organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-3,3-di­phenyl­indolin-2-one

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cPostgraduate Research, Department of Chemistry, New College, Chennai 600014, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 22 December 2007; accepted 7 April 2008; online 16 April 2008)

In the title compound, C23H19NO, the oxindole residue is essentially planar and is almost perpendicular to the phenyl rings [dihedral angles = 72.1 (6) and 77.6 (6)°]. The mol­ecular packing is stabilized by C—H⋯O hydrogen bonds and C—H⋯N inter­actions.

Related literature

For related literature, see: Bandini et al. (2005[Bandini, M., Melloni, A., Tommasi, S. & Umani-Ronchi, A. (2005). Synlett, 8, 1199-1222.]); Florin et al. (1980[Florin, I., Rutberg, L., Curvall, M. & Enzell, C. R. (1980). Toxicology, 15, 219-232.]); Govind et al. (2003[Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1438-o1440.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]); Ramirez & Garcia-Rubio (2003[Ramirez, A. & Garcia-Rubio, S. (2003). Curr. Med. Chem. 10, 1891-1915.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19NO

  • Mr = 325.39

  • Orthorhombic, P 21 21 21

  • a = 8.8449 (3) Å

  • b = 12.3879 (4) Å

  • c = 16.0377 (4) Å

  • V = 1757.25 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.978, Tmax = 0.985

  • 14793 measured reflections

  • 3559 independent reflections

  • 2611 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.141

  • S = 1.09

  • 3559 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯N1 0.93 2.59 2.905 (4) 100
C10—H10A⋯O1i 0.97 2.49 3.446 (3) 170
C23—H23⋯O1ii 0.93 2.55 3.356 (3) 146
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Indole and its derivatives form a class of toxic recalcitrant N – heterocyclic compounds that are considered as pollutants (Florin et al., 1980). Derivatives of indole have received much attention because of their widespread applications in materials science, agrichemicals, and pharmaceuticals (Ramirez & Garcia-Rubio, 2003).Their preparation and functionalization continues to be a fascinating subject in organic synthesis due to the frequent appearance of indoles in biologically interesting compounds (Bandini et al., 2005). Compounds containing the indole moiety have been proven to display high activity of aldose reductase inhibition (Rajeswaran et al., 1999). In view of this importance, an X-ray study of the title compound, (I), was carried out.

An ORTEP (Farrugia,1997) plot of the molecule is shown in Fig.1. The indole moiety (N1/C2 – C9) is planar with the maximum deviation of 0.040 (8) for C2 atom. The oxindole ring is nearly orthogonal to phenyl rings A (C13 – C18) and B (C19 – C24), and makes a dihedral angle of 72.1 (6)° with the ring A, 77.6 (6)° with the ring B. Both the phenyl rings A and B are oriented at an angle of 70.4 (7)° with respect to each other. The sum of angles at N1 [360.0]° indicate sp2 hybridization. In the oxindole ring systems, the variation in endocyclic angles are due to fusion of five and six membered rings (Govind et al., 2003). The N1— C2 and C2— O1 bond lengths indicate electron delocalization over atoms N1, C2 and O1. The torsion angle C12—C11—C10—N1 = – 0.3 (4)° indicate that the allyl group deviates significantly from the plane of the attached indole moiety.

Weak intramolecular C—H···N and C—H··· π interactions stabilize the molecule. The crystal packing also involves inter molecular C—H···O interactions and van der Waals forces.

Related literature top

For related literature, see: Bandini et al. (2005); Florin et al. (1980); Govind et al. (2003); Rajeswaran et al. (1999); Ramirez & Garcia-Rubio (2003).

Experimental top

To a solution of phenyl magnesium bromide in dry THF, at 0°C under N2 atm.,1-N-allyl isatin (0.005 mol, 0.935 g), in dry THF, was added dropwise. After the complete addition, the mixture was stirred at 0°C for 1 hr and then it was stirred at room temperature for 5 hrs. The progress of the reaction was followed by TLC. On completion of the reaction, a saturated solution of NH4Cl was added slowly at 0°C. The aqueous layer was washed with brine (50 ml) and dried. On removal of the solvent under reduced pressure, a crude mass was obtained., which was purified over a column of silica gel (100–200 mesh) using hexane/ethyl acetate as eluent. Compound was recrystallized from methanol.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms with aromatic C—H distances of 0.93 Å, methylene C—H distances of 0.97 Å and with Uiso(H) = 1.2 Ueq(C).In the absence of significant anomalous scattering effects, Friedel pairs have been merged. The absolute structure parameter is removed from the CIF since the Flack [10.0 (10)] is meaningless.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids
[Figure 2] Fig. 2. The packing of the molecules viewed down a axis.
1-Allyl-3,3-diphenylindolin-2-one top
Crystal data top
C23H19NOF(000) = 688
Mr = 325.39Dx = 1.230 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ac 2abCell parameters from 4984 reflections
a = 8.8449 (3) Åθ = 2.5–30.3°
b = 12.3879 (4) ŵ = 0.08 mm1
c = 16.0377 (4) ÅT = 293 K
V = 1757.25 (9) Å3Prism, yellow
Z = 40.30 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEX2
diffractometer
3559 independent reflections
Radiation source: fine-focus sealed tube2611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1311
Tmin = 0.978, Tmax = 0.985k = 1814
14793 measured reflectionsl = 2024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.2107P]
where P = (Fo2 + 2Fc2)/3
3559 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C23H19NOV = 1757.25 (9) Å3
Mr = 325.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8449 (3) ŵ = 0.08 mm1
b = 12.3879 (4) ÅT = 293 K
c = 16.0377 (4) Å0.30 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEX2
diffractometer
3559 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2611 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.026
14793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
3559 reflectionsΔρmin = 0.21 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.7623 (2)0.14099 (15)0.09508 (12)0.0367 (4)
C30.7846 (2)0.02597 (14)0.13122 (10)0.0331 (3)
C40.8751 (2)0.02725 (15)0.06249 (11)0.0349 (4)
C50.9240 (3)0.13195 (17)0.05340 (13)0.0454 (5)
H50.90170.18360.09370.055*
C61.0075 (3)0.1595 (2)0.01711 (14)0.0523 (5)
H61.04200.22990.02390.063*
C71.0390 (3)0.0829 (2)0.07656 (14)0.0570 (6)
H71.09520.10250.12310.068*
C80.9897 (3)0.0220 (2)0.06920 (13)0.0517 (5)
H81.01190.07330.10970.062*
C90.9059 (2)0.04807 (16)0.00085 (11)0.0387 (4)
C100.8516 (3)0.24727 (19)0.02570 (15)0.0543 (6)
H10A0.95270.25130.04900.065*
H10B0.84040.30730.01260.065*
C110.7411 (3)0.2612 (2)0.09456 (17)0.0675 (7)
H110.74860.32520.12460.081*
C120.6406 (4)0.1988 (3)0.1170 (2)0.0792 (9)
H12A0.62720.13340.08940.095*
H12B0.57810.21700.16140.095*
C130.8731 (2)0.03991 (15)0.21273 (11)0.0363 (4)
C140.8029 (3)0.08647 (16)0.28170 (13)0.0439 (4)
H140.70180.10670.27840.053*
C150.8814 (3)0.10282 (19)0.35467 (14)0.0534 (6)
H150.83270.13330.40040.064*
C161.0312 (3)0.0745 (2)0.36051 (15)0.0643 (7)
H161.08450.08630.40970.077*
C171.1015 (3)0.0285 (3)0.29290 (17)0.0782 (9)
H171.20280.00900.29640.094*
C181.0225 (3)0.0110 (3)0.21964 (15)0.0597 (6)
H181.07130.02080.17450.072*
C190.6328 (2)0.03049 (15)0.14321 (11)0.0347 (4)
C200.5121 (2)0.00927 (18)0.09117 (14)0.0446 (5)
H200.52210.04260.04960.054*
C210.3761 (3)0.0640 (2)0.09980 (17)0.0548 (6)
H210.29570.04840.06450.066*
C220.3604 (3)0.1413 (2)0.16061 (17)0.0572 (6)
H220.26900.17750.16690.069*
C230.4792 (3)0.1650 (2)0.21185 (15)0.0596 (6)
H230.46880.21780.25260.072*
C240.6155 (3)0.11038 (18)0.20325 (13)0.0500 (5)
H240.69610.12750.23810.060*
N10.8393 (2)0.14731 (13)0.02162 (10)0.0414 (4)
O10.69142 (19)0.21379 (12)0.12636 (10)0.0505 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0361 (9)0.0371 (9)0.0367 (8)0.0015 (7)0.0006 (7)0.0024 (7)
C30.0331 (8)0.0371 (8)0.0290 (7)0.0005 (7)0.0027 (6)0.0012 (7)
C40.0326 (8)0.0408 (9)0.0313 (8)0.0012 (7)0.0004 (7)0.0026 (7)
C50.0469 (11)0.0442 (10)0.0452 (10)0.0025 (9)0.0027 (9)0.0034 (9)
C60.0480 (12)0.0570 (12)0.0518 (12)0.0076 (10)0.0008 (10)0.0170 (10)
C70.0455 (12)0.0809 (17)0.0446 (11)0.0002 (11)0.0090 (10)0.0169 (11)
C80.0486 (12)0.0700 (14)0.0363 (10)0.0056 (11)0.0102 (9)0.0001 (10)
C90.0349 (9)0.0463 (9)0.0351 (8)0.0051 (8)0.0027 (7)0.0006 (8)
C100.0559 (13)0.0514 (11)0.0557 (13)0.0076 (10)0.0055 (11)0.0204 (11)
C110.0746 (17)0.0706 (17)0.0574 (15)0.0029 (15)0.0022 (14)0.0130 (13)
C120.088 (2)0.084 (2)0.0650 (17)0.0092 (19)0.0007 (16)0.0026 (15)
C130.0369 (9)0.0391 (9)0.0329 (8)0.0001 (7)0.0011 (7)0.0000 (7)
C140.0458 (11)0.0473 (10)0.0386 (10)0.0052 (9)0.0013 (8)0.0040 (8)
C150.0651 (15)0.0582 (13)0.0369 (10)0.0023 (12)0.0004 (10)0.0089 (9)
C160.0631 (16)0.0861 (18)0.0437 (12)0.0075 (14)0.0126 (11)0.0102 (12)
C170.0463 (13)0.126 (3)0.0618 (15)0.0108 (17)0.0163 (12)0.0218 (18)
C180.0395 (11)0.0917 (18)0.0479 (11)0.0075 (12)0.0028 (9)0.0165 (12)
C190.0354 (9)0.0368 (8)0.0319 (8)0.0017 (7)0.0050 (6)0.0008 (7)
C200.0394 (10)0.0457 (10)0.0489 (11)0.0001 (8)0.0001 (8)0.0063 (9)
C210.0343 (10)0.0569 (13)0.0730 (15)0.0010 (9)0.0001 (10)0.0082 (12)
C220.0471 (12)0.0530 (12)0.0713 (15)0.0151 (10)0.0185 (11)0.0132 (12)
C230.0773 (17)0.0548 (13)0.0468 (11)0.0253 (12)0.0135 (12)0.0028 (10)
C240.0602 (14)0.0513 (12)0.0387 (10)0.0141 (11)0.0024 (9)0.0105 (9)
N10.0439 (9)0.0401 (8)0.0401 (8)0.0042 (7)0.0052 (7)0.0081 (7)
O10.0565 (9)0.0411 (7)0.0539 (9)0.0091 (7)0.0066 (7)0.0007 (6)
Geometric parameters (Å, º) top
C2—O11.207 (2)C12—H12B0.9300
C2—N11.363 (2)C13—C181.374 (3)
C2—C31.551 (3)C13—C141.393 (3)
C3—C41.513 (2)C14—C151.376 (3)
C3—C191.526 (3)C14—H140.9300
C3—C131.533 (2)C15—C161.374 (4)
C4—C51.375 (3)C15—H150.9300
C4—C91.387 (3)C16—C171.373 (4)
C5—C61.393 (3)C16—H160.9300
C5—H50.9300C17—C181.384 (3)
C6—C71.374 (3)C17—H170.9300
C6—H60.9300C18—H180.9300
C7—C81.375 (4)C19—C201.380 (3)
C7—H70.9300C19—C241.389 (3)
C8—C91.384 (3)C20—C211.388 (3)
C8—H80.9300C20—H200.9300
C9—N11.404 (3)C21—C221.374 (4)
C10—N11.456 (3)C21—H210.9300
C10—C111.485 (4)C22—C231.366 (4)
C10—H10A0.9700C22—H220.9300
C10—H10B0.9700C23—C241.390 (3)
C11—C121.232 (4)C23—H230.9300
C11—H110.9300C24—H240.9300
C12—H12A0.9300
O1—C2—N1125.14 (18)C18—C13—C14118.21 (19)
O1—C2—C3126.65 (17)C18—C13—C3122.03 (18)
N1—C2—C3108.20 (15)C14—C13—C3119.73 (17)
C4—C3—C19110.95 (15)C15—C14—C13120.7 (2)
C4—C3—C13113.58 (15)C15—C14—H14119.6
C19—C3—C13113.16 (14)C13—C14—H14119.6
C4—C3—C2101.25 (14)C16—C15—C14120.5 (2)
C19—C3—C2110.88 (15)C16—C15—H15119.8
C13—C3—C2106.26 (14)C14—C15—H15119.8
C5—C4—C9119.81 (17)C17—C16—C15119.2 (2)
C5—C4—C3130.89 (17)C17—C16—H16120.4
C9—C4—C3109.29 (16)C15—C16—H16120.4
C4—C5—C6118.9 (2)C16—C17—C18120.5 (2)
C4—C5—H5120.5C16—C17—H17119.8
C6—C5—H5120.5C18—C17—H17119.8
C7—C6—C5120.1 (2)C13—C18—C17120.8 (2)
C7—C6—H6119.9C13—C18—H18119.6
C5—C6—H6119.9C17—C18—H18119.6
C6—C7—C8121.9 (2)C20—C19—C24118.03 (18)
C6—C7—H7119.0C20—C19—C3121.12 (16)
C8—C7—H7119.0C24—C19—C3120.69 (18)
C7—C8—C9117.4 (2)C19—C20—C21121.1 (2)
C7—C8—H8121.3C19—C20—H20119.4
C9—C8—H8121.3C21—C20—H20119.4
C8—C9—C4121.79 (19)C22—C21—C20119.9 (2)
C8—C9—N1128.49 (18)C22—C21—H21120.0
C4—C9—N1109.72 (16)C20—C21—H21120.0
N1—C10—C11115.9 (2)C23—C22—C21119.9 (2)
N1—C10—H10A108.3C23—C22—H22120.0
C11—C10—H10A108.3C21—C22—H22120.0
N1—C10—H10B108.3C22—C23—C24120.2 (2)
C11—C10—H10B108.3C22—C23—H23119.9
H10A—C10—H10B107.4C24—C23—H23119.9
C12—C11—C10128.2 (3)C19—C24—C23120.7 (2)
C12—C11—H11115.9C19—C24—H24119.6
C10—C11—H11115.9C23—C24—H24119.6
C11—C12—H12A120.0C2—N1—C9111.39 (15)
C11—C12—H12B120.0C2—N1—C10122.46 (18)
H12A—C12—H12B120.0C9—N1—C10126.12 (17)
O1—C2—C3—C4177.4 (2)C3—C13—C14—C15177.99 (18)
N1—C2—C3—C43.70 (18)C13—C14—C15—C160.7 (4)
O1—C2—C3—C1959.6 (2)C14—C15—C16—C170.7 (4)
N1—C2—C3—C19121.48 (16)C15—C16—C17—C180.1 (5)
O1—C2—C3—C1363.8 (2)C14—C13—C18—C170.6 (4)
N1—C2—C3—C13115.17 (16)C3—C13—C18—C17177.3 (3)
C19—C3—C4—C557.8 (3)C16—C17—C18—C130.6 (5)
C13—C3—C4—C571.0 (3)C4—C3—C19—C2080.4 (2)
C2—C3—C4—C5175.6 (2)C13—C3—C19—C20150.58 (17)
C19—C3—C4—C9120.96 (17)C2—C3—C19—C2031.3 (2)
C13—C3—C4—C9110.24 (17)C4—C3—C19—C2495.0 (2)
C2—C3—C4—C93.23 (18)C13—C3—C19—C2434.0 (2)
C9—C4—C5—C61.6 (3)C2—C3—C19—C24153.30 (18)
C3—C4—C5—C6179.68 (19)C24—C19—C20—C211.6 (3)
C4—C5—C6—C70.5 (3)C3—C19—C20—C21177.17 (19)
C5—C6—C7—C80.3 (4)C19—C20—C21—C220.5 (4)
C6—C7—C8—C90.2 (4)C20—C21—C22—C230.7 (4)
C7—C8—C9—C41.4 (3)C21—C22—C23—C240.6 (4)
C7—C8—C9—N1177.8 (2)C20—C19—C24—C231.7 (3)
C5—C4—C9—C82.2 (3)C3—C19—C24—C23177.3 (2)
C3—C4—C9—C8178.88 (19)C22—C23—C24—C190.6 (4)
C5—C4—C9—N1177.21 (18)O1—C2—N1—C9178.1 (2)
C3—C4—C9—N11.7 (2)C3—C2—N1—C93.0 (2)
N1—C10—C11—C120.3 (4)O1—C2—N1—C103.8 (3)
C4—C3—C13—C183.0 (3)C3—C2—N1—C10175.20 (18)
C19—C3—C13—C18130.7 (2)C8—C9—N1—C2178.5 (2)
C2—C3—C13—C18107.4 (2)C4—C9—N1—C20.8 (2)
C4—C3—C13—C14179.13 (17)C8—C9—N1—C103.4 (4)
C19—C3—C13—C1451.5 (2)C4—C9—N1—C10177.25 (19)
C2—C3—C13—C1470.4 (2)C11—C10—N1—C296.5 (3)
C18—C13—C14—C150.1 (3)C11—C10—N1—C985.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N10.932.592.905 (4)100
C10—H10A···O1i0.972.493.446 (3)170
C23—H23···O1ii0.932.553.356 (3)146
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H19NO
Mr325.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.8449 (3), 12.3879 (4), 16.0377 (4)
V3)1757.25 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEX2
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
14793, 3559, 2611
Rint0.026
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.09
No. of reflections3559
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
C2—O11.207 (2)C9—N11.404 (3)
C2—N11.363 (2)C10—N11.456 (3)
O1—C2—N1125.14 (18)C4—C9—N1109.72 (16)
O1—C2—C3126.65 (17)N1—C10—C11115.9 (2)
N1—C2—C3108.20 (15)C2—N1—C9111.39 (15)
C5—C4—C9119.81 (17)C2—N1—C10122.46 (18)
C8—C9—C4121.79 (19)C9—N1—C10126.12 (17)
C8—C9—N1128.49 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N10.932.592.905 (4)100
C10—H10A···O1i0.972.493.446 (3)170
C23—H23···O1ii0.932.553.356 (3)146
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN also thanks SRM Management, India, for their support.

References

First citationBandini, M., Melloni, A., Tommasi, S. & Umani-Ronchi, A. (2005). Synlett, 8, 1199–1222.  Web of Science CrossRef
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFlorin, I., Rutberg, L., Curvall, M. & Enzell, C. R. (1980). Toxicology, 15, 219–232.  CrossRef CAS PubMed Web of Science
First citationGovind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1438–o1440.  Web of Science CrossRef CAS IUCr Journals
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS
First citationRamirez, A. & Garcia-Rubio, S. (2003). Curr. Med. Chem. 10, 1891–1915.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds