organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hydr­­oxy-5,6,7-trimeth­­oxy-2-phenyl-4H-chromen-4-one

aInstituto de Física de São Carlos-USP, Cx Postal 369, 13560-970 São Carlos, SP, Brazil, bDepartamento Química-UFSCar, Cx Postal 676, 13565-905 São Carlos, SP, Brazil, and cDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba
*Correspondence e-mail: hperez@fq.uh.cu

(Received 28 March 2008; accepted 17 April 2008; online 23 April 2008)

In the title compound, C18H16O6, the benzopyran group is essentially planar, with the O atoms of the substituent groups lying close to its mean plane. The mol­ecular conformation is governed by intra­molecular inter­actions. The crystal packing is mainly determined by one classical inter­molecular hydrogen bond which gives rise to the formation of an infinite chain along the a axis.

Related literature

For related literature, see: Chebib & Johnston (2000[Chebib, M. & Johnston, G. A. R. (2000). J. Med. Chem. 43, 1427-1447.]); Medina et al. (1998[Medina, J. H., Viola, H., Wolfman, C., Marder, M., Wasowski, C., Calvo, D. & Paladini, A. C. (1998). Phytomedicine, 5, 235-243.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O6

  • Mr = 328.32

  • Triclinic, [P \overline 1]

  • a = 8.4536 (2) Å

  • b = 9.0878 (2) Å

  • c = 10.7832 (3) Å

  • α = 79.545 (2)°

  • β = 71.5640 (10)°

  • γ = 86.925 (2)°

  • V = 772.85 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 K

  • 0.22 × 0.19 × 0.11 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: none

  • 20499 measured reflections

  • 3153 independent reflections

  • 2512 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.07

  • 3153 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H8⋯O5 0.82 2.35 2.770 (1) 113
O6—H8⋯O2i 0.82 1.94 2.727 (1) 160
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A number of differents flavones are known to have interesting modulatory activities at Gamma-aminobutyric acid receptors (GABA-A), an inhibitory neurotransmitter found in the nervous systems of widely divergent species. It is the main inhibitory neurotransmitter in the central nervous system (Medina et al., 1998; Chebib & Johnston, 2000).

Figure 1 shows an ORTEP view of thr title compound, 8-hydroxy-5,6,7-trymethoxy-2-phenylchromen-4-one (I) with atom labeling and 50% probability displacement ellipsoids. The benzopyran group in (I) is essentially planar, with the oxygen atoms of the substituent groups lying close to its mean plane. The ring forms angles of 113.8 (4)°, 117.8 (3)° and 114.4 (2)° with the O3—C16, O4—C17 and O5—C18 methoxy groups, respectively, and 34.61 (4)° with the phenyl ring.

The molecular conformation is fixed by intramolecular interactions (Table 1 and Figure 1). The crystal packing is mainly determined by one classical intermolecular H bond which gives rise to the formation of an infinite chain along the a axis (Table 1 and Figure 2).

Related literature top

For related literature, see: Chebib & Johnston (2000); Medina et al. (1998).

Experimental top

Selected parts of the Z. montana plant (Branches and leaves) were dried carefully by forced air at 40 °C and reduced to powder. The resulting material was macerated three times with hexane, followed with methanol at room temperature for 72 h each. After the evaporation of the solvent under reduced pressure, crude extracts were obtained. A well shaped single-crystal of the title compound was selected for the XRD experiments.

Refinement top

All the hydrogen atoms were stereochemically positioned and refined with a riding model. Hydrogen atoms of the CH and CH2 groups were set isotropic with a thermal parameter 20% greater than the equivalent isotropic displacement parameter of the atom to which each one was bonded. This percentage was set to 50% for the hydrogen atoms of the CH3 and OH groups.

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. View of the intermolecular interaction that gives rise to the formation of a chain along the a axis.
8-Hydroxy-5,6,7-trimethoxy-2-phenyl-4H-chromen-4-one top
Crystal data top
C18H16O6Z = 2
Mr = 328.32F(000) = 344
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4536 (2) ÅCell parameters from 20513 reflections
b = 9.0878 (2) Åθ = 2.9–26.4°
c = 10.7832 (3) ŵ = 0.11 mm1
α = 79.545 (2)°T = 294 K
β = 71.564 (1)°Prism, yellow
γ = 86.925 (2)°0.22 × 0.19 × 0.11 mm
V = 772.85 (3) Å3
Data collection top
KappaCCD
diffractometer
Rint = 0.049
ϕ scans and ω scans winth κ offsetsθmax = 26.4°, θmin = 3.3°
20499 measured reflectionsh = 1010
3153 independent reflectionsk = 1111
2512 reflections with I > 2σ(I)l = 1313
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0678P)2 + 0.1467P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.124Δρmax = 0.25 e Å3
S = 1.07Δρmin = 0.24 e Å3
3153 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
218 parametersExtinction coefficient: 0.043 (11)
0 restraints
Crystal data top
C18H16O6γ = 86.925 (2)°
Mr = 328.32V = 772.85 (3) Å3
Triclinic, P1Z = 2
a = 8.4536 (2) ÅMo Kα radiation
b = 9.0878 (2) ŵ = 0.11 mm1
c = 10.7832 (3) ÅT = 294 K
α = 79.545 (2)°0.22 × 0.19 × 0.11 mm
β = 71.564 (1)°
Data collection top
KappaCCD
diffractometer
2512 reflections with I > 2σ(I)
20499 measured reflectionsRint = 0.049
3153 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3153 reflectionsΔρmin = 0.24 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40508 (11)0.55938 (11)0.19334 (9)0.0343 (3)
O20.05483 (13)0.68927 (14)0.00920 (12)0.0550 (3)
O30.29650 (12)0.85689 (12)0.19401 (10)0.0428 (3)
O40.63074 (13)0.94104 (12)0.28518 (10)0.0441 (3)
O50.83892 (11)0.83118 (11)0.14212 (9)0.0362 (3)
O60.71943 (11)0.63816 (12)0.09768 (9)0.0395 (3)
C10.16504 (16)0.64776 (16)0.06016 (15)0.0350 (3)
C20.13054 (16)0.54641 (16)0.18467 (14)0.0368 (3)
C30.24520 (16)0.50867 (15)0.24709 (13)0.0330 (3)
C40.45089 (16)0.65179 (15)0.07187 (13)0.0 (3)
C50.33896 (15)0.70155 (15)0.00135 (13)0.0301 (3)
C60.39952 (16)0.80083 (15)0.12037 (13)0.0320 (3)
C70.56421 (16)0.84828 (15)0.16628 (13)0.0313 (3)
C80.67300 (15)0.79300 (15)0.09404 (13)0.0296 (3)
C90.61900 (15)0.69429 (15)0.02441 (13)0.0295 (3)
C100.21737 (17)0.41557 (16)0.37915 (13)0.0353 (3)
C110.30333 (19)0.44556 (19)0.46281 (16)0.0459 (4)
C120.2755 (2)0.3598 (2)0.58706 (16)0.0547 (5)
C130.1650 (2)0.2423 (2)0.62864 (17)0.0552 (5)
C140.0795 (2)0.2109 (2)0.54662 (17)0.0573 (5)
C150.1043 (2)0.29793 (19)0.42257 (16)0.0469 (4)
C160.2848 (3)0.7646 (3)0.2840 (2)0.0738 (6)
C170.5601 (3)1.0840 (2)0.3033 (2)0.0708 (6)
C180.8774 (2)0.96476 (19)0.10671 (19)0.0514 (4)
H80.81390.6720.06060.059*
H8A0.02420.50520.22370.044*
H170.37990.52390.43460.055*
H180.33190.38160.64290.066*
H190.14770.18390.71210.066*
H200.00490.1310.57480.069*
H210.0450.27740.36820.056*
H22A0.99510.98380.14350.077*
H22B0.84510.95390.01180.077*
H22C0.8181.04690.14090.077*
H27A0.21160.81020.33210.111*
H27B0.24150.66820.23550.111*
H27C0.39340.7530.34520.111*
H30A0.61761.13740.39020.106*
H30B0.57011.13810.23750.106*
H30C0.44441.0740.29460.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (5)0.0430 (6)0.0331 (5)0.0036 (4)0.0093 (4)0.0024 (4)
O20.0248 (5)0.0739 (8)0.0630 (7)0.0045 (5)0.0224 (5)0.0132 (6)
O30.0334 (5)0.0540 (6)0.0446 (6)0.0043 (5)0.0228 (5)0.0007 (5)
O40.0364 (6)0.0472 (6)0.0381 (6)0.0029 (4)0.0061 (4)0.0083 (5)
O50.0218 (5)0.0456 (6)0.0403 (5)0.0040 (4)0.0082 (4)0.0067 (4)
O60.0240 (5)0.0570 (6)0.0364 (5)0.0039 (4)0.0151 (4)0.0057 (4)
C50.0227 (6)0.0339 (7)0.0350 (7)0.0019 (5)0.0114 (5)0.0058 (6)
C90.0233 (6)0.0362 (7)0.0309 (7)0.0014 (5)0.0117 (5)0.0051 (5)
C40.0239 (6)0.0336 (7)0.0302 (7)0.0006 (5)0.0097 (5)0.0036 (5)
C80.0216 (6)0.0345 (7)0.0328 (7)0.0001 (5)0.0081 (5)0.0071 (5)
C10.0239 (6)0.0391 (7)0.0434 (8)0.0009 (5)0.0134 (6)0.0057 (6)
C60.0264 (6)0.0369 (7)0.0354 (7)0.0051 (5)0.0153 (6)0.0044 (6)
C20.0218 (6)0.0427 (8)0.0430 (8)0.0027 (5)0.0077 (6)0.0039 (6)
C70.0281 (7)0.0336 (7)0.0307 (7)0.0020 (5)0.0093 (5)0.0024 (5)
C30.0247 (6)0.0361 (7)0.0355 (7)0.0012 (5)0.0057 (5)0.0057 (6)
C100.0278 (7)0.0403 (8)0.0332 (7)0.0019 (6)0.0047 (5)0.0041 (6)
C110.0360 (8)0.0560 (10)0.0431 (8)0.0103 (7)0.0132 (7)0.0023 (7)
C120.0441 (9)0.0773 (12)0.0404 (9)0.0070 (8)0.0160 (7)0.0031 (8)
C130.0510 (10)0.0644 (11)0.0386 (9)0.0040 (8)0.0068 (7)0.0091 (8)
C140.0588 (11)0.0530 (10)0.0482 (10)0.0184 (8)0.0038 (8)0.0031 (8)
C150.0462 (9)0.0517 (9)0.0393 (8)0.0123 (7)0.0082 (7)0.0052 (7)
C160.0701 (13)0.1072 (17)0.0656 (12)0.0106 (12)0.0457 (11)0.0277 (12)
C170.0703 (13)0.0491 (10)0.0732 (13)0.0092 (9)0.0106 (10)0.0160 (9)
C180.0378 (8)0.0454 (9)0.0718 (11)0.0098 (7)0.0173 (8)0.0089 (8)
Geometric parameters (Å, º) top
O3—C61.3753 (15)C5—C61.4120 (19)
O3—C161.422 (2)C5—C11.4757 (18)
O2—C11.2341 (16)C9—C81.3798 (18)
O5—C81.3724 (15)C9—C41.3992 (18)
O5—C181.4193 (19)C8—C71.4024 (18)
C18—H22A0.9600C1—C21.438 (2)
C18—H22B0.9600C6—C71.3857 (19)
C18—H22C0.9600C2—C31.3430 (19)
C16—H27A0.9600C2—H8A0.9300
C16—H27B0.9600C3—C101.4735 (19)
C16—H27C0.9600C10—C151.386 (2)
O6—C91.3552 (15)C10—C111.393 (2)
O6—H80.8200C15—C141.384 (2)
O4—C71.3687 (16)C15—H210.9300
O4—C171.408 (2)C12—C131.372 (3)
C17—H30A0.9600C12—C111.378 (2)
C17—H30B0.9600C12—H180.9300
C17—H30C0.9600C11—H170.9300
O1—C31.3599 (16)C13—C141.380 (3)
O1—C41.3733 (16)C13—H190.9300
C5—C41.4009 (17)C14—H200.9300
C6—O3—C16113.82 (13)C9—C8—C7121.45 (12)
C8—O5—C18114.34 (11)O2—C1—C2121.77 (13)
O5—C18—H22A109.5O2—C1—C5123.02 (13)
O5—C18—H22B109.5C2—C1—C5115.18 (11)
H22A—C18—H22B109.5O3—C6—C7118.28 (12)
O5—C18—H22C109.5O3—C6—C5121.32 (12)
H22A—C18—H22C109.5C7—C6—C5120.36 (12)
H22B—C18—H22C109.5C3—C2—C1122.86 (12)
O3—C16—H27A109.5C3—C2—H8A118.6
O3—C16—H27B109.5C1—C2—H8A118.6
H27A—C16—H27B109.5O4—C7—C6122.84 (12)
O3—C16—H27C109.5O4—C7—C8117.18 (12)
H27A—C16—H27C109.5C6—C7—C8119.84 (12)
H27B—C16—H27C109.5C2—C3—O1121.83 (12)
C9—O6—H8109.5C2—C3—C10126.44 (12)
C7—O4—C17117.76 (13)O1—C3—C10111.69 (11)
O4—C17—H30A109.5C15—C10—C11119.00 (14)
O4—C17—H30B109.5C15—C10—C3120.60 (13)
H30A—C17—H30B109.5C11—C10—C3120.40 (13)
O4—C17—H30C109.5C14—C15—C10120.13 (15)
H30A—C17—H30C109.5C14—C15—H21119.9
H30B—C17—H30C109.5C10—C15—H21119.9
C3—O1—C4119.21 (10)C13—C12—C11120.27 (16)
C4—C5—C6117.91 (12)C13—C12—H18119.9
C4—C5—C1117.68 (12)C11—C12—H18119.9
C6—C5—C1124.41 (12)C12—C11—C10120.38 (15)
O6—C9—C8123.53 (11)C12—C11—H17119.8
O6—C9—C4118.48 (11)C10—C11—H17119.8
C8—C9—C4117.98 (11)C12—C13—C14119.99 (15)
O1—C4—C9114.47 (11)C12—C13—H19120.0
O1—C4—C5123.14 (11)C14—C13—H19120.0
C9—C4—C5122.39 (12)C13—C14—C15120.22 (16)
O5—C8—C9117.81 (11)C13—C14—H20119.9
O5—C8—C7120.68 (12)C15—C14—H20119.9
C3—O1—C4—C9178.49 (11)C5—C1—C2—C33.3 (2)
C3—O1—C4—C52.30 (19)C17—O4—C7—C660.8 (2)
O6—C9—C4—O12.27 (18)C17—O4—C7—C8123.44 (17)
C8—C9—C4—O1176.89 (11)O3—C6—C7—O44.1 (2)
O6—C9—C4—C5178.52 (12)C5—C6—C7—O4178.13 (12)
C8—C9—C4—C52.3 (2)O3—C6—C7—C8179.74 (12)
C6—C5—C4—O1177.67 (12)C5—C6—C7—C82.4 (2)
C1—C5—C4—O11.7 (2)O5—C8—C7—O40.13 (19)
C6—C5—C4—C91.5 (2)C9—C8—C7—O4177.50 (12)
C1—C5—C4—C9179.16 (12)O5—C8—C7—C6175.80 (12)
C18—O5—C8—C994.47 (15)C9—C8—C7—C61.6 (2)
C18—O5—C8—C788.06 (16)C1—C2—C3—O12.9 (2)
O6—C9—C8—O52.7 (2)C1—C2—C3—C10174.87 (13)
C4—C9—C8—O5178.22 (11)C4—O1—C3—C20.0 (2)
O6—C9—C8—C7179.89 (12)C4—O1—C3—C10178.04 (11)
C4—C9—C8—C70.8 (2)C2—C3—C10—C1534.3 (2)
C4—C5—C1—O2176.96 (14)O1—C3—C10—C15147.80 (14)
C6—C5—C1—O22.4 (2)C2—C3—C10—C11145.11 (16)
C4—C5—C1—C20.99 (19)O1—C3—C10—C1132.83 (18)
C6—C5—C1—C2179.69 (13)C11—C10—C15—C140.8 (2)
C16—O3—C6—C794.31 (17)C3—C10—C15—C14179.80 (15)
C16—O3—C6—C587.89 (18)C13—C12—C11—C101.2 (3)
C4—C5—C6—O3178.70 (12)C15—C10—C11—C120.3 (2)
C1—C5—C6—O30.6 (2)C3—C10—C11—C12179.07 (15)
C4—C5—C6—C71.0 (2)C11—C12—C13—C140.9 (3)
C1—C5—C6—C7178.37 (13)C12—C13—C14—C150.2 (3)
O2—C1—C2—C3174.72 (15)C10—C15—C14—C131.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H8···O50.822.352.770 (1)113
O6—H8···O2i0.821.942.727 (1)160
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H16O6
Mr328.32
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.4536 (2), 9.0878 (2), 10.7832 (3)
α, β, γ (°)79.545 (2), 71.564 (1), 86.925 (2)
V3)772.85 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.19 × 0.11
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20499, 3153, 2512
Rint0.049
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.07
No. of reflections3153
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H8···O50.822.352.770 (1)112.9
O6—H8···O2i0.821.942.727 (1)160.2
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) for financial support.

References

First citationChebib, M. & Johnston, G. A. R. (2000). J. Med. Chem. 43, 1427–1447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMedina, J. H., Viola, H., Wolfman, C., Marder, M., Wasowski, C., Calvo, D. & Paladini, A. C. (1998). Phytomedicine, 5, 235–243.  CrossRef CAS PubMed Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds