]).

The effect of the energy spread σe ≃ 10−4 on the UR is small; for σe ≃ 10−3, high UR harmonic power decreases as expected (see Fig. 2[link]). All of the above results were confirmed by numerical simulations using the SPECTRA program: see Figs. 3[link] and 4[link].

We further developed the phenomenological FEL model, including the description of the harmonic behavior around the saturation region and the multi-stage saturation, which matches the experiments. We studied the harmonic generation in several setups of SPring-8, SACLA and LCLS FEL installations. Our modeling (see Fig. 7[link]) agreed with the experimental measurements, with our numerical simulations in PERSEO (Zhukovsky & Kalitenko, 2019c[Zhukovsky, K. & Kalitenko, A. M. (2019c). Radiophys. Quantum Electron. 62, 52-64.],d[Zhukovsky, K. & Kalitenko, A. M. (2019d). Russ. Phys. J. 62, 354-362.]) and with the results using the GENESIS program. The match for the third and fifth harmonic powers was remarkably good. The second harmonic power had fairly good agreement with the experiments too.

We explored the influence of the third undulator field harmonic on the FEL radiation. For a planar undulator with k ≃ 2 the effect is small for any d; for k ≃ 3.5 it is noticeable for d = ±0.3. For k ≃ 1 and, in particular, for k < 1, the effect of the second field in (1)[link] can be significant. We studied the SPring-8 FEL with γ = 489, σe = 2 × 10−4, x,yn = 2.7 mm mrad, k = 0.7, λu = 1.5 cm, I = 300 A, fundamental wavelength λ1 = 40 nm (Shintake et al., 2009[Shintake, T. et al. (2009). Phys. Rev. ST Accel. Beams, 12, 070701.]); the change of the power of the third harmonic is ∼200% for d = ±0.3 (see Fig. 8[link]). The change of the harmonic power for n = 5 can be ∼102 times (see Fig. 8[link]). The second FEL harmonic is influenced mostly by the finite beam size and off-axis effect. The newly updated SACLA setup is not sensitive to the third undulator field harmonic.

We studied the third field harmonic effect in an elliptic undulator (18)[link]. Even a relatively weak third undulator field harmonic, d ≃ 0.08, in (18)[link] gives rise to a noticeable fifth UR harmonic (see Figs. 9[link] and 10[link]). The fifth UR harmonic is stronger than the third. Their powers further increase by two orders of magnitude if d = 0.3. Due to the finite electron beam size and divergence, the radiation of the second harmonic can be significant; it can prevail over the fifth harmonic, whose content is ∼0.01% (see Fig. 12[link]).

The above analysis may help to identify the degree of harmonic presence in FEL radiation, attributed to the undulator field harmonics.

Acknowledgements

We are grateful to Professor A. V.Borisov for useful notes and to A. M. Kalitenko for the SPECTRA data and his help in checking some of the Bessel functions.

References

First citationAlesini, D., Bertolucci, S., Biagini, M. E., Biscari, C., Boni, R., Boscolo, M., Castellano, M., Clozza, A., Di Pirro, G., Drago, A., Esposito, A., Ferrario, M., Fusco, V., Gallo, A., Ghigo, A., Guiducci, S., Incurvati, M., Ligi, C., Marcellini, F., Migliorati, M., Milardi, C., Mostacci, A., Palumbo, L., Pellegrino, L., Preger, M., Raimondi, P., Ricci, R., Sanelli, C., Serio, M., Sgamma, F., Spataro, B., Stecchi, A., Stella, A., Tazzioli, F., Vaccarezza, C., Vescovi, M., Vicario, C., Zobov, M., Alessandria, F., Bacci, A., Boscolo, I., Broggi, F., Cialdi, S., DeMartinis, C., Giove, D., Maroli, C., Mauri, M., Petrillo, V., Romè, M., Serafini, L., Levi, D., Mattioli, M., Medici, G., Catani, L., Chiadroni, E., Tazzari, S., Bartolini, R., Ciocci, F., Dattoli, G., Doria, A., Flora, F., Gallerano, G. P., Giannessi, L., Giovenale, E., Messina, G., Mezi, L., Ottaviani, P. L., Pagnutti, S., Picardi, L., Quattromini, M., Renieri, A., Ronsivalle, C., Cianchi, A., Angelo, A. D., Di Salvo, R., Fantini, A., Moricciani, D., Schaerf, C. & Rosenzweig, J. B. (2004). Nucl. Instrum. Methods Phys. Res. A, 528, 586–590.  Web of Science CrossRef CAS Google Scholar
First citationDattoli, G., Giannessi, L., Ottaviani, P. L. & Ronsivalle, C. (2004). J. Appl. Phys. 95, 3206–3210.  Web of Science CrossRef CAS Google Scholar
First citationDattoli, G. & Ottaviani, P. L. (2002). Opt. Commun. 204, 283–297.  Web of Science CrossRef CAS Google Scholar
First citationDattoli, G., Ottaviani, P. L. & Pagnutti, S. (2005b). J. Appl. Phys. 97, 113102.  Web of Science CrossRef Google Scholar
First citationDattoli, G., Ottaviani, P. L. & Renieri, A. (2005a). Laser Part. Beams, 23, 303.  Web of Science CrossRef Google Scholar
First citationEmma, P. et al. (2010). Nat. Photon. 4, 641–647.  Web of Science CrossRef CAS Google Scholar
First citationGiannessi, L. et al. (2011). Phys. Rev. ST Accel. Beams, 14, 060712.  Web of Science CrossRef Google Scholar
First citationHuang, Z. & Kim, K.-J. (2007). Phys. Rev. ST Accel. Beams, 10, 034801.  Web of Science CrossRef Google Scholar
First citationJeevakhan, H. & Mishra, G. (2011). Nucl. Instrum. Methods Phys. Res. A, 656, 101–106.  Web of Science CrossRef CAS Google Scholar
First citationJia, Q. (2011). Phys. Rev. ST Accel. Beams, 14, 060702.  Web of Science CrossRef Google Scholar
First citationLee, K., Mun, J., Hee Park, S., Jang, K., Uk Jeong, Y. & Vinokurov, N. A. (2015). Nucl. Instrum. Methods Phys. Res. A, 776, 27–33.  Web of Science CrossRef CAS Google Scholar
First citationMcNeil, B. W. J. & Thompson, N. R. (2010). Nat. Photon. 4, 814–821.  Web of Science CrossRef CAS Google Scholar
First citationMargaritondo, G. & Rebernik Ribic, P. (2011). J. Synchrotron Rad. 18, 101–108.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMilton, S. V., Gluskin, E., Arnold, N. D., Benson, C., Berg, W., Biedron, S. G., Borland, M., Chae, Y. C., Dejus, R. J., Den Hartog, P. K., Deriy, B., Erdmann, M., Eidelman, Y. I., Hahne, M. W., Huang, Z., Kim, K. J., Lewellen, J. W., Li, Y., Lumpkin, A. H., Makarov, O., Moog, E. R., Nassiri, A., Sajaev, V., Soliday, R., Tieman, B. J., Trakhtenberg, E. M., Travish, G., Vasserman, I. B., Vinokurov, N. A., Wang, X. J., Wiemerslage, G. & Yang, B. X. (2001). Science, 292, 2037–2041.  Web of Science CrossRef PubMed Google Scholar
First citationMishra, G., Gehlot, M. & Hussain, J. K. (2009). Nucl. Instrum. Methods Phys. Res. A, 603, 495–503.  Web of Science CrossRef CAS Google Scholar
First citationOwada, S., Togawa, K., Inagaki, T., Hara, T., Tanaka, T., Joti, Y., Koyama, T., Nakajima, K., Ohashi, H., Senba, Y., Togashi, T., Tono, K., Yamaga, M., Yumoto, H., Yabashi, M., Tanaka, H. & Ishikawa, T. (2018). J. Synchrotron Rad. 25, 282–288.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPellegrini, C. (2016). Phys. Scr. T169, 014004.  Web of Science CrossRef Google Scholar
First citationPellegrini, C., Marinelli, A. & Reiche, S. (2016). Rev. Mod. Phys. 88, 015006.  Web of Science CrossRef Google Scholar
First citationRatner, D., Brachmann, A., Decker, F. J., Ding, Y., Dowell, D., Emma, P., Fisher, A., Frisch, J., Gilevich, S., Huang, Z., Hering, P., Iverson, R., Krzywinski, J., Loos, H., Messerschmidt, M., Nuhn, H. D., Smith, T., Turner, J., Welch, J., White, W. & Wu, J. (2011). Phys. Rev. ST Accel. Beams, 14, 060701.  Web of Science CrossRef Google Scholar
First citationSaldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. (2000). The Physics of Free Electron Lasers. Springer.  Google Scholar
First citationShintake, T. et al. (2009). Phys. Rev. ST Accel. Beams, 12, 070701.  Web of Science CrossRef Google Scholar
First citationTanaka, T. (2014). Phys. Rev. ST Accel. Beams, 17, 060702.  Web of Science CrossRef Google Scholar
First citationTanaka, T. & Kitamura, H. (2001). J. Synchrotron Rad. 8, 1221–1228.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhukovsky, K. V. (2015a). Moscow Univ. Phys. 70, 232–239.  Web of Science CrossRef Google Scholar
First citationZhukovsky, K. (2015b). Opt. Commun. 353, 35–41.  Web of Science CrossRef CAS Google Scholar
First citationZhukovsky, K. (2016a). Laser Part. Beams 34, 447.  Web of Science CrossRef Google Scholar
First citationZhukovsky, K. (2016b). Nucl. Instrum. Methods Phys. Res. B, 369, 9–14.  Web of Science CrossRef CAS Google Scholar
First citationZhukovsky, K. (2017a). J. Phys. D Appl. Phys. 50, 505601.  Web of Science CrossRef Google Scholar
First citationZhukovsky, K. J. (2017b). J. Appl. Phys. 122, 233103.  Web of Science CrossRef Google Scholar
First citationZhukovsky, K. V. (2018). Russ. Phys. J. 60, 1630–1637.  Web of Science CrossRef CAS Google Scholar
First citationZhukovsky, K. V. (2019). Results Phys. 13, 102248.  Web of Science CrossRef Google Scholar
First citationZhukovsky, K. & Kalitenko, A. (2019a). J. Synchrotron Rad. 26, 159–169.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhukovsky, K. & Kalitenko, A. (2019b). J. Synchrotron Rad. 26, 605–606.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhukovsky, K. & Kalitenko, A. M. (2019c). Radiophys. Quantum Electron. 62, 52–64.  Google Scholar
First citationZhukovsky, K. & Kalitenko, A. M. (2019d). Russ. Phys. J. 62, 354–362.  Web of Science CrossRef Google Scholar
First citationZhukovsky, K. & Potapov, I. (2017). Laser Part. Beams 35, 326.  Web of Science CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoJOURNAL OF
SYNCHROTRON
RADIATION
ISSN: 1600-5775
Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds