supplementary materials


at2552 scheme

Acta Cryst. (2008). E64, m624    [ doi:10.1107/S1600536808008490 ]

Diaquadimethanolbis[4-(1H-tetrazol-1-yl)benzoato]zinc(II) dihydrate

S.-M. Zhang

Abstract top

In the title compound, [Zn(C8H5N4O2)2(CH3OH)2(H2O)2]·2H2O, the ZnII ion lies on an inversion centre and is coordinated by two O atoms from two 4-(tetrazol-1-yl)benzoate ligands, two O atoms from two methanol molecules and two O atoms from two water molecules in a slightly distorted octahedral geometry. In addition, there are two uncoordinated water molecules in the crystal structure. The crystal structure is stabilized by intermolecular O-H...O hydrogen bonds.

Comment top

Coordination architectures formed from 1H-tetrazol and its derivatives have attracted wide attentions in recent years, due to not only their fascinating structures and topologies, but also their potential applications in luminescence, magnetism and gas storage (Dinca, et al., 2006; Li, et al., 2007). However, there are rare reports (Zou, et al., 2005) of the coordination systems using the benzoic acids with N-heterocycle as ligands. So we synthesized several coordination compounds by such ligands. And here we report the structure of title compound (I).

The structure of (I) consists of discrete neutral unit [Zn(C8H5N4O2)2(CH3OH)2(H2O)2], and two lattice water molecules (Fig. 1), atom Zn1 lies on an inversion centre and is coordinated by two O atoms from two 4-(tetrazol-1-yl) benzoate ligands, two O atoms from two methanol molecules and two O atoms from two water molecules in a distorted octahedral geometry.The metal ion of (I) is bonded to the carboxyl group of 4-(tetrazol-1-yl) benzoate, which is remarkably different from our previous reported compound that using the same ligand with N donor coordinating to metal ion (Zhang et al., 2007). The crystal stacking of (I) (Fig. 2) is stabilized by the intermolecular O—H···O hydrogen bonds (Table 2).

Related literature top

For related literature, see: Zou et al. (2005); Dinca et al. (2006); Li et al. (2007); Zhang & Du (2007).

Experimental top

A solution of Zn(NO3)2.6H2O (0.1 mmol) in water (5 ml) was added to a solution of 4-(tetrazol-1-yl) benzoic acid (38 mg, 0.2 mmol) and sodium hydroxide (8 mg, 0.2 mmol) in methanol (5 mL). The reaction mixture was stirred for 30 min and then filtered. Colourless crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation after two weeks [yield: 46%].

Refinement top

H atoms of C were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and 0.96 Å and Uiso(H) = 1.2 and 1.5 Ueq(C,N). The H atoms of water was located in Fourier difference map and refined without restraint.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids. [Symmetry code: (A) -x+1, -y, -z+2.]
[Figure 2] Fig. 2. A portion of the crystal stacking structure, showing the intermolecular O—H···O, hydrogen bonds as dashed lines.
Diaquadimethanolbis[4-(1H-tetrazol-1-yl)benzoato]zinc(II) dihydrate top
Crystal data top
[Zn(C8H5N4O2)2(CH4O)2(H2O)2]·2H2OF000 = 600
Mr = 579.84Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11248 reflections
a = 13.220 (3) Åθ = 3.1–27.6º
b = 7.1551 (14) ŵ = 1.10 mm1
c = 12.636 (3) ÅT = 293 (2) K
β = 90.24 (3)ºBlock, colourless
V = 1195.3 (4) Å30.20 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker P4
diffractometer
2746 independent reflections
Radiation source: fine-focus sealed tube2359 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 293(2) Kθmax = 27.5º
ω scansθmin = 3.1º
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 17→17
Tmin = 0.810, Tmax = 0.844k = 9→9
12254 measured reflectionsl = 16→16
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of
independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032  w = 1/[σ2(Fo2) + (0.0297P)2 + 0.5826P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.29 e Å3
2746 reflectionsΔρmin = 0.23 e Å3
188 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0228 (12)
Secondary atom site location: difference Fourier map
Crystal data top
[Zn(C8H5N4O2)2(CH4O)2(H2O)2]·2H2OV = 1195.3 (4) Å3
Mr = 579.84Z = 2
Monoclinic, P21/cMo Kα
a = 13.220 (3) ŵ = 1.10 mm1
b = 7.1551 (14) ÅT = 293 (2) K
c = 12.636 (3) Å0.20 × 0.18 × 0.16 mm
β = 90.24 (3)º
Data collection top
Bruker P4
diffractometer
2746 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2359 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.844Rint = 0.045
12254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032188 parameters
wR(F2) = 0.076H atoms treated by a mixture of
independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
2746 reflectionsΔρmin = 0.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00001.00000.02298 (11)
O10.63696 (9)0.0452 (2)0.92928 (10)0.0313 (3)
O20.73211 (10)0.1468 (2)1.06367 (10)0.0399 (4)
C20.97854 (12)0.0991 (2)0.77039 (14)0.0231 (4)
N41.06694 (11)0.0940 (2)0.70586 (12)0.0243 (3)
C50.80990 (13)0.1028 (2)0.89760 (14)0.0228 (4)
N31.06465 (12)0.1453 (3)0.60316 (13)0.0339 (4)
C40.90418 (13)0.1480 (3)0.93867 (14)0.0259 (4)
H40.91040.17931.00980.031*
N11.21854 (12)0.0669 (3)0.64661 (14)0.0342 (4)
C70.88492 (14)0.0580 (3)0.72624 (15)0.0282 (4)
H70.87860.02940.65470.034*
C30.98863 (14)0.1470 (3)0.87560 (15)0.0274 (4)
H31.05160.17820.90350.033*
C80.71954 (13)0.0989 (3)0.96960 (14)0.0256 (4)
C11.16184 (14)0.0462 (3)0.72993 (16)0.0291 (4)
H11.18400.00470.79580.035*
C60.80137 (14)0.0608 (3)0.79125 (15)0.0279 (4)
H60.73800.03390.76290.033*
N21.15560 (13)0.1290 (3)0.56869 (14)0.0375 (4)
O30.54347 (11)0.2616 (2)1.06193 (13)0.0380 (4)
C90.63908 (16)0.3252 (3)1.0949 (2)0.0470 (6)
H9A0.69070.25791.05780.071*
H9B0.64510.45631.07990.071*
H9C0.64670.30501.16960.071*
O2W0.43377 (14)0.4734 (2)0.16558 (13)0.0340 (3)
O1W0.54904 (11)0.14327 (19)1.13919 (10)0.0289 (3)
H1WA0.54710.07181.18980.043*
H2WA0.378 (2)0.457 (4)0.156 (2)0.053 (9)*
H2WB0.463 (2)0.382 (4)0.156 (2)0.061 (10)*
H1WB0.612 (2)0.155 (4)1.121 (2)0.058 (8)*
H3M0.5060 (19)0.325 (4)1.088 (2)0.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01705 (16)0.02848 (18)0.02340 (17)0.00002 (12)0.00056 (11)0.00133 (13)
O10.0173 (6)0.0487 (9)0.0279 (7)0.0049 (6)0.0003 (5)0.0000 (6)
O20.0265 (7)0.0670 (11)0.0261 (7)0.0095 (7)0.0019 (6)0.0061 (7)
C20.0174 (9)0.0241 (9)0.0279 (9)0.0001 (7)0.0021 (7)0.0030 (7)
N40.0191 (7)0.0275 (8)0.0261 (8)0.0008 (6)0.0003 (6)0.0027 (7)
C50.0184 (8)0.0231 (9)0.0270 (9)0.0014 (7)0.0000 (7)0.0016 (7)
N30.0277 (9)0.0455 (10)0.0284 (9)0.0043 (7)0.0021 (7)0.0072 (8)
C40.0240 (9)0.0310 (10)0.0227 (9)0.0040 (7)0.0023 (7)0.0004 (8)
N10.0239 (9)0.0384 (9)0.0403 (10)0.0029 (7)0.0040 (7)0.0031 (8)
C70.0244 (9)0.0352 (10)0.0249 (9)0.0018 (8)0.0025 (8)0.0039 (8)
C30.0190 (9)0.0330 (10)0.0301 (10)0.0040 (7)0.0053 (7)0.0009 (8)
C80.0199 (9)0.0283 (10)0.0287 (10)0.0013 (7)0.0004 (7)0.0038 (8)
C10.0214 (9)0.0331 (11)0.0328 (10)0.0023 (7)0.0020 (8)0.0010 (8)
C60.0179 (9)0.0362 (10)0.0294 (10)0.0033 (7)0.0039 (7)0.0030 (8)
N20.0290 (9)0.0478 (11)0.0358 (10)0.0035 (8)0.0080 (7)0.0093 (8)
O30.0261 (7)0.0373 (9)0.0505 (9)0.0028 (7)0.0007 (7)0.0194 (7)
C90.0323 (12)0.0468 (14)0.0620 (15)0.0093 (10)0.0041 (11)0.0120 (12)
O2W0.0277 (8)0.0361 (9)0.0382 (8)0.0020 (7)0.0031 (7)0.0057 (7)
O1W0.0251 (7)0.0359 (8)0.0257 (7)0.0002 (6)0.0004 (6)0.0029 (6)
Geometric parameters (Å, °) top
Zn1—O12.0483 (14)C4—H40.9300
Zn1—O1i2.0483 (14)N1—C11.304 (3)
Zn1—O32.1078 (15)N1—N21.361 (2)
Zn1—O3i2.1078 (15)C7—C61.379 (3)
Zn1—O1Wi2.1342 (14)C7—H70.9300
Zn1—O1W2.1342 (14)C3—H30.9300
O1—C81.263 (2)C1—H10.9300
O2—C81.247 (2)C6—H60.9300
C2—C31.379 (3)O3—C91.405 (2)
C2—C71.387 (2)O3—H3M0.75 (3)
C2—N41.428 (2)C9—H9A0.9600
N4—C11.334 (2)C9—H9B0.9600
N4—N31.349 (2)C9—H9C0.9600
C5—C61.381 (3)O2W—H2WA0.75 (3)
C5—C41.386 (2)O2W—H2WB0.77 (3)
C5—C81.505 (2)O1W—H1WA0.8200
N3—N21.286 (2)O1W—H1WB0.87 (3)
C4—C31.375 (3)
O1—Zn1—O1i180.00 (3)C6—C7—C2118.22 (17)
O1—Zn1—O393.56 (6)C6—C7—H7120.9
O1i—Zn1—O386.44 (6)C2—C7—H7120.9
O1—Zn1—O3i86.44 (6)C4—C3—C2119.00 (17)
O1i—Zn1—O3i93.56 (6)C4—C3—H3120.5
O3—Zn1—O3i180.0C2—C3—H3120.5
O1—Zn1—O1Wi88.98 (6)O2—C8—O1125.41 (17)
O1i—Zn1—O1Wi91.02 (6)O2—C8—C5117.92 (16)
O3—Zn1—O1Wi87.75 (6)O1—C8—C5116.66 (16)
O3i—Zn1—O1Wi92.25 (6)N1—C1—N4109.28 (17)
O1—Zn1—O1W91.02 (6)N1—C1—H1125.4
O1i—Zn1—O1W88.98 (6)N4—C1—H1125.4
O3—Zn1—O1W92.25 (6)C7—C6—C5121.35 (17)
O3i—Zn1—O1W87.75 (6)C7—C6—H6119.3
O1Wi—Zn1—O1W180.0C5—C6—H6119.3
C8—O1—Zn1129.52 (12)N3—N2—N1110.75 (16)
C3—C2—C7121.54 (17)C9—O3—Zn1129.90 (14)
C3—C2—N4118.74 (16)C9—O3—H3M105 (2)
C7—C2—N4119.72 (16)Zn1—O3—H3M122 (2)
C1—N4—N3107.84 (15)O3—C9—H9A109.5
C1—N4—C2130.34 (16)O3—C9—H9B109.5
N3—N4—C2121.81 (15)H9A—C9—H9B109.5
C6—C5—C4118.98 (17)O3—C9—H9C109.5
C6—C5—C8121.50 (16)H9A—C9—H9C109.5
C4—C5—C8119.52 (16)H9B—C9—H9C109.5
N2—N3—N4106.50 (15)H2WA—O2W—H2WB109 (3)
C3—C4—C5120.86 (17)Zn1—O1W—H1WA109.5
C3—C4—H4119.6Zn1—O1W—H1WB96.5 (17)
C5—C4—H4119.6H1WA—O1W—H1WB107.7
C1—N1—N2105.63 (15)
O1i—Zn1—O1—C873 (100)Zn1—O1—C8—C5174.81 (12)
O3—Zn1—O1—C878.56 (17)C6—C5—C8—O2176.77 (19)
O3i—Zn1—O1—C8101.44 (17)C4—C5—C8—O23.7 (3)
O1Wi—Zn1—O1—C8166.24 (17)C6—C5—C8—O13.9 (3)
O1W—Zn1—O1—C813.76 (17)C4—C5—C8—O1175.56 (17)
C3—C2—N4—C133.9 (3)N2—N1—C1—N40.2 (2)
C7—C2—N4—C1146.7 (2)N3—N4—C1—N10.4 (2)
C3—C2—N4—N3144.73 (19)C2—N4—C1—N1178.39 (18)
C7—C2—N4—N334.7 (3)C2—C7—C6—C50.2 (3)
C1—N4—N3—N20.4 (2)C4—C5—C6—C71.8 (3)
C2—N4—N3—N2178.53 (17)C8—C5—C6—C7177.68 (18)
C6—C5—C4—C31.5 (3)N4—N3—N2—N10.2 (2)
C8—C5—C4—C3177.97 (17)C1—N1—N2—N30.0 (2)
C3—C2—C7—C61.8 (3)O1—Zn1—O3—C931.19 (19)
N4—C2—C7—C6178.77 (17)O1i—Zn1—O3—C9148.81 (19)
C5—C4—C3—C20.4 (3)O3i—Zn1—O3—C9165 (73)
C7—C2—C3—C42.1 (3)O1Wi—Zn1—O3—C9120.04 (19)
N4—C2—C3—C4178.49 (17)O1W—Zn1—O3—C959.96 (19)
Zn1—O1—C8—O24.4 (3)
Symmetry codes: (i) −x+1, −y, −z+2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wii0.821.972.759 (2)160
O2W—H2WB···O1Wiii0.77 (3)2.07 (3)2.831 (2)175 (3)
O3—H3M···O2Wiv0.75 (3)1.99 (3)2.726 (2)167 (3)
Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) x, y, z−1; (iv) x, y−1, z+1.
Table 1
Selected geometric parameters (Å, °)
top
Zn1—O12.0483 (14)Zn1—O1W2.1342 (14)
Zn1—O32.1078 (15)
O1—Zn1—O393.56 (6)O3—Zn1—O1W92.25 (6)
O1—Zn1—O1W91.02 (6)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wi0.821.972.759 (2)160
O2W—H2WB···O1Wii0.77 (3)2.07 (3)2.831 (2)175 (3)
O3—H3M···O2Wiii0.75 (3)1.99 (3)2.726 (2)167 (3)
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, y, z−1; (iii) x, y−1, z+1.
Acknowledgements top

The authors thank the Natural Science Foundation of Tianjin, China (No. 07JCZDJC00500) for financial support.

references
References top

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dinca, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 16876–16883.

Li, J. R., Tao, Y., Yu, Q. & Bu, X. H. (2007). Chem. Commun. pp. 1527–1529.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, S.-M. & Du, J.-L. (2007). Acta Cryst. E63, m3139.

Zou, R.-Q., Cai, L.-Z. & Guo, G.-C. (2005). J. Mol. Struct. 737, 125–129.