research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
SYNCHROTRON
RADIATION
ISSN: 1600-5775

Spexwavepy: an open-source Python package for X-ray wavefront sensing using speckle-based techniques

crossmark logo

aNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China, and bDiamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
*Correspondence e-mail: hongchang.wang@diamond.ac.uk

Edited by M. Zangrando, IOM-CNR and Elettra-Sincrotrone, Italy (Received 29 April 2024; accepted 17 June 2024; online 30 July 2024)

This article forms part of a virtual special issue containing papers presented at the PhotonMEADOW2023 workshop.

In situ wavefront sensing plays a critical role in the delivery of high-quality beams for X-ray experiments. X-ray speckle-based techniques stand out among other in situ techniques for their easy experimental setup and various data acquisition modes. Although X-ray speckle-based techniques have been under development for more than a decade, there are still no user-friendly software packages for new researchers to begin with. Here, we present an open-source Python package, spexwavepy, for X-ray wavefront sensing using speckle-based techniques. This Python package covers a variety of X-ray speckle-based techniques, provides plenty of examples with real experimental data and offers detailed online documentation for users. We hope it can help new researchers learn and apply the speckle-based techniques for X-ray wavefront sensing to synchrotron radiation and X-ray free-electron laser beamlines.

1. Introduction

Modern synchrotron radiation facilities and X-ray free-electron lasers provide advanced platforms for multidisciplinary researchers around the world to benefit from high-brilliance X-rays. Cutting-edge scientific and industrial demands are driving the desire for continual improvements in X-ray quality. Along with the various endeavours undertaken to fulfil this desire, continuous progress has been made as well in assessing the quality of the wavefront during the transportation of the X-ray beam. As is often quoted as ground truth: `If you can't measure it, you can't improve it'. There have been many efforts to improve the accuracy and precision of both ex situ visible light metrology (Takacs & Qian, 1997[Takacs, P. & Qian, S. (1997). Proc. SPIE, 3152, 160-167.]; Yamauchi et al., 2003[Yamauchi, K., Yamamura, K., Mimura, H., Sano, Y., Saito, A., Ueno, K., Endo, K., Souvorov, A., Yabashi, M., Tamasaku, K., Ishikawa, T. & Mori, Y. (2003). Rev. Sci. Instrum. 74, 2894-2898.]; Siewert et al., 2008[Siewert, F., Lammert, H. & Zeschke, T. (2008). Modern Developments in X-ray and Neutron Optics, edited by A. Erko, M. Idir, T. Krist & A. G. Michette, pp. 193-200. Berlin, Heidelberg: Springer.], 2012[Siewert, F., Buchheim, J., Boutet, S., Williams, G. J., Montanez, P. A., Krzywiński, J. & Signorato, R. (2012). Opt. Express, 20, 4525-4536.]; Alcock et al., 2010, 2016[Alcock, S. G., Nistea, I. & Sawhney, K. (2016). Rev. Sci. Instrum. 87, 051902.][Alcock, S., Sawhney, K., Scott, S., Pedersen, U., Walton, R., Siewert, F., Zeschke, T., Senf, F., Noll, T. & Lammert, H. (2010). Nucl. Instrum. Methods Phys. Res. A, 616, 224-228.]; Assoufid et al., 2013[Assoufid, L., Brown, N., Crews, D., Sullivan, J., Erdmann, M., Qian, J., Jemian, P., Yashchuk, V. V., Takacs, P. Z., Artemiev, N. A., Merthe, D. J., McKinney, W. R., Siewert, F. & Zeschke, T. (2013). Nucl. Instrum. Methods Phys. Res. A, 710, 31-36.]; Nicolas & Martínez, 2013[Nicolas, J. & Martínez, J. C. (2013). Nucl. Instrum. Methods Phys. Res. A, 710, 24-30.]; Idir et al., 2014[Idir, M., Kaznatcheev, K., Dovillaire, G., Legrand, J. & Rungsawang, R. (2014). Opt. Express, 22, 2770-2781.]; Huang et al., 2018[Huang, L., Idir, M., Zuo, C., Wang, T., Tayabaly, K. & Lippmann, E. (2018). Opt. Express, 26, 23278-23286.]; da Silva et al., 2023[Silva, M. B. da, Alcock, S. G., Nistea, I. & Sawhney, K. (2023). Opt. Lasers Eng. 161, 107192.]) and in situ at-wavelength measurements (Hignette et al., 1997[Hignette, O., Freund, A. & Chinchio, E. (1997). Proc. SPIE, 3152, 188-199.]; Yumoto et al., 2006[Yumoto, H., Mimura, H., Matsuyama, S., Handa, S., Sano, Y., Yabashi, M., Nishino, Y., Tamasaku, K., Ishikawa, T. & Yamauchi, K. (2006). Rev. Sci. Instrum. 77, 063712.]; Idir et al., 2010[Idir, M., Mercere, P., Modi, M. H., Dovillaire, G., Levecq, X., Bucourt, S., Escolano, L. & Sauvageot, P. (2010). Nucl. Instrum. Methods Phys. Res. A, 616, 162-171.]; Kewish et al., 2010[Kewish, C. M., Guizar-Sicairos, M., Liu, C., Qian, J., Shi, B., Benson, C., Khounsary, A. M., Vila-Comamala, J., Bunk, O., Fienup, J. R., Macrander, A. T. & Assoufid, L. (2010). Opt. Express, 18, 23420-23427.]; Wang et al., 2011[Wang, H., Sawhney, K., Berujon, S., Ziegler, E., Rutishauser, S. & David, C. (2011). Opt. Express, 19, 16550-16559.]; Sutter et al., 2012[Sutter, J., Alcock, S. & Sawhney, K. (2012). J. Synchrotron Rad. 19, 960-968.]; Assoufid et al., 2016[Assoufid, L., Shi, X., Marathe, S., Benda, E., Wojcik, M. J., Lang, K., Xu, R., Liu, W., Macrander, A. T. & Tischler, J. Z. (2016). Rev. Sci. Instrum. 87, 052004.]; Laundy et al., 2019[Laundy, D., Dhamgaye, V., Moxham, T. & Sawhney, K. (2019). Optica, 6, 1484-1490.]; Moxham et al., 2021[Moxham, T. E. J., Laundy, D., Dhamgaye, V., Fox, O. J. L., Sawhney, K. & Korsunsky, A. M. (2021). Appl. Phys. Lett. 118, 104104.]).

When shining a laser through a diffuser, a 2D random intensity (speckle) pattern appears. The speckle-based techniques use these speckle patterns as probes to retrieve the wavefront information. These techniques have long been used in visible light metrology and other applications (Goodman, 2007[Goodman, J. W. (2007). Speckle Phenomena in Optics: Theory and Applications. Roberts and Company Publishers.], 2015[Goodman, J. W. (2015). Statistical Optics. John Wiley & Sons.]). These techniques were extended to the X-ray region a decade ago by early researchers (Bérujon et al., 2012[Bérujon, S., Ziegler, E., Cerbino, R. & Peverini, L. (2012). Phys. Rev. Lett. 108, 158102.]; Morgan et al., 2012[Morgan, K. S., Paganin, D. M. & Siu, K. K. W. (2012). Appl. Phys. Lett. 100, 124102.]). Since then, X-ray speckle-based techniques have burgeoned (Berujon et al., 2014[Berujon, S., Wang, H., Alcock, S. & Sawhney, K. (2014). Opt. Express, 22, 6438-6446.], 2020a[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020a). J. Synchrotron Rad. 27, 284-292.],b[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020b). J. Synchrotron Rad. 27, 293-304.]; Wang, Kashyap et al., 2015[Wang, H., Kashyap, Y., Laundy, D. & Sawhney, K. (2015). J. Synchrotron Rad. 22, 925-929.], Wang, Sutter et al., 2015[Wang, H., Sutter, J. & Sawhney, K. (2015). Opt. Express, 23, 1605-1614.]; Zhou et al., 2018[Zhou, T., Wang, H., Fox, O. & Sawhney, K. (2018). Opt. Express, 26, 26961-26970.]; Qiao et al., 2020[Qiao, Z., Shi, X., Celestre, R. & Assoufid, L. (2020). Opt. Express, 28, 33053-33067.]; Rebuffi et al., 2023[Rebuffi, L., Shi, X., Qiao, Z., Highland, M. J., Frith, M. G., Wojdyla, A., Goldberg, K. A. & Assoufid, L. (2023). Opt. Express, 31, 21264-21279.]; Shi et al., 2023[Shi, X., Qiao, Z., Pradhan, P., Liu, P., Assoufid, L., Kim, K.-J. & Shvyd'ko, Y. (2023). J. Synchrotron Rad. 30, 1100-1107.]). They stand out due to the relatively simple experimental setup and various data acquisition modes (Hu et al., 2022a[Hu, L., Wang, H., Fox, O. & Sawhney, K. (2022a). J. Synchrotron Rad. 29, 1385-1393.],b[Hu, L., Wang, H., Fox, O. & Sawhney, K. (2022b). Opt. Express, 30, 33259-33273.], 2023[Hu, L., Wang, H., Sutter, J. P. & Sawhney, K. (2023). Opt. Express, 31, 41000-41013.]).

Although X-ray speckle-based techniques have great potential for X-ray wavefront sensing, there are only a few software packages (Berujon et al., 2020b[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020b). J. Synchrotron Rad. 27, 293-304.]; Vo et al., 2021[Vo, N. T., Atwood, R. C., Drakopoulos, M. & Connolley, T. (2021). Opt. Express, 29, 17849-17874.]) currently available for data processing. They either lack well organized documentation and easy-to-use APIs (application programming interfaces) (Berujon et al., 2020b[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020b). J. Synchrotron Rad. 27, 293-304.]) or focus on X-ray imaging rather than the various modes of wavefront sensing techniques (Vo et al., 2021[Vo, N. T., Atwood, R. C., Drakopoulos, M. & Connolley, T. (2021). Opt. Express, 29, 17849-17874.]). In this paper, we present an open-source Python package dedicated to the speckle-based wavefront sensing techniques for X-ray optics. The package is called spexwavepy, which is an abbreviation for the speckle-based X-ray wavefront sensing python package. This package is designed to help new researchers learn and use the speckle-based techniques for X-ray wavefront sensing. It provides rich documentation to cover the various data acquisition modes and aims to teach new users about the data processing of speckle-based techniques from scratch. This Python package can assist users with the data processing of their wavefront sensing experiments.

2. The speckle-based wavefront sensing techniques

A typical experimental setup for hard X-rays is shown in Fig. 1[link]. For hard X-rays, one sheet or several stacked sheets of sandpaper can be used as the diffuser (Hu et al., 2022a[Hu, L., Wang, H., Fox, O. & Sawhney, K. (2022a). J. Synchrotron Rad. 29, 1385-1393.]). Recently, a coded mask to be used as a diffuser for X-ray wavefront sensing has been reported (Shi et al., 2022[Shi, X., Qiao, Z., Highland, M., Frith, M., Rebuffi, L. & Assoufid, L. (2022). Proc. SPIE, 12240, 122400H.]). The diffuser is often mounted on a 2D scannable high-precision stage. Usually, a scintillator is used to convert the incident X-rays to visible light for detection. The whole detecting system is also coupled with a visible-light microscope to improve spatial resolution.

[Figure 1]
Figure 1
Typical setup for the speckle wavefront sensing experiment. This photograph was taken at the Test beamline B16 (Sawhney et al., 2010[Sawhney, K. J. S., Dolbnya, I. P., Tiwari, M. K., Alianelli, L., Scott, S. M., Preece, G. M., Pedersen, U. K., Walton, R. D., Garrett, R., Gentle, I., Nugent, K. & Wilkins, S. (2010). AIP Conf. Proc. 1234, 387-390.]) at Diamond Light Source.

In general, the speckle-based X-ray wavefront sensing methods can be divided into two modes. They depend on whether the reference beam is available or not. If the tested optic focuses the beam weakly, such as a single CRL (compound refractive lens) or even a planar reflecting mirror, the incident beam without the tested optic is used as a reference beam. The images with speckle patterns acquired with and without the tested optic are compared. The data acquisition modes for this type of method are called `differential modes' in other literature (Berujon et al., 2020a[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020a). J. Synchrotron Rad. 27, 284-292.]). In this package, these data acquisition modes are labelled with the suffix `with reference beam'. For a strongly focusing optic such as a curved mirror, the speckle patterns can be very different with and without the tested optic in the beam. In this case, no reference beam is available. The images whose speckle patterns are compared are all taken with the tested optic in the beam. In this package, these data acquisition modes are labelled with the prefix `self-reference'. These modes are called `absolute modes' in other literature (Berujon et al., 2020a[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020a). J. Synchrotron Rad. 27, 284-292.]).

All data acquisition modes trace the shift of a speckle pattern. However, the shift can represent different physical quantities for different experimental methods. In brief, when a reference beam is available, the speckle pattern shift is caused by the first derivative, i.e. the slope, of the measured wavefront. Otherwise, in the self-reference mode, the speckle pattern shift is caused by the second derivative, i.e. the curvature, of the measured wavefront. Another variation of the experimental method is the position of the diffuser. It can be placed upstream or downstream of the tested optic, depending on the type of optic. In general, if there is a reference beam, as in the case of a weakly focusing optic, the shift of the speckle pattern from the reference image to the compared image is due to the local wavefront slope change in the plane of the diffuser for the downstream case and in the optical central position for the upstream case. On the other hand, in the self-reference mode, the shift of the speckle pattern can be attributed to the local wavefront curvature change. Similarly, the curvature change is measured at the position of the diffuser for the downstream case but in the optical central position for the upstream case. Apart from that, the algorithms used to reconstruct the local wavefront curvature for the two cases are also different (Berujon & Ziegler, 2012[Berujon, S. & Ziegler, E. (2012). Opt. Lett. 37, 4464-4466.]; Zhou et al., 2024[Zhou, T., Hu, L. & Wang, H. (2024). J. Synchrotron Rad. 31, 432-437.]). This is in contrast to the case with a reference beam.

Table 1[link] provides a summary of the speckle-based techniques included in this package. We assume the incident beam is a quasi-parallel beam from the synchrotron radiation source going through the beamline without any other optics except one monochromator. If the incident beam is a quasi-spherical wave, some modifications are needed for certain techniques when processing the data. Adaptations to quasi-spherical incident wavefronts are left to the discretion of the users. The speckle-based techniques are very flexible and there are some other experimental methods. For instance, due to special experimental considerations, all the techniques included in spexwavepy keep the detector fixed. As a result, none of the so-called `absolute mode' speckle-based techniques (Berujon et al., 2020a[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020a). J. Synchrotron Rad. 27, 284-292.],b[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020b). J. Synchrotron Rad. 27, 293-304.]) are included in this Python package explicitly. However, we ask the users to compare the `new' data acquisition mode with the existing ones before requiring the developers to implement it. For example, the `absolute mode' XST technique (Berujon et al., 2020a[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020a). J. Synchrotron Rad. 27, 284-292.],b[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020b). J. Synchrotron Rad. 27, 293-304.]) is equivalent to the conventional XST with a reference beam in this package, only replacing the distance between the diffuser and the detector plane with the distance of the movable detector. Comparison with the existing data acquisition methods in this package requires the users to understand the underlying physics of each experiment. These methods have been introduced in the documentation provided with this package.

Table 1
Summary of the speckle-based techniques included in spexwavepy

XST = X-ray speckle tracking. XSS = X-ray speckle scanning. XSVT = X-ray speckle-vector tracking.

Technique Number of images Physical quantity directly measured
Conventional XST One image for both the reference and the sample datasets. Wavefront slope
Self-reference XST Two images for the sample dataset. Wavefront curvature
XSS with reference beam The number of images in both the reference and the sample datasets is the same and is equal to the number of scans. Wavefront slope
Self-reference XSS Sample dataset only. The number of images is equal to the number of scans. Wavefront curvature
XSVT The number of images in both the reference and the sample datasets is the same and is equal to the number of random scans. Wavefront slope

3. Package structure and features

3.1. Modules of spexwavepy

Two Python classes, Imagestack and Tracking, need to be defined in order to use spexwavepy. The two classes are included in the imstackfun and trackfun modules, respectively. Fig. 2[link] summarizes the four modules that make up this Python package. The Imagestack class is the container for the raw data and is the first class that is needed for data processing. Its methods preprocess the raw images before the critical shift tracking of the speckle pattern. This class is then used as input for the Tracking class. The attributes of the Tracking class, such as delayX, delayY, sloX, sloY, curvX, curvY etc. store the reconstructed physical quantities according to the type of data acquisition mode. The corefun and postfun modules provide the auxiliary functions.

[Figure 2]
Figure 2
Modules of spexwavepy. The Imagestack and Tracking classes should be defined in sequence.

3.2. Features of spexwavepy

3.2.1. Data acquisition modes

Spexwavepy includes most reported X-ray speckle-based techniques (see Table 1[link]). Some techniques in the literature may not be explicitly provided in this package. However, some of these are included in spexwavepy under other names just because of the ambiguity in the naming of the techniques, while others do not require a new method to be defined because they deviate only in minor ways from data acquisition modes already in spexwavepy. Even if some novel modes are missing, they are relatively easy to implement by the authors or even the users since the code of this package is modularized and open-source.

3.2.2. Parallelized data processing procedure

The 2D speckle tracking can sometimes be time-consuming. We used the built-in multiprocessing module of Python to parallelize the code to speed up the data processing procedure. The multiprocessing module supports the process-based parallelism. The code can distribute the 2D speckle tracking among the multiple CPUs provided by modern computers. The user needs to define the available number of CPUs in advance. All the multi-core versions of the tracking modes end with the `multi' suffix. The code was designed for Linux, but it may fail in Windows because the multiprocessing modules in these two operating systems fork a new process from its parent in different ways. We are working to extend the usage of parallel computing for the Windows user of this package at present.

3.2.3. Examples and documentation

We developed this Python package to help new researchers learn the speckle-based X-ray wavefront sensing techniques. We hope this package can help researchers to process their data. Although there are some packages for the data processing of speckle-based X-ray wavefront sensing (Berujon et al., 2020a[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020a). J. Synchrotron Rad. 27, 284-292.],b[Berujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020b). J. Synchrotron Rad. 27, 293-304.]), they are far from user-friendly, and they lack detailed documentation and helpful examples. We reckon that being user-friendly is paramount for a package to be used widely. To do that, we provide rich documentation and examples to help users become familiar with this package. Almost all the examples included in the package are excerpted from our previously published paper (Hu et al., 2021[Hu, L., Wang, H., Sutter, J. P. & Sawhney, K. (2021). Opt. Express, 29, 4270-4286.], 2022a[Hu, L., Wang, H., Fox, O. & Sawhney, K. (2022a). J. Synchrotron Rad. 29, 1385-1393.],b[Hu, L., Wang, H., Fox, O. & Sawhney, K. (2022b). Opt. Express, 30, 33259-33273.], 2023[Hu, L., Wang, H., Sutter, J. P. & Sawhney, K. (2023). Opt. Express, 31, 41000-41013.]; Zhou et al., 2024[Zhou, T., Hu, L. & Wang, H. (2024). J. Synchrotron Rad. 31, 432-437.]). In addition, we also shared the experimental data. The users can reproduce the results from the shared data. The online documentation of spexwavepy can be found at https://spexwavepy.readthedocs.io/en/latest/. Fig. 3[link] shows the banner of the online documentation.

[Figure 3]
Figure 3
Banner of the online documentation. Left to right: the raw speckle image after a tested plane mirror, comparison between the self-reference XSS technique and the self-reference XST technique, reconstructed profile of a single CRL.

4. Computational consumption

Spexwavepy has been developed and tested mainly on two Linux workstations. Table 2[link] provides the basic information of the workstations. The 2D speckle tracking can take quite a long time depending on the size of the raw images. It can take more than 1 h if the images are large enough and the code runs on a single CPU. The speckle tracking methods can run on multiple CPUs owing to the Python built-in multiprocessing package. We have developed the multiprocessing version of each function. The multiprocessing package can help to reduce the processing from around 1 h on one CPU to less than 20 min on 16 CPUs. More CPUs will further reduce the processing time.

Table 2
Two workstations used to develop and test spexwavepy

Workstation Operating system Memory Number of CPUs
Intel(R) Xeon(R) CPU E5-2680 v3 at 2.50 GHz Red Hat Enterprise Linux Workstation 7.9 (Maipo) 125 G 24
Intel(R) Xeon(R) CPU E5-2670 v3 at 2.30 GHz Rocky Linux 8.7 125 G 48

5. Example: measurement of the wavefront local curvature after a plane mirror

We use an example code to demonstrate the usage of the spexwavepy package. We measure the wavefront local curvature after a plane mirror in this example. We use the self-reference X-ray speckle scanning (XSS) technique to obtain the wavefront local curvature. Fig. 4[link](a) shows the experimental setup for this technique. The diffuser is downstream of the tested plane mirror. It scans in the x direction for a better spatial resolution along the mirror length. Thus, there will be a series of images. Fig. 4[link](b) shows one raw image in a stack of 301 images.

[Figure 4]
Figure 4
(a) Experiment setup of the self-reference XSS technique. The diffuser scans in the x direction, which is along the mirror length. (b) One raw image in the image stack. The area within the red box is the reflected beam from the tested plane mirror. The other bright area is the direct beam from the source.

The physical quantity directly derived from the self-reference XSS technique by tracking the shift of the speckle pattern is the wavefront curvature, i.e. the second derivative of the wavefront (Wang, Sutter et al., 2015[Wang, H., Sutter, J. & Sawhney, K. (2015). Opt. Express, 23, 1605-1614.]). In this example, the diffuser scans along the x direction. We can obtain the wavefront local curvature 1/Rx in this direction:

[{1 \over {R_x}} = {1 \over D} - {{i_x s_x} \over {(\,j - i)\, p D}}, \eqno(1)]

where ix is the tracked shift of the speckle pattern in the x direction, sx is the scan step size, i and j are the column numbers of the image when the tested mirror is placed vertically [as in Fig. 4[link](a)], ji is usually a fixed value equal to 2 or 3, p is the pixel size of the detector, and D is the distance between the diffuser and the detector plane in this case.

See Fig. 5[link] for a sample code. This example is also in the released package (plane_XSSself.py in the examples folder). The image stack is loaded into the Imagestack class. The ROI is set to extract the reflected beam. Then, the Imagestack class is the input of the Tracking class. The scan direction, scan step size, distance between the diffuser and the detector, pixel size etc. are also defined in the Tracking class. After defining some necessary parameters for calculating the local wavefront curvature, we call the XSS_self method of the Tracking class or its multiprocessing form XSS_self_multi to do the speckle tracking. The 2D map of the wavefront local curvature in the x direction is stored in the curvX attribute of the Tracking class.

[Figure 5]
Figure 5
Sample code, plane_XSSself.py, in the examples folder.

Fig. 6[link](a) shows the wavefront local curvature obtained. Note the resemblance of its vertical stripes to those in Fig. 6[link](b). Fig. 6[link](b) is the intensity distribution after the tested plane mirror. This phenomenon is not a coincidence. We can set the relationship between the far-field intensity distribution and the wavefront local curvature; however, this topic is beyond the scope of this paper. Please refer to the related works (Hu et al., 2021[Hu, L., Wang, H., Sutter, J. P. & Sawhney, K. (2021). Opt. Express, 29, 4270-4286.], 2023[Hu, L., Wang, H., Sutter, J. P. & Sawhney, K. (2023). Opt. Express, 31, 41000-41013.]).

[Figure 6]
Figure 6
(a) Wavefront local curvature distribution obtained. (b) Far-field intensity distribution on the detector.

6. Conclusions

We have presented an open-source and modularized Python package, named spexwavepy, for data processing of speckle-based X-ray wavefront sensing techniques. We hope it can help new researchers to learn and apply speckle-based techniques for X-ray wavefront sensing to synchrotron radiation and X-ray free-electron laser beamlines. For that purpose, we not only share the source code but also provide detailed documentation introducing the various speckle-based techniques and the implementation of the code. We also created several examples with shared experimental data to help users become familiar with this package. Spexwavepy includes several proposed data acquisition modes. We believe this package can deal with various experimental conditions. Even if some experimental modes are missing, they are easy to add to the current package. The documentation and the shared experimental data are both online. At present, we use the built-in Python multiprocessing package for parallel computing. It limits the code to run on a single machine. Some other parallelization schemes, such as MPI, are under consideration.

Acknowledgements

Sebastien Berujon, Yogesh Kashyap and Tunhe Zhou are acknowledged for their contribution of the previous MATLAB code. We thank our colleagues Oliver Fox, Vishal Dhamgaye, Andrew Malandain, John Sutter, Simon Alcock, Ioana-Theodora Nistea and Murilo Bazan da Silva for their technical support of the online and offline experiments. We thank Nghia Vo (BNL) for fruitful discussions. The authors are also grateful to John Sutter for correcting the manuscript.

Data availability

The source code and the latest developments of spexwavepy are available at GitHub (https://github.com/wholingfei/spexwavepy/) and the Python Package Index (PyPI) repository (https://pypi.org/project/spexwavepy/). It can be easily installed using Python package installer (pip). The data used in the examples are available at https://zenodo.org/records/10892838. The documentation of spexwavepy can be found at https://spexwavepy.readthedocs.io/en/latest/.

References

First citationAlcock, S., Sawhney, K., Scott, S., Pedersen, U., Walton, R., Siewert, F., Zeschke, T., Senf, F., Noll, T. & Lammert, H. (2010). Nucl. Instrum. Methods Phys. Res. A, 616, 224–228.  Web of Science CrossRef CAS Google Scholar
First citationAlcock, S. G., Nistea, I. & Sawhney, K. (2016). Rev. Sci. Instrum. 87, 051902.  Web of Science CrossRef PubMed Google Scholar
First citationAssoufid, L., Brown, N., Crews, D., Sullivan, J., Erdmann, M., Qian, J., Jemian, P., Yashchuk, V. V., Takacs, P. Z., Artemiev, N. A., Merthe, D. J., McKinney, W. R., Siewert, F. & Zeschke, T. (2013). Nucl. Instrum. Methods Phys. Res. A, 710, 31–36.  Web of Science CrossRef CAS Google Scholar
First citationAssoufid, L., Shi, X., Marathe, S., Benda, E., Wojcik, M. J., Lang, K., Xu, R., Liu, W., Macrander, A. T. & Tischler, J. Z. (2016). Rev. Sci. Instrum. 87, 052004.  Web of Science CrossRef PubMed Google Scholar
First citationBerujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020a). J. Synchrotron Rad. 27, 284–292.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerujon, S., Cojocaru, R., Piault, P., Celestre, R., Roth, T., Barrett, R. & Ziegler, E. (2020b). J. Synchrotron Rad. 27, 293–304.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerujon, S., Wang, H., Alcock, S. & Sawhney, K. (2014). Opt. Express, 22, 6438–6446.  Web of Science CrossRef PubMed Google Scholar
First citationBerujon, S. & Ziegler, E. (2012). Opt. Lett. 37, 4464–4466.  Web of Science CrossRef PubMed Google Scholar
First citationBérujon, S., Ziegler, E., Cerbino, R. & Peverini, L. (2012). Phys. Rev. Lett. 108, 158102.  Web of Science PubMed Google Scholar
First citationGoodman, J. W. (2007). Speckle Phenomena in Optics: Theory and Applications. Roberts and Company Publishers.  Google Scholar
First citationGoodman, J. W. (2015). Statistical Optics. John Wiley & Sons.  Google Scholar
First citationHignette, O., Freund, A. & Chinchio, E. (1997). Proc. SPIE, 3152, 188–199.  CrossRef Google Scholar
First citationHu, L., Wang, H., Fox, O. & Sawhney, K. (2022a). J. Synchrotron Rad. 29, 1385–1393.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, L., Wang, H., Fox, O. & Sawhney, K. (2022b). Opt. Express, 30, 33259–33273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, L., Wang, H., Sutter, J. P. & Sawhney, K. (2021). Opt. Express, 29, 4270–4286.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, L., Wang, H., Sutter, J. P. & Sawhney, K. (2023). Opt. Express, 31, 41000–41013.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuang, L., Idir, M., Zuo, C., Wang, T., Tayabaly, K. & Lippmann, E. (2018). Opt. Express, 26, 23278–23286.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIdir, M., Kaznatcheev, K., Dovillaire, G., Legrand, J. & Rungsawang, R. (2014). Opt. Express, 22, 2770–2781.  Web of Science CrossRef PubMed Google Scholar
First citationIdir, M., Mercere, P., Modi, M. H., Dovillaire, G., Levecq, X., Bucourt, S., Escolano, L. & Sauvageot, P. (2010). Nucl. Instrum. Methods Phys. Res. A, 616, 162–171.  Web of Science CrossRef CAS Google Scholar
First citationKewish, C. M., Guizar-Sicairos, M., Liu, C., Qian, J., Shi, B., Benson, C., Khounsary, A. M., Vila-Comamala, J., Bunk, O., Fienup, J. R., Macrander, A. T. & Assoufid, L. (2010). Opt. Express, 18, 23420–23427.  Web of Science CrossRef PubMed Google Scholar
First citationLaundy, D., Dhamgaye, V., Moxham, T. & Sawhney, K. (2019). Optica, 6, 1484–1490.  Web of Science CrossRef Google Scholar
First citationMorgan, K. S., Paganin, D. M. & Siu, K. K. W. (2012). Appl. Phys. Lett. 100, 124102.  Web of Science CrossRef Google Scholar
First citationMoxham, T. E. J., Laundy, D., Dhamgaye, V., Fox, O. J. L., Sawhney, K. & Korsunsky, A. M. (2021). Appl. Phys. Lett. 118, 104104.  Web of Science CrossRef Google Scholar
First citationNicolas, J. & Martínez, J. C. (2013). Nucl. Instrum. Methods Phys. Res. A, 710, 24–30.  Web of Science CrossRef CAS Google Scholar
First citationQiao, Z., Shi, X., Celestre, R. & Assoufid, L. (2020). Opt. Express, 28, 33053–33067.  Web of Science CrossRef PubMed Google Scholar
First citationRebuffi, L., Shi, X., Qiao, Z., Highland, M. J., Frith, M. G., Wojdyla, A., Goldberg, K. A. & Assoufid, L. (2023). Opt. Express, 31, 21264–21279.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSawhney, K. J. S., Dolbnya, I. P., Tiwari, M. K., Alianelli, L., Scott, S. M., Preece, G. M., Pedersen, U. K., Walton, R. D., Garrett, R., Gentle, I., Nugent, K. & Wilkins, S. (2010). AIP Conf. Proc. 1234, 387–390.  CrossRef CAS Google Scholar
First citationShi, X., Qiao, Z., Highland, M., Frith, M., Rebuffi, L. & Assoufid, L. (2022). Proc. SPIE, 12240, 122400H.  Google Scholar
First citationShi, X., Qiao, Z., Pradhan, P., Liu, P., Assoufid, L., Kim, K.-J. & Shvyd'ko, Y. (2023). J. Synchrotron Rad. 30, 1100–1107.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiewert, F., Buchheim, J., Boutet, S., Williams, G. J., Montanez, P. A., Krzywiński, J. & Signorato, R. (2012). Opt. Express, 20, 4525–4536.  Web of Science CrossRef PubMed Google Scholar
First citationSiewert, F., Lammert, H. & Zeschke, T. (2008). Modern Developments in X-ray and Neutron Optics, edited by A. Erko, M. Idir, T. Krist & A. G. Michette, pp. 193–200. Berlin, Heidelberg: Springer.  Google Scholar
First citationSilva, M. B. da, Alcock, S. G., Nistea, I. & Sawhney, K. (2023). Opt. Lasers Eng. 161, 107192.  Google Scholar
First citationSutter, J., Alcock, S. & Sawhney, K. (2012). J. Synchrotron Rad. 19, 960–968.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakacs, P. & Qian, S. (1997). Proc. SPIE, 3152, 160–167.  CrossRef Google Scholar
First citationVo, N. T., Atwood, R. C., Drakopoulos, M. & Connolley, T. (2021). Opt. Express, 29, 17849–17874.  Web of Science CrossRef PubMed Google Scholar
First citationWang, H., Kashyap, Y., Laundy, D. & Sawhney, K. (2015). J. Synchrotron Rad. 22, 925–929.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H., Sawhney, K., Berujon, S., Ziegler, E., Rutishauser, S. & David, C. (2011). Opt. Express, 19, 16550–16559.  Web of Science CrossRef PubMed Google Scholar
First citationWang, H., Sutter, J. & Sawhney, K. (2015). Opt. Express, 23, 1605–1614.  Web of Science CrossRef PubMed Google Scholar
First citationYamauchi, K., Yamamura, K., Mimura, H., Sano, Y., Saito, A., Ueno, K., Endo, K., Souvorov, A., Yabashi, M., Tamasaku, K., Ishikawa, T. & Mori, Y. (2003). Rev. Sci. Instrum. 74, 2894–2898.  Web of Science CrossRef CAS Google Scholar
First citationYumoto, H., Mimura, H., Matsuyama, S., Handa, S., Sano, Y., Yabashi, M., Nishino, Y., Tamasaku, K., Ishikawa, T. & Yamauchi, K. (2006). Rev. Sci. Instrum. 77, 063712.  Web of Science CrossRef Google Scholar
First citationZhou, T., Hu, L. & Wang, H. (2024). J. Synchrotron Rad. 31, 432–437.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhou, T., Wang, H., Fox, O. & Sawhney, K. (2018). Opt. Express, 26, 26961–26970.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoJOURNAL OF
SYNCHROTRON
RADIATION
ISSN: 1600-5775
Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds