organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl-1-oxoisoindoline-2-carboxamide monohydrate

aUniversity of the Punjab, Institute of Chemistry, Lahore-54590, Pakistan, bUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dUniversity of the Punjab, Institute of Chemistry, Lahore 54590, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 18 March 2008; accepted 27 March 2008; online 2 April 2008)

The title compound, C10H10N2O2·H2O, is dimerized by inversion-related inter­molecular N—H⋯O hydrogen bonding. There is an intra­molecular N—H⋯O bond, resulting in a six-membered ring. Each dimer inter­acts with other dimers through hydrogen bonding with water mol­ecules. The water mol­ecules are linked to each other in a stair-like chain, thus generating two-dimensional polymeric strips. The dimers are also linked to each other through inter­molecular C—H⋯O hydrogen bonding. There are ππ inter­actions between the aromatic and heterocyclic five-membered rings [centroid–centroid distance 3.8360 (12) Å]. C—H⋯π inter­actions also exist between CH2 groups and aromatic rings.

Related literature

For related literature, see: Alberto et al. (1994[Alberto, S., Silvio, L., Francesca, B., Roberta, C. & Piero, S. (1994). US Patent No. 5 376 673.]); Berger et al. (1999[Berger, D., Citarella, R., Dutia, M., Grenberger, L., Hallett, W., Paul, R. & Poweel, D. (1999). J. Med. Chem. 42, 2145-2161.]); Cignarella et al. (1981[Cignarella, G., Sanna, P., Miele, E., Anania, V. & Desole, M. S. (1981). J. Med. Chem. 24, 1003-1010.]); Maliha et al. (2008[Maliha, B., Hussain, I., Tahir, M. N., Tariq, M. I. & Siddiqui, H. L. (2008). Acta Cryst. E64, o626.]); Mancilla et al. (2007[Mancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. & Ferrara, J. T. (2007). J. Mex. Chem. Soc. 51, 96-102.]); Toru et al. (1986[Toru, H., Eiki, N., Ryo, Y. & Shunichi, H. (1986). US Patent No. 4 595 409.]); Wan et al. (2007[Wan, J., Wu, B. & Pan, Y. (2007). Tetrahedron, 63, 9338-9344.]); Straub et al. (2007[Straub, A., Lampe, T., Pohlmann, J., Rohrig, S., Perzborn, E. & Schlemmer, K.-H. (2007). US Patent No. 7 189 738.]); Maliha et al. (2007[Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O2·H2O

  • Mr = 208.22

  • Monoclinic, P 21 /c

  • a = 7.4264 (4) Å

  • b = 29.0200 (16) Å

  • c = 4.8864 (2) Å

  • β = 108.266 (3)°

  • V = 1000.02 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.22 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.]) Tmin = 0.980, Tmax = 0.990

  • 18083 measured reflections

  • 2518 independent reflections

  • 1586 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.130

  • S = 1.05

  • 2518 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.83 (3) 2.08 (2) 2.748 (3) 137 (2)
N2—H2⋯O1i 0.83 (2) 2.41 (2) 3.043 (2) 134 (2)
O3—H1W⋯O2ii 0.81 (3) 2.06 (3) 2.875 (2) 177 (3)
O3—H2W⋯O3iii 0.88 (3) 1.91 (3) 2.787 (3) 174 (3)
C4—H4⋯O2iv 0.93 2.44 3.362 (3) 172
C8—H8ACg1v 0.97 2.86 3.590 (2) 133
Symmetry codes: (i) -x, -y, -z; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z-1; (v) x, y, z+1. Cg1 is the centroid of atoms C2–C7.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Isoindole and their derivatives are known to be active-compounds pharmaceutically (Straub et al., 2007; Mancilla et al., 2007). They are important intermediates in the synthesis of novel multi-drugs resistance reversal agents (Berger et al., 1999). They show diuretic, anti-anginal, cardio-vascular and herbicidal activitities (Alberto et al., 1994; Cignarella et al., 1981; Toru et al., 1986).

The title compound (I) is in continuation to the synthesis of various isoindoles and the determination of their structures by X-ray crystallography (Maliha et al., 2007; 2008). It was isolated during the studies of the reaction of urea and its N-alkyl/aryl derivates with o-phthaldehyde.

The present structure shows that replacing the H-atom of 1-Oxoisoindoline-2- carboxamide (Maliha et al., 2008) with CH3 group, is possible in the presence of crystallization water only. The replacement of H-atom of 1-Oxoisoindoline-2-carboxamide with ethyl group (Wan et al., 2007) also shows the existence of crystallizing H2O. Although the bond distances and bond angles in the aromatic A(C2—C7) and five-membered ring B(C1/C2/C7/C8/N1) are comparable with the reported structures (Maliha et al., 2008; Wan et al., 2007), but the packing through H-bonding is entirely different. There is an intramolecular hydrogen bond of N2—H2···O1 resulting in a six-membered ring. The title compound is dimerized by inversion of N-methyl-1-oxo-1,3-dihydro-2H-isoindole-2-carboxamide through intermolecular H-bond viz N2—H2···O1i [symmetry code i = -x,-y,-z] and the central ring is of four members depending upon these H-bonds only. The role of H2O molecules is to stabilize the dimers through an interesting H-bonding. The H-bond O3—H1W···O2ii [symmetry code ii = x + 1, y, z] connects the dimers, while the O3—H2W···O3iii [symmetry code iii = x, -y + 1/2, z - 1/2] joints the water molecules in a stair like chain. In this way two-dimensional polymeric strip is realized. These polymeric strips are further connected by the involvement of aromatic ring A(C2—C7) through intermolecular H-bonds C4—H4···O2iv [symmetry code iv = x + 1, y, z - 1]. The detail of H-bonding is given in Table 1 and shown in Fig. 2. The π-π interaction exist between the CgA···CgBv [symmetry code v = x,y,z - 1] and CgB···CgAvi [symmetry code vi = x,y,z + 1] having same centroid-centroid distance of 3.8360 (12) Å. The C—H···π interaction exists between C8—H8A and CgAvi [symmetry code vi = x,y,z + 1] with H8A···π distance of 2.86 Å.

Related literature top

For related literature, see: Alberto et al. (1994); Berger et al. (1999); Cignarella et al. (1981); Maliha et al. (2008); Mancilla et al. (2007); Toru et al. (1986); Wan et al. (2007); Straub et al. (2007); Maliha et al. (2007).

Experimental top

A mixture of o-phthaldehyde (0.67 g, 200 mmol) and N-methylurea (0.37 g, 200 mmol) in 100 ml of ethanol was refluxed for 10 h. The solvent was taken off and flask contents were left at room temperature. The crystals of (I) were isolated, washed with ethanol, ether and n-hexane, respectively and dried. Crystals suitable for X-ray diffraction were grown from a mixture of methanol-acetone (1:1) by slow evaporation at room temperature. It is soluble in DMSO, DMF, acetone, ethyl acetate, chloroform and carbon tetrachloride. M.P: 413 K; yield: 60 percent.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl C-atoms and constrained to ride on their parent atoms. The H-atoms attached to N2 and O3 atoms were located in fourier synthesis and their coordinates were refined. The thermal parameter of H-atoms of methyl group was taken 1.5 times of the parent C-atom, whereas for all other H-atoms it was taken 1.2 times of their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the title compound (I) with displacement ellipsoids at 50% probability level; intramolecular interaction has been indicated by broken line. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The packing figure (PLATON: Spek, 2003) which shows the H-bonding and the overlapping of rings which generate π-π interaction.
N-Methyl-1-oxoisoindoline-2-carboxamide monohydrate top
Crystal data top
C10H10N2O2·H2OF(000) = 440
Mr = 208.22Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1295 reflections
a = 7.4264 (4) Åθ = 1.4–28.5°
b = 29.0200 (16) ŵ = 0.10 mm1
c = 4.8864 (2) ÅT = 296 K
β = 108.266 (3)°Needle, colourless
V = 1000.02 (9) Å30.22 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2518 independent reflections
Radiation source: fine-focus sealed tube1586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 7.40 pixels mm-1θmax = 28.5°, θmin = 1.4°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 3838
Tmin = 0.980, Tmax = 0.990l = 66
18083 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.045P)2 + 0.3992P]
where P = (Fo2 + 2Fc2)/3
2518 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H10N2O2·H2OV = 1000.02 (9) Å3
Mr = 208.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4264 (4) ŵ = 0.10 mm1
b = 29.0200 (16) ÅT = 296 K
c = 4.8864 (2) Å0.22 × 0.12 × 0.10 mm
β = 108.266 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2518 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1586 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.042
18083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2518 reflectionsΔρmin = 0.20 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1330 (2)0.04176 (5)0.0048 (4)0.0582 (4)
O20.17938 (19)0.12874 (4)0.3549 (3)0.0452 (4)
O30.8077 (3)0.22691 (6)0.4262 (4)0.0721 (6)
H1W0.815 (4)0.1993 (11)0.404 (6)0.086*
H2W0.812 (4)0.2398 (10)0.266 (6)0.086*
N10.0204 (2)0.11191 (5)0.0993 (3)0.0357 (4)
N20.1470 (3)0.05442 (6)0.2455 (4)0.0477 (5)
H20.088 (3)0.0368 (8)0.170 (5)0.057*
C10.1337 (3)0.08376 (6)0.0065 (4)0.0377 (4)
C20.2523 (3)0.11487 (6)0.1134 (4)0.0364 (4)
C30.3901 (3)0.10422 (7)0.2420 (4)0.0456 (5)
H30.41750.07380.27330.055*
C40.4848 (3)0.14010 (8)0.3213 (5)0.0498 (5)
H40.57710.13390.40830.060*
C50.4434 (3)0.18515 (8)0.2725 (5)0.0519 (6)
H50.50990.20890.32480.062*
C60.3054 (3)0.19572 (7)0.1477 (5)0.0487 (5)
H60.27760.22620.11780.058*
C70.2099 (3)0.15985 (6)0.0683 (4)0.0366 (4)
C80.0559 (3)0.16101 (6)0.0683 (4)0.0388 (4)
H8A0.09760.17630.25410.047*
H8B0.05640.17640.05450.047*
C90.1088 (3)0.09905 (6)0.2436 (4)0.0353 (4)
C100.2783 (3)0.03691 (7)0.3864 (5)0.0572 (6)
H10A0.25840.00440.41960.086*
H10B0.40610.04230.26560.086*
H10C0.25740.05240.56710.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0756 (11)0.0306 (8)0.0904 (12)0.0029 (7)0.0575 (9)0.0003 (7)
O20.0536 (8)0.0382 (8)0.0563 (9)0.0004 (6)0.0352 (7)0.0060 (6)
O30.1328 (17)0.0403 (9)0.0591 (10)0.0134 (10)0.0530 (11)0.0006 (8)
N10.0431 (9)0.0303 (8)0.0412 (9)0.0006 (7)0.0242 (7)0.0002 (6)
N20.0618 (12)0.0345 (10)0.0632 (12)0.0022 (8)0.0432 (10)0.0014 (8)
C10.0434 (11)0.0340 (11)0.0425 (10)0.0024 (8)0.0231 (8)0.0003 (8)
C20.0382 (10)0.0383 (10)0.0363 (10)0.0004 (8)0.0170 (8)0.0001 (7)
C30.0469 (12)0.0447 (12)0.0534 (12)0.0026 (9)0.0275 (10)0.0007 (9)
C40.0414 (12)0.0589 (14)0.0581 (13)0.0022 (10)0.0283 (10)0.0023 (10)
C50.0484 (13)0.0526 (14)0.0610 (14)0.0120 (10)0.0260 (11)0.0046 (10)
C60.0586 (14)0.0367 (11)0.0572 (13)0.0086 (10)0.0274 (11)0.0032 (9)
C70.0404 (11)0.0378 (10)0.0344 (10)0.0026 (8)0.0157 (8)0.0028 (7)
C80.0480 (12)0.0307 (10)0.0445 (11)0.0010 (8)0.0245 (9)0.0019 (8)
C90.0399 (10)0.0359 (10)0.0347 (10)0.0011 (8)0.0185 (8)0.0011 (7)
C100.0680 (15)0.0460 (13)0.0749 (16)0.0033 (11)0.0475 (13)0.0046 (11)
Geometric parameters (Å, º) top
O1—C11.219 (2)C3—H30.9300
O2—C91.221 (2)C4—C51.381 (3)
O3—H1W0.81 (3)C4—H40.9300
O3—H2W0.88 (3)C5—C61.381 (3)
N1—C11.384 (2)C5—H50.9300
N1—C91.408 (2)C6—C71.382 (3)
N1—C81.466 (2)C6—H60.9300
N2—C91.326 (2)C7—C81.495 (2)
N2—C101.451 (2)C8—H8A0.9700
N2—H20.83 (2)C8—H8B0.9700
C1—C21.467 (2)C10—H10A0.9600
C2—C71.377 (3)C10—H10B0.9600
C2—C31.393 (2)C10—H10C0.9600
C3—C41.378 (3)
H1W—O3—H2W106 (3)C5—C6—C7118.27 (19)
C1—N1—C9128.36 (15)C5—C6—H6120.9
C1—N1—C8112.66 (14)C7—C6—H6120.9
C9—N1—C8118.83 (14)C2—C7—C6120.43 (17)
C9—N2—C10121.47 (17)C2—C7—C8109.75 (15)
C9—N2—H2117.0 (16)C6—C7—C8129.82 (17)
C10—N2—H2121.4 (16)N1—C8—C7102.22 (14)
O1—C1—N1125.66 (16)N1—C8—H8A111.3
O1—C1—C2128.49 (16)C7—C8—H8A111.3
N1—C1—C2105.84 (15)N1—C8—H8B111.3
C7—C2—C3121.29 (17)C7—C8—H8B111.3
C7—C2—C1109.52 (15)H8A—C8—H8B109.2
C3—C2—C1129.19 (17)O2—C9—N2124.32 (16)
C4—C3—C2118.08 (19)O2—C9—N1119.40 (16)
C4—C3—H3121.0N2—C9—N1116.28 (15)
C2—C3—H3121.0N2—C10—H10A109.5
C3—C4—C5120.40 (18)N2—C10—H10B109.5
C3—C4—H4119.8H10A—C10—H10B109.5
C5—C4—H4119.8N2—C10—H10C109.5
C4—C5—C6121.52 (19)H10A—C10—H10C109.5
C4—C5—H5119.2H10B—C10—H10C109.5
C6—C5—H5119.2
C9—N1—C1—O14.1 (3)C3—C2—C7—C8179.20 (18)
C8—N1—C1—O1179.5 (2)C1—C2—C7—C81.0 (2)
C9—N1—C1—C2175.17 (17)C5—C6—C7—C20.0 (3)
C8—N1—C1—C20.2 (2)C5—C6—C7—C8179.8 (2)
O1—C1—C2—C7178.7 (2)C1—N1—C8—C70.8 (2)
N1—C1—C2—C70.5 (2)C9—N1—C8—C7175.07 (15)
O1—C1—C2—C31.0 (4)C2—C7—C8—N11.1 (2)
N1—C1—C2—C3179.76 (19)C6—C7—C8—N1179.0 (2)
C7—C2—C3—C40.5 (3)C10—N2—C9—O20.6 (3)
C1—C2—C3—C4179.19 (19)C10—N2—C9—N1179.81 (19)
C2—C3—C4—C50.3 (3)C1—N1—C9—O2170.66 (18)
C3—C4—C5—C60.9 (3)C8—N1—C9—O24.5 (3)
C4—C5—C6—C70.8 (3)C1—N1—C9—N210.0 (3)
C3—C2—C7—C60.7 (3)C8—N1—C9—N2174.80 (17)
C1—C2—C7—C6179.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.83 (3)2.08 (2)2.748 (3)137 (2)
N2—H2···O1i0.83 (2)2.41 (2)3.043 (2)134 (2)
O3—H1W···O2ii0.81 (3)2.06 (3)2.875 (2)177 (3)
O3—H2W···O3iii0.88 (3)1.91 (3)2.787 (3)174 (3)
C4—H4···O2iv0.932.443.362 (3)172
C8—H8A···Cg1v0.972.863.590 (2)133
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x+1, y, z1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N2O2·H2O
Mr208.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4264 (4), 29.0200 (16), 4.8864 (2)
β (°) 108.266 (3)
V3)1000.02 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
18083, 2518, 1586
Rint0.042
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.130, 1.05
No. of reflections2518
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.83 (3)2.08 (2)2.748 (3)137 (2)
N2—H2···O1i0.83 (2)2.41 (2)3.043 (2)134 (2)
O3—H1W···O2ii0.81 (3)2.06 (3)2.875 (2)177 (3)
O3—H2W···O3iii0.88 (3)1.91 (3)2.787 (3)174 (3)
C4—H4···O2iv0.932.443.362 (3)172
C8—H8A···Cg1v0.972.863.590 (2)133
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x+1, y, z1; (v) x, y, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for providing the Kappa APEXII CCD diffractometer.

References

First citationAlberto, S., Silvio, L., Francesca, B., Roberta, C. & Piero, S. (1994). US Patent No. 5 376 673.  Google Scholar
First citationBerger, D., Citarella, R., Dutia, M., Grenberger, L., Hallett, W., Paul, R. & Poweel, D. (1999). J. Med. Chem. 42, 2145–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationCignarella, G., Sanna, P., Miele, E., Anania, V. & Desole, M. S. (1981). J. Med. Chem. 24, 1003–1010.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMaliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaliha, B., Hussain, I., Tahir, M. N., Tariq, M. I. & Siddiqui, H. L. (2008). Acta Cryst. E64, o626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. & Ferrara, J. T. (2007). J. Mex. Chem. Soc. 51, 96–102.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStraub, A., Lampe, T., Pohlmann, J., Rohrig, S., Perzborn, E. & Schlemmer, K.-H. (2007). US Patent No. 7 189 738.  Google Scholar
First citationToru, H., Eiki, N., Ryo, Y. & Shunichi, H. (1986). US Patent No. 4 595 409.  Google Scholar
First citationWan, J., Wu, B. & Pan, Y. (2007). Tetrahedron, 63, 9338–9344.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds