metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m668-m669

Bis[1-(2-hy­droxy­ethyl)-2-methyl-5-nitro-1H-imidazole-κN3]silver(I) nitrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India
*Correspondence e-mail: hkfun@usm.my

(Received 7 March 2008; accepted 10 April 2008; online 16 April 2008)

In the title compound, [Ag(C6H9N3O3)2]NO3, the Ag atom is bicoordinated in a distorted linear configuration by two 1-(2-hydroxy­ethyl)-2-methyl-5-nitro­imidazole ligands through one of the N atoms. The dihedral angle between the two imidazole rings is 16.1 (2)°. The O atoms of the nitrate anion are disordered over two positions; the site occupancy factors are 0.8 and 0.2. The ions are ­connected by C—H⋯O inter­actions, while two weak intra­molecular C—H⋯O inter­actions producing an S(6) ring motif are observed. The nitrate anion is linked to the hydroxyl groups of two neighbouring cations by O—H⋯O hydrogen bonds. The ions are packed into infinite chains along the [100] direction.

Related literature

For related literature regarding pharmaceutical uses of nitro­imidazole derivatives, see: Credito et al. (2000[Credito, K. L., Jacobs, M. R. & Applebaum, P. C. (2000). Diagn. Microbiol. Infect. Dis. 38, 181-183.]); Edwards (1981[Edwards, D. I. (1981). Prog. Med. Chem. 18, 88-116.]); Mendz & Megraud (2002[Mendz, G. L. & Megraud, F. (2002). Trends Microbiol. 10, 370-375.]). For comparable crystal structures, see: Blaton et al. (1979[Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2465-2467.]); Gao et al. (2004[Gao, S., Lu, Z.-Z., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. C60, m651-m653.]); Ni et al. (2003[Ni, J., Li, Y.-Z., Xue, Z., Chen, H.-L. & Wang, Z.-L. (2003). Acta Cryst. C59, m201-m203.]); Pi et al. (2005[Pi, W.-X., Yang, Y.-M., Li, H.-Q. & Zhu, H.-L. (2005). Acta Cryst. E61, o2880-o2881.]); Tong & Chen (2000[Tong, M.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 1075-1076.]); Yang et al. (2005[Yang, Y.-M., Li, H.-Q., Shi, L. & Zhu, H.-L. (2005). Acta Cryst. E61, o2882-o2883.]); You & Zhu (2004[You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. C60, m515-m516.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C6H9N3O3)2]NO3

  • Mr = 512.2

  • Triclinic, [P \overline 1]

  • a = 6.6912 (1) Å

  • b = 11.6846 (3) Å

  • c = 12.9052 (3) Å

  • α = 63.707 (1)°

  • β = 88.820 (1)°

  • γ = 87.486 (1)°

  • V = 903.72 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 100.0 (1) K

  • 0.74 × 0.22 × 0.1 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.476, Tmax = 0.892

  • 20384 measured reflections

  • 6509 independent reflections

  • 5958 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.08

  • 6509 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O9Bi 0.75 2.01 2.685 (5) 150
O1—H101⋯O8Ai 0.75 2.15 2.8872 (17) 164
O4—H1O4⋯O7Aii 0.75 2.02 2.7225 (18) 158
O4—H1O4⋯O8Bii 0.75 2.29 2.985 (5) 156
C3—H3A⋯O8A 0.93 2.27 3.0820 145
C4—H4A⋯O9A 0.93 2.42 3.0269 122
C8—H8B⋯O2 0.97 2.35 2.891 (2) 115
C10—H10B⋯O5 0.97 2.36 2.888 (2) 113
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Nitroimidazole derivatives are of special interest due to their chemical and pharmacological properties. Nitroimidazoles are generally known as antiprotozoic and radiosensitizing drugs (Edwards, 1981). (1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole), known as metronidazole in pharmaceuticals, is a widely used antibacterial drug (Credito et al., 2000; Mendz & Megraud, 2002). The structure of the title compound (I) has been determined to examine the influence of the coordination of silver on the geometry of the heterocycle.

The structure consists of two 1-(2-hydroxyethyl)2-methyl-5-nitroimidazole ligands coordinating to the silver through the N atoms in a distorted linear configuration, indicated by the N3—Ag1—N1 angle of 165.34 (4) °. The bond lengths of Ag1—N3 = 2.147 (11) Å and Ag1—N1 = 2.148 (11) Å, are comparable to the values reported for similar silver coordinated complexes (Tong & Chen, 2000; Ni et al., 2003; You & Zhu, 2004; Gao et al., 2004). The bond lengths of the heterocyclic five membered rings are comparable with the values found in 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole in its un-coordinated form (Blaton et al., 1979), iodometronidazole (Yang et al., 2005), and chlorometronidazole (Pi et al., 2005).

Both the hydroxyl oxygen atoms, O1 and O4, attached to the imidazole rings are twisted from the mean plane, with O1–C9–C8–N2 and O4–C11–C10–N4 torsion angles being -66.96 (14)° and -71.9 (14)° respectively. The nitro groups attached to the imidazole rings are slightly twisted, with O3—N5—C5—C4 and O6—N6—C2—C3 torsion angles of -10.8 (2)° and -13.3 (2)° respectively. Both imidazole rings are essentially planar, with the maximum deviation from planarity being 0.007 (1) Å for atom C1 and 0.003 (2) Å for atom N2. The nitrate anion is disordered over two positions with site occupancies of 0.8:0.2. The molecules in the asymmetric unit are interconnected by C—H···O hydrogen bonds. Intramolecular C—H···O hydrogen bonding results in an S(6) a ring motif, while two oxygen atoms of the major component of the disordered nitrate anion form C—H···O interations with the cation, forming an R22(10) motif (Fig. 1). The nitrate ions are linked to the hydroxyl groups on neighbouring cations by O—H···O hydrogen bonds. The molecules are packed into infinite one dimensional chains along the [1 0 0] direction.

Related literature top

For related literature regarding pharmaceutical uses of nitroimidazole derivatives, see: Credito et al. (2000); Edwards (1981); Mendz & Megraud (2002). For comparable crystal structures, see: Blaton et al. (1979); Gao et al. (2004); Ni et al. (2003); Pi et al. (2005); Tong & Chen (2000); Yang et al. (2005); You & Zhu (2004).

Experimental top

1-(2-hydroxyethyl)2-methyl-5-nitroimidazole) (0.350 g) [ALDRICH] was dissolved in 25 ml hot ethanol and silver nitrate [Sigma] (0.150 g) was dissolved in 20 ml ammonia solution in the molar ratio 2:1. These two solutions were mixed and heated under reflux for 48 h at a temperature of 363 K. Colourless plate shaped crystals were obtained after a month upon slow evaporation of the solvent.

Refinement top

After confirming their presence in the difference map, all H atoms were placed in calculated positions [C—H = 0.93 Å, CH3 = 0.96 Å CH2= 0.97Å and O—H = 0.86Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C,O) and Uiso(H) = -1.5Ueq(methyl)]. The ratio of the occupancies for the major and minor components of the disordered nitro group O atoms were refined to 0.786 (3):0.214 (3). In the final refinement, this ratio was fixed at 0.8:0.2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
Bis[1-(2-hydroxyethyl)-2-methyl-5-nitro-1H-imidazole-κN3]silver(I) nitrate top
Crystal data top
[Ag(C6H9N3O3)2]NO3Z = 2
Mr = 512.2F(000) = 516
Triclinic, P1Dx = 1.882 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6912 (1) ÅCell parameters from 9959 reflections
b = 11.6846 (3) Åθ = 3.2–37.8°
c = 12.9052 (3) ŵ = 1.18 mm1
α = 63.707 (1)°T = 100 K
β = 88.820 (1)°Plate, colourless
γ = 87.486 (1)°0.74 × 0.22 × 0.1 mm
V = 903.72 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5958 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
θmax = 32.5°, θmin = 2.0°
Tmin = 0.476, Tmax = 0.892h = 1010
20384 measured reflectionsk = 1717
6509 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.2414P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.005
S = 1.08Δρmax = 0.58 e Å3
6509 reflectionsΔρmin = 0.65 e Å3
291 parameters
Crystal data top
[Ag(C6H9N3O3)2]NO3γ = 87.486 (1)°
Mr = 512.2V = 903.72 (3) Å3
Triclinic, P1Z = 2
a = 6.6912 (1) ÅMo Kα radiation
b = 11.6846 (3) ŵ = 1.18 mm1
c = 12.9052 (3) ÅT = 100 K
α = 63.707 (1)°0.74 × 0.22 × 0.1 mm
β = 88.820 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5958 reflections with I > 2σ(I)
Tmin = 0.476, Tmax = 0.892Rint = 0.026
20384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.08Δρmax = 0.58 e Å3
6509 reflectionsΔρmin = 0.65 e Å3
291 parameters
Special details top

Geometry. Experimental. The low-temperature data was collected with the Oxford Crysosystem Cobra low-temperature attachement.

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.247504 (15)0.147593 (9)1.004773 (8)0.01643 (3)
O10.93316 (17)0.44665 (10)0.82229 (9)0.0223 (2)
H1010.90520.37850.85940.027*
O20.70475 (17)0.41493 (11)0.50145 (9)0.0243 (2)
O30.62322 (18)0.21652 (11)0.56769 (10)0.0250 (2)
O40.46849 (17)0.21717 (10)1.24656 (9)0.0214 (2)
H1O40.42880.20021.20030.026*
O50.18196 (16)0.16629 (10)1.51008 (8)0.0191 (2)
O60.10089 (17)0.26774 (9)1.40801 (9)0.0211 (2)
N10.39023 (17)0.26342 (10)0.84333 (9)0.01355 (19)
N20.56794 (17)0.41644 (10)0.71061 (9)0.01301 (19)
N30.10790 (17)0.07543 (11)1.17193 (9)0.0136 (2)
N40.07227 (16)0.06598 (10)1.32188 (9)0.01194 (19)
N50.63543 (18)0.31651 (12)0.57702 (10)0.0168 (2)
N60.11678 (17)0.16962 (11)1.42100 (9)0.0139 (2)
C10.02601 (19)0.14301 (12)1.22443 (11)0.0127 (2)
C20.0527 (2)0.05563 (12)1.32798 (11)0.0124 (2)
C30.0586 (2)0.04857 (12)1.23573 (11)0.0137 (2)
H3A0.09470.11651.21920.016*
C40.4512 (2)0.22327 (12)0.76340 (11)0.0140 (2)
H4A0.42260.14550.76450.017*
C50.5613 (2)0.31599 (12)0.68117 (11)0.0135 (2)
C60.46316 (19)0.38035 (12)0.80999 (11)0.0133 (2)
C70.4302 (2)0.45784 (13)0.87398 (13)0.0190 (3)
H7A0.31410.42960.92230.028*
H7B0.41030.54610.82010.028*
H7C0.54490.44810.92110.028*
C80.6977 (2)0.52691 (12)0.66141 (12)0.0170 (2)
H8A0.64910.59130.6850.02*
H8B0.69310.56420.57770.02*
C90.9125 (2)0.48636 (14)0.70209 (13)0.0188 (3)
H9A0.95640.41680.68440.023*
H9B0.99820.55740.66030.023*
C100.2072 (2)0.10938 (13)1.39020 (11)0.0147 (2)
H10A0.17020.19341.3790.018*
H10B0.19190.05131.47160.018*
C110.4241 (2)0.11526 (13)1.35576 (12)0.0165 (2)
H11A0.45410.03541.35450.02*
H11B0.50930.12451.41350.02*
C120.0442 (2)0.28233 (13)1.18237 (13)0.0182 (3)
H12A0.09930.31831.10570.027*
H12B0.13060.29771.2330.027*
H12C0.08560.32131.18120.027*
N70.25847 (17)0.14402 (10)0.98555 (9)0.0148 (2)
O7A0.2995 (2)0.22646 (13)0.95060 (13)0.0197 (3)0.8
O8A0.1492 (2)0.17829 (13)1.07672 (11)0.0195 (2)0.8
O9A0.3251 (2)0.03721 (13)0.93965 (13)0.0255 (3)0.8
O7B0.1786 (8)0.0844 (5)1.0334 (4)0.0190 (10)0.2
O8B0.3686 (7)0.0715 (5)0.8893 (4)0.0154 (9)0.2
O9B0.2298 (9)0.2500 (5)0.9990 (5)0.0163 (9)0.2
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01378 (5)0.01905 (5)0.01297 (5)0.00266 (4)0.00451 (3)0.00392 (4)
O10.0242 (5)0.0180 (5)0.0232 (5)0.0036 (4)0.0036 (4)0.0073 (4)
O20.0234 (5)0.0286 (6)0.0147 (4)0.0036 (4)0.0057 (4)0.0041 (4)
O30.0304 (6)0.0284 (6)0.0222 (5)0.0004 (5)0.0003 (4)0.0168 (4)
O40.0219 (5)0.0204 (5)0.0198 (5)0.0055 (4)0.0027 (4)0.0075 (4)
O50.0193 (5)0.0222 (5)0.0135 (4)0.0019 (4)0.0060 (4)0.0060 (4)
O60.0281 (6)0.0133 (4)0.0208 (5)0.0021 (4)0.0040 (4)0.0065 (4)
N10.0130 (5)0.0130 (5)0.0132 (5)0.0023 (4)0.0022 (4)0.0044 (4)
N20.0127 (5)0.0115 (4)0.0127 (4)0.0016 (4)0.0002 (4)0.0033 (4)
N30.0131 (5)0.0140 (5)0.0124 (4)0.0002 (4)0.0023 (4)0.0049 (4)
N40.0111 (5)0.0135 (5)0.0121 (4)0.0002 (4)0.0009 (4)0.0065 (4)
N50.0141 (5)0.0230 (6)0.0128 (5)0.0005 (4)0.0001 (4)0.0074 (4)
N60.0119 (5)0.0149 (5)0.0133 (5)0.0005 (4)0.0008 (4)0.0048 (4)
C10.0107 (5)0.0141 (5)0.0134 (5)0.0006 (4)0.0004 (4)0.0061 (4)
C20.0136 (5)0.0114 (5)0.0115 (5)0.0006 (4)0.0013 (4)0.0044 (4)
C30.0148 (6)0.0125 (5)0.0126 (5)0.0015 (4)0.0013 (4)0.0046 (4)
C40.0146 (6)0.0137 (5)0.0137 (5)0.0022 (4)0.0006 (4)0.0059 (4)
C50.0136 (5)0.0151 (5)0.0115 (5)0.0016 (4)0.0008 (4)0.0056 (4)
C60.0119 (5)0.0122 (5)0.0142 (5)0.0002 (4)0.0003 (4)0.0044 (4)
C70.0205 (6)0.0159 (6)0.0227 (6)0.0001 (5)0.0030 (5)0.0106 (5)
C80.0173 (6)0.0124 (5)0.0172 (6)0.0055 (5)0.0023 (5)0.0026 (4)
C90.0152 (6)0.0185 (6)0.0232 (6)0.0056 (5)0.0028 (5)0.0094 (5)
C100.0154 (6)0.0175 (6)0.0135 (5)0.0011 (5)0.0022 (5)0.0091 (5)
C110.0138 (6)0.0183 (6)0.0167 (6)0.0007 (5)0.0030 (5)0.0072 (5)
C120.0188 (6)0.0136 (5)0.0221 (6)0.0023 (5)0.0027 (5)0.0078 (5)
N70.0136 (5)0.0157 (5)0.0162 (5)0.0004 (4)0.0016 (4)0.0082 (4)
O7A0.0249 (7)0.0191 (6)0.0181 (6)0.0024 (5)0.0005 (6)0.0111 (5)
O8A0.0195 (6)0.0248 (7)0.0148 (5)0.0011 (5)0.0033 (5)0.0095 (5)
O9A0.0274 (7)0.0148 (6)0.0300 (7)0.0050 (5)0.0031 (6)0.0059 (5)
O7B0.018 (2)0.026 (3)0.020 (2)0.003 (2)0.0041 (19)0.017 (2)
O8B0.013 (2)0.016 (2)0.013 (2)0.0043 (17)0.0042 (17)0.0027 (17)
O9B0.023 (3)0.010 (2)0.012 (2)0.0014 (19)0.001 (2)0.0019 (17)
Geometric parameters (Å, º) top
Ag1—N32.1475 (11)C4—C51.3646 (17)
Ag1—N12.1489 (11)C4—H4A0.93
O1—C91.4165 (18)C6—C71.4791 (18)
O1—H1010.7548C7—H7A0.96
O2—N51.2342 (15)C7—H7B0.96
O3—N51.2327 (16)C7—H7C0.96
O4—C111.4112 (17)C8—C91.522 (2)
O4—H1O40.7478C8—H8A0.97
O5—N61.2372 (14)C8—H8B0.97
O6—N61.2299 (15)C9—H9A0.97
N1—C61.3487 (16)C9—H9B0.97
N1—C41.3583 (17)C10—C111.5160 (19)
N2—C61.3505 (16)C10—H10A0.97
N2—C51.3871 (16)C10—H10B0.97
N2—C81.4738 (16)C11—H11A0.97
N3—C11.3430 (16)C11—H11B0.97
N3—C31.3638 (16)C12—H12A0.96
N4—C11.3561 (16)C12—H12B0.96
N4—C21.3884 (16)C12—H12C0.96
N4—C101.4742 (16)N7—O9B1.195 (5)
N5—C51.4206 (17)N7—O7B1.219 (5)
N6—C21.4182 (16)N7—O9A1.2207 (17)
C1—C121.4803 (18)N7—O7A1.2503 (17)
C2—C31.3643 (17)N7—O8A1.2854 (16)
C3—H3A0.93N7—O8B1.374 (5)
N3—Ag1—N1165.34 (4)N2—C8—C9110.63 (11)
C9—O1—H101114.1N2—C8—H8A109.5
C11—O4—H1O4109.2C9—C8—H8A109.5
C6—N1—C4106.90 (10)N2—C8—H8B109.5
C6—N1—Ag1127.13 (9)C9—C8—H8B109.5
C4—N1—Ag1125.25 (9)H8A—C8—H8B108.1
C6—N2—C5105.98 (10)O1—C9—C8112.19 (11)
C6—N2—C8124.90 (11)O1—C9—H9A109.2
C5—N2—C8127.79 (11)C8—C9—H9A109.2
C1—N3—C3107.24 (10)O1—C9—H9B109.2
C1—N3—Ag1127.60 (9)C8—C9—H9B109.2
C3—N3—Ag1124.41 (9)H9A—C9—H9B107.9
C1—N4—C2105.63 (10)N4—C10—C11111.72 (11)
C1—N4—C10125.57 (11)N4—C10—H10A109.3
C2—N4—C10127.52 (10)C11—C10—H10A109.3
O3—N5—O2123.88 (12)N4—C10—H10B109.3
O3—N5—C5116.63 (11)C11—C10—H10B109.3
O2—N5—C5119.48 (12)H10A—C10—H10B107.9
O6—N6—O5123.70 (11)O4—C11—C10112.83 (11)
O6—N6—C2116.89 (11)O4—C11—H11A109
O5—N6—C2119.40 (11)C10—C11—H11A109
N3—C1—N4110.81 (11)O4—C11—H11B109
N3—C1—C12124.38 (11)C10—C11—H11B109
N4—C1—C12124.80 (11)H11A—C11—H11B107.8
C3—C2—N4108.17 (11)C1—C12—H12A109.5
C3—C2—N6125.67 (12)C1—C12—H12B109.5
N4—C2—N6125.76 (11)H12A—C12—H12B109.5
N3—C3—C2108.13 (11)C1—C12—H12C109.5
N3—C3—H3A125.9H12A—C12—H12C109.5
C2—C3—H3A125.9H12B—C12—H12C109.5
N1—C4—C5108.62 (11)O9B—N7—O7B129.1 (4)
N1—C4—H4A125.7O9B—N7—O9A157.0 (3)
C5—C4—H4A125.7O7B—N7—O9A73.6 (3)
C4—C5—N2107.74 (11)O9B—N7—O7A34.6 (3)
C4—C5—N5126.13 (12)O7B—N7—O7A163.2 (3)
N2—C5—N5125.74 (11)O9A—N7—O7A122.53 (14)
N1—C6—N2110.75 (11)O9B—N7—O8A82.5 (3)
N1—C6—C7124.08 (12)O7B—N7—O8A47.6 (3)
N2—C6—C7125.16 (11)O9A—N7—O8A120.45 (13)
C6—C7—H7A109.5O7A—N7—O8A116.95 (13)
C6—C7—H7B109.5O9B—N7—O8B115.2 (4)
H7A—C7—H7B109.5O7B—N7—O8B114.5 (4)
C6—C7—H7C109.5O9A—N7—O8B41.9 (2)
H7A—C7—H7C109.5O7A—N7—O8B80.9 (2)
H7B—C7—H7C109.5O8A—N7—O8B162.1 (2)
N3—Ag1—N1—C68.8 (2)Ag1—N1—C4—C5170.95 (9)
N3—Ag1—N1—C4177.85 (15)N1—C4—C5—N20.29 (16)
N1—Ag1—N3—C117.4 (2)N1—C4—C5—N5173.38 (13)
N1—Ag1—N3—C3173.76 (15)C6—N2—C5—C40.52 (15)
C3—N3—C1—N41.10 (15)C8—N2—C5—C4167.74 (12)
Ag1—N3—C1—N4171.44 (9)C6—N2—C5—N5173.64 (13)
C3—N3—C1—C12179.92 (13)C8—N2—C5—N519.1 (2)
Ag1—N3—C1—C129.6 (2)O3—N5—C5—C410.8 (2)
C2—N4—C1—N31.28 (15)O2—N5—C5—C4168.30 (14)
C10—N4—C1—N3169.09 (12)O3—N5—C5—N2177.36 (13)
C2—N4—C1—C12179.75 (13)O2—N5—C5—N23.6 (2)
C10—N4—C1—C1211.9 (2)C4—N1—C6—N20.39 (15)
C1—N4—C2—C30.96 (15)Ag1—N1—C6—N2171.07 (9)
C10—N4—C2—C3168.46 (12)C4—N1—C6—C7179.94 (13)
C1—N4—C2—N6174.09 (13)Ag1—N1—C6—C79.39 (19)
C10—N4—C2—N618.4 (2)C5—N2—C6—N10.57 (15)
O6—N6—C2—C313.3 (2)C8—N2—C6—N1168.26 (12)
O5—N6—C2—C3165.71 (13)C5—N2—C6—C7179.89 (13)
O6—N6—C2—N4174.73 (13)C8—N2—C6—C712.2 (2)
O5—N6—C2—N46.2 (2)C6—N2—C8—C992.52 (15)
C1—N3—C3—C20.46 (16)C5—N2—C8—C972.45 (17)
Ag1—N3—C3—C2171.18 (9)N2—C8—C9—O166.96 (14)
N4—C2—C3—N30.32 (16)C1—N4—C10—C1194.80 (15)
N6—C2—C3—N3173.46 (12)C2—N4—C10—C1170.35 (17)
C6—N1—C4—C50.05 (15)N4—C10—C11—O471.90 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O9Bi0.752.012.685 (5)150
O1—H101···O8Ai0.752.152.8872 (17)164
O4—H1O4···O7Aii0.752.022.7225 (18)158
O4—H1O4···O8Bii0.752.292.985 (5)156
C3—H3A···O8A0.932.273.0820145
C4—H4A···O9A0.932.423.0269122
C8—H8B···O20.972.352.891 (2)115
C10—H10B···O50.972.362.888 (2)113
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Ag(C6H9N3O3)2]NO3
Mr512.2
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.6912 (1), 11.6846 (3), 12.9052 (3)
α, β, γ (°)63.707 (1), 88.820 (1), 87.486 (1)
V3)903.72 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.74 × 0.22 × 0.1
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.476, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
20384, 6509, 5958
Rint0.026
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.08
No. of reflections6509
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.65

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O9Bi0.752.012.685 (5)149.5
O1—H101···O8Ai0.752.152.8872 (17)164
O4—H1O4···O7Aii0.752.022.7225 (18)157.8
O4—H1O4···O8Bii0.752.292.985 (5)155.9
C3—H3A···O8A0.932.273.0820145
C4—H4A···O9A0.932.423.0269122
C8—H8B···O20.972.352.891 (2)115
C10—H10B···O50.972.362.888 (2)113
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for awarding a post-doctoral research fellowship.

References

First citationBlaton, N. M., Peeters, O. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2465–2467.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCredito, K. L., Jacobs, M. R. & Applebaum, P. C. (2000). Diagn. Microbiol. Infect. Dis. 38, 181–183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdwards, D. I. (1981). Prog. Med. Chem. 18, 88–116.  Google Scholar
First citationGao, S., Lu, Z.-Z., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. C60, m651–m653.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMendz, G. L. & Megraud, F. (2002). Trends Microbiol. 10, 370–375.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNi, J., Li, Y.-Z., Xue, Z., Chen, H.-L. & Wang, Z.-L. (2003). Acta Cryst. C59, m201–m203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPi, W.-X., Yang, Y.-M., Li, H.-Q. & Zhu, H.-L. (2005). Acta Cryst. E61, o2880–o2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 1075–1076.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y.-M., Li, H.-Q., Shi, L. & Zhu, H.-L. (2005). Acta Cryst. E61, o2882–o2883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. C60, m515–m516.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m668-m669
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds