organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bi[6,6′-di­methyl­dibenzo[d,f][1,3]dioxepine]

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: hqzhang@ysu.edu.cn

(Received 31 March 2008; accepted 3 April 2008; online 10 April 2008)

The title compound, C30H26O4, is a dimer of 6,6′-dimethyl­dibenzo[d,f][1,3]dioxepine linked by formation of a C—C bond in the para position with respect to one O atom. The dimer is arranged around an inversion centre. As is usually observed in related compounds, the dibenzo group is twisted, the two benzene rings making a dihedral angle of 41.56 (9)°. The seven-membered ring exhibits a twisted conformation.

Related literature

For related literature, see: Colon & Kelsey (1986[Colon, I. & Kelsey, D. R. (1986). J. Org. Chem. 51, 2627-2637. ]); McCullough (1998[McCullough, R. D. (1998). Adv. Mater. 10, 93-116.]); Samdal & Bastiansen (1985[Samdal, S. & Bastiansen, O. (1985). J. Mol. Struct. 128, 115-125.]); Silcox Yoder & Zuckerman (1967[Silcox Yoder, C. M. & Zuckerman, J.J. (1967). J. Heterocycl. Chem. 4, 166-167.]); Suzuki (1959[Suzuki, H. (1959). Bull. Chem. Soc. Jpn, 32, 1340-1350.]); Harada et al. (1994[Harada, T., Ueda, S., Yoshida, T., Inoue, A., Takeuchi, M., Ogawa, N., Oku, A. & Shiro, M. (1994). J. Org. Chem. 59, 7575-7576.], 1997[Harada, T., Ueda, S., Tuyet, T. M. T., Inoue, A., Fujita, K., Takeuchi, M., Ogawa, N., Oku, A. & Shiro, M. (1997). Tetrahedron, 53, 16663-16678.]); Pajunen et al. (1996[Pajunen, A., Karhunen, P. & Brunow, G. (1996). Acta Cryst. C52, 1815-1817.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26O4

  • Mr = 450.51

  • Monoclinic, P 21 /c

  • a = 13.2938 (16) Å

  • b = 7.3200 (17) Å

  • c = 12.7067 (11) Å

  • β = 103.61 (3)°

  • V = 1201.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.18 × 0.13 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.985, Tmax = 0.990

  • 5035 measured reflections

  • 2712 independent reflections

  • 1170 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.126

  • S = 0.81

  • 2712 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku , 2002[Molecular Structure Corporation & Rigaku (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The inter-ring twisted angles in biphenyl compounds are widely studied because changing of conformations of the conjugated molecules affect the optical and electronic properties significantly (McCullough, 1998). Most of biphenyl derivatives showed the twisting conformation in their gas phase or solution, while in crytal a few of them have planar or nearly planar conformation at room temperature (Samdal et al., 1985; Suzuki, 1959). Strong face-to-face interactions induced planar conformation of solid biphenyl.

The title compound, C30H26O4, is a dimer of the 6,6'-dimethyl-dibenzo [d,f][1,3]dioxepin linked by formation of a C-C bond in para position with respect to one O atom (Fig. 1). This dimer is arranged around inversion centre. As usually observed in related compounds ( Pajunen et al., 1996; Harada et al., 1994,1997), the dibenzo group is twisted with the two benzene rings making a dihedral angle of 41.56?(9)°.

Related literature top

For related literature, see: Colon & Kelsey (1986); McCullough (1998); Samdal & Bastiansen (1985); Silcox Yoder & Zuckerman (1967); Suzuki (1959); Harada et al. (1994, 1997); Pajunen et al. (1996).

Experimental top

Synthesis approach of dimeric 6,6'-dimethyl-dibenzo [d,f][1,3]dioxepine was described as follows: The precursor 5-bromo-2,2'-dihydroxybiphenyl was synthesized by directly brominating of dihydroxybiphenyl. The 2-bromo-6,6'-dimethyl- dibenzo [d, f][1, 3] dioxepine was obtained according to the previously reportable reaction condition (Silcox Yoder & Zuckerman, 1967). Finally, the meta-linked dimeric 6,6'-dimethyl-dibenzo [d, f][1, 3] dioxepine was prepared according to the typical Yamamoto condition (Colon et al., 1986). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a ethanol solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl) with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku , 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) 1-x, 1-y, 1-z].
2,2'-Bi[6,6'-dimethyldibenzo[d,f][1,3]dioxepine] top
Crystal data top
C30H26O4F(000) = 476
Mr = 450.51Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2961 reflections
a = 13.2938 (16) Åθ = 5.1–54.6°
b = 7.3200 (17) ŵ = 0.08 mm1
c = 12.7067 (11) ÅT = 293 K
β = 103.61 (3)°Block, colorless
V = 1201.8 (4) Å30.18 × 0.13 × 0.13 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2712 independent reflections
Radiation source: fine-focus sealed tube1170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1716
Tmin = 0.985, Tmax = 0.990k = 99
5035 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0601P)2]
where P = (Fo2 + 2Fc2)/3
2712 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C30H26O4V = 1201.8 (4) Å3
Mr = 450.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.2938 (16) ŵ = 0.08 mm1
b = 7.3200 (17) ÅT = 293 K
c = 12.7067 (11) Å0.18 × 0.13 × 0.13 mm
β = 103.61 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2712 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1170 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.990Rint = 0.072
5035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.81Δρmax = 0.13 e Å3
2712 reflectionsΔρmin = 0.17 e Å3
156 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65924 (15)0.3273 (3)0.74573 (16)0.0426 (5)
C20.59655 (17)0.4785 (3)0.74799 (17)0.0541 (6)
H20.59680.53610.81330.065*
C30.53331 (16)0.5431 (3)0.65184 (17)0.0554 (6)
H30.49090.64340.65420.066*
C40.53170 (14)0.4619 (3)0.55227 (16)0.0400 (5)
C50.59453 (15)0.3071 (3)0.55358 (16)0.0411 (5)
H50.59410.24880.48840.049*
C60.65776 (15)0.2372 (3)0.64907 (16)0.0394 (5)
C70.72262 (15)0.0713 (3)0.65022 (17)0.0418 (5)
C80.68640 (17)0.0820 (3)0.58720 (19)0.0523 (6)
H80.61930.08290.54410.063*
C90.74995 (19)0.2334 (3)0.5884 (2)0.0610 (7)
H90.72500.33490.54630.073*
C100.85074 (19)0.2339 (3)0.6522 (2)0.0605 (7)
H100.89320.33480.65170.073*
C110.88765 (17)0.0849 (3)0.71621 (18)0.0524 (6)
H110.95460.08540.75950.063*
C120.82413 (15)0.0658 (3)0.71547 (16)0.0409 (5)
C130.82810 (16)0.2702 (3)0.86599 (17)0.0477 (6)
C140.86854 (19)0.1391 (4)0.95822 (19)0.0705 (8)
H14A0.84750.01700.93560.106*
H14B0.84110.17181.01910.106*
H14C0.94270.14530.97850.106*
C150.86209 (18)0.4649 (4)0.89127 (19)0.0651 (7)
H15A0.93600.47260.90310.098*
H15B0.84160.50420.95520.098*
H15C0.83030.54200.83150.098*
O10.86503 (10)0.2224 (2)0.77162 (11)0.0462 (4)
O20.71592 (11)0.2534 (2)0.84347 (11)0.0493 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (12)0.0505 (14)0.0436 (13)0.0058 (10)0.0139 (10)0.0117 (11)
C20.0607 (14)0.0664 (17)0.0377 (12)0.0200 (13)0.0166 (11)0.0001 (11)
C30.0576 (15)0.0582 (16)0.0529 (14)0.0273 (12)0.0183 (12)0.0067 (12)
C40.0332 (11)0.0441 (13)0.0430 (12)0.0054 (9)0.0098 (9)0.0036 (10)
C50.0393 (12)0.0404 (13)0.0430 (12)0.0015 (10)0.0089 (10)0.0004 (10)
C60.0349 (11)0.0384 (13)0.0457 (12)0.0019 (9)0.0110 (10)0.0073 (11)
C70.0384 (12)0.0401 (13)0.0483 (12)0.0036 (10)0.0129 (10)0.0064 (10)
C80.0451 (13)0.0463 (15)0.0636 (15)0.0007 (12)0.0090 (11)0.0006 (12)
C90.0665 (18)0.0381 (15)0.0815 (19)0.0002 (12)0.0234 (15)0.0035 (13)
C100.0590 (16)0.0491 (17)0.0763 (17)0.0181 (12)0.0218 (14)0.0135 (14)
C110.0453 (13)0.0566 (16)0.0551 (14)0.0131 (12)0.0114 (11)0.0078 (12)
C120.0403 (12)0.0411 (13)0.0428 (12)0.0027 (10)0.0127 (10)0.0069 (10)
C130.0401 (13)0.0612 (17)0.0413 (12)0.0084 (11)0.0085 (10)0.0063 (12)
C140.0671 (16)0.090 (2)0.0531 (15)0.0251 (15)0.0109 (13)0.0220 (14)
C150.0653 (16)0.074 (2)0.0551 (15)0.0012 (14)0.0116 (13)0.0098 (13)
O10.0390 (8)0.0568 (10)0.0443 (8)0.0003 (7)0.0127 (7)0.0004 (8)
O20.0426 (9)0.0647 (11)0.0422 (8)0.0092 (7)0.0131 (7)0.0162 (8)
Geometric parameters (Å, º) top
C1—C21.389 (3)C9—H90.9300
C1—C61.390 (3)C10—C111.380 (3)
C1—O21.401 (2)C10—H100.9300
C2—C31.393 (3)C11—C121.388 (3)
C2—H20.9300C11—H110.9300
C3—C41.394 (3)C12—O11.391 (2)
C3—H30.9300C13—O11.442 (3)
C4—C51.405 (3)C13—O21.456 (3)
C4—C4i1.503 (4)C13—C151.507 (3)
C5—C61.400 (3)C13—C141.512 (3)
C5—H50.9300C14—H14A0.9600
C6—C71.488 (3)C14—H14B0.9600
C7—C81.397 (3)C14—H14C0.9600
C7—C121.408 (3)C15—H15A0.9600
C8—C91.391 (3)C15—H15B0.9600
C8—H80.9300C15—H15C0.9600
C9—C101.393 (3)
C2—C1—C6120.82 (19)C11—C10—H10120.0
C2—C1—O2119.3 (2)C9—C10—H10120.0
C6—C1—O2119.53 (19)C10—C11—C12119.5 (2)
C1—C2—C3119.6 (2)C10—C11—H11120.2
C1—C2—H2120.2C12—C11—H11120.2
C3—C2—H2120.2C11—C12—O1119.18 (18)
C2—C3—C4121.9 (2)C11—C12—C7121.6 (2)
C2—C3—H3119.0O1—C12—C7118.90 (19)
C4—C3—H3119.0O1—C13—O2110.46 (15)
C3—C4—C5116.81 (19)O1—C13—C15105.26 (18)
C3—C4—C4i122.0 (2)O2—C13—C15111.31 (18)
C5—C4—C4i121.2 (2)O1—C13—C14111.23 (19)
C6—C5—C4122.6 (2)O2—C13—C14105.06 (19)
C6—C5—H5118.7C15—C13—C14113.6 (2)
C4—C5—H5118.7C13—C14—H14A109.5
C1—C6—C5118.23 (19)C13—C14—H14B109.5
C1—C6—C7119.41 (18)H14A—C14—H14B109.5
C5—C6—C7122.36 (19)C13—C14—H14C109.5
C8—C7—C12117.9 (2)H14A—C14—H14C109.5
C8—C7—C6121.97 (18)H14B—C14—H14C109.5
C12—C7—C6120.12 (19)C13—C15—H15A109.5
C9—C8—C7120.5 (2)C13—C15—H15B109.5
C9—C8—H8119.8H15A—C15—H15B109.5
C7—C8—H8119.8C13—C15—H15C109.5
C8—C9—C10120.5 (2)H15A—C15—H15C109.5
C8—C9—H9119.8H15B—C15—H15C109.5
C10—C9—H9119.8C12—O1—C13117.27 (16)
C11—C10—C9120.0 (2)C1—O2—C13117.00 (16)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H26O4
Mr450.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.2938 (16), 7.3200 (17), 12.7067 (11)
β (°) 103.61 (3)
V3)1201.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.13 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.985, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5035, 2712, 1170
Rint0.072
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.126, 0.81
No. of reflections2712
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Molecular Structure Corporation & Rigaku , 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors acknowledge financial support from the National Science Foundation of China (20125421, 90101026, 50303007 and 60207003) and by the Ministry of Science and Technology of China (2002CB6134003 and 2003CB3147032).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
First citationColon, I. & Kelsey, D. R. (1986). J. Org. Chem. 51, 2627–2637.   CrossRef CAS Web of Science
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationHarada, T., Ueda, S., Tuyet, T. M. T., Inoue, A., Fujita, K., Takeuchi, M., Ogawa, N., Oku, A. & Shiro, M. (1997). Tetrahedron, 53, 16663–16678.  CSD CrossRef CAS Web of Science
First citationHarada, T., Ueda, S., Yoshida, T., Inoue, A., Takeuchi, M., Ogawa, N., Oku, A. & Shiro, M. (1994). J. Org. Chem. 59, 7575–7576.  CrossRef CAS Web of Science
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
First citationMcCullough, R. D. (1998). Adv. Mater. 10, 93–116.  CrossRef CAS
First citationMolecular Structure Corporation & Rigaku (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
First citationPajunen, A., Karhunen, P. & Brunow, G. (1996). Acta Cryst. C52, 1815–1817.  CSD CrossRef CAS Web of Science IUCr Journals
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationSamdal, S. & Bastiansen, O. (1985). J. Mol. Struct. 128, 115–125.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSilcox Yoder, C. M. & Zuckerman, J.J. (1967). J. Heterocycl. Chem. 4, 166–167.
First citationSuzuki, H. (1959). Bull. Chem. Soc. Jpn, 32, 1340–1350.  CrossRef CAS Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds