organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­ethyl­amino)salicylaldehyde phenyl­sulfonyl­hydrazone

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 12 April 2008; accepted 13 April 2008; online 18 April 2008)

In the title compound, C17H21N3O3S, the dihedral angle between the aromatic ring planes is 84.2 (2)°. The pendant ethyl groups of the –N(C2H5)2 group are disordered over two sets of positions in a 0.84 (2):0.16 (2) ratio. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, and inter­molecular N—H⋯O bonds lead to [010] chains in the crystal structure.

Related literature

For related literature, see: Tai et al. (2008[Tai, X.-S., Feng, Y.-M. & Kong, F.-Y. (2008). Acta Cryst. E64, o750.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21N3O3S

  • Mr = 347.43

  • Orthorhombic, P b c n

  • a = 29.874 (3) Å

  • b = 7.5153 (12) Å

  • c = 15.4456 (19) Å

  • V = 3467.8 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 (2) K

  • 0.43 × 0.38 × 0.04 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.992

  • 16321 measured reflections

  • 3052 independent reflections

  • 2061 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.175

  • S = 1.08

  • 3052 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.92 2.637 (4) 146
N1—H1⋯O1i 0.90 2.06 2.944 (5) 169
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of aroylhydrazones as potential ligands (Tai et al., 2008), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The dihedral angle between the aromatic ring planes is 84.2 (2)°. The pendant ethyl groups of the -N(C2H5)2 grouping are disordered over two sets of positions in a 0.84 (2):0.16 (2) ratio. The molecular conformation is stabilised by an intramolecular O-H···N hydrogen bond and intermolecular N-H···O bonds lead to [010] chains in the crystal (Table 1).

Related literature top

For related literature, see: Tai et al. (2008).

Experimental top

3 mmol of p-(diethylamino)salicylaldehyde (3 mmol) was added to a solution of benzenesulfonyl hydrazide (3 mmol) in 10 ml of 95% ethanol. The mixture was continuously stirred for 4 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 67%). Colourless plates of (I) were obtained by evaporation from a methanol solution after several days.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å, O—H = 0.82Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C, O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids for the non-hydrogen atoms. Only the major disorder component is shown and the hydrogen bond is indicated by a double-dashed line.
4-(Diethylamino)salicylaldehyde phenylsulfonylhydrazone top
Crystal data top
C17H21N3O3SDx = 1.331 Mg m3
Mr = 347.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3546 reflections
a = 29.874 (3) Åθ = 2.7–21.4°
b = 7.5153 (12) ŵ = 0.21 mm1
c = 15.4456 (19) ÅT = 293 K
V = 3467.8 (8) Å3Plate, colourless
Z = 80.43 × 0.38 × 0.04 mm
F(000) = 1472
Data collection top
Bruker SMART CCD
diffractometer
3052 independent reflections
Radiation source: fine-focus sealed tube2061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3534
Tmin = 0.916, Tmax = 0.992k = 87
16321 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0453P)2 + 7.4306P]
where P = (Fo2 + 2Fc2)/3
3052 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H21N3O3SV = 3467.8 (8) Å3
Mr = 347.43Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 29.874 (3) ŵ = 0.21 mm1
b = 7.5153 (12) ÅT = 293 K
c = 15.4456 (19) Å0.43 × 0.38 × 0.04 mm
Data collection top
Bruker SMART CCD
diffractometer
3052 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2061 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.992Rint = 0.048
16321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
3052 reflectionsΔρmin = 0.30 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.31274 (11)0.2572 (5)0.9493 (2)0.0502 (9)
H10.29490.34990.93630.060*
N20.35710 (11)0.3011 (5)0.9253 (2)0.0512 (9)
N30.54548 (13)0.6991 (6)0.8710 (3)0.0794 (14)
O10.24926 (10)0.0597 (4)0.93219 (19)0.0596 (8)
O20.32557 (10)0.0581 (4)0.9110 (2)0.0643 (9)
O30.44009 (10)0.2276 (4)0.8794 (2)0.0773 (11)
H30.41370.20600.88930.116*
S10.29375 (3)0.08000 (14)0.89918 (7)0.0481 (3)
C10.29054 (13)0.1295 (5)0.7887 (3)0.0457 (10)
C20.32787 (15)0.1092 (6)0.7367 (3)0.0602 (12)
H20.35470.06830.76010.072*
C30.32493 (18)0.1505 (7)0.6499 (3)0.0727 (14)
H3A0.34980.13630.61420.087*
C40.28604 (19)0.2114 (7)0.6164 (3)0.0700 (14)
H40.28460.23960.55780.084*
C50.24886 (19)0.2323 (7)0.6664 (3)0.0693 (14)
H50.22240.27440.64200.083*
C60.25055 (15)0.1908 (6)0.7535 (3)0.0586 (12)
H60.22530.20370.78820.070*
C70.36859 (14)0.4638 (6)0.9325 (3)0.0517 (11)
H70.34730.54760.94890.062*
C80.41362 (13)0.5202 (6)0.9160 (3)0.0545 (11)
C90.44774 (14)0.4048 (6)0.8899 (3)0.0572 (12)
C100.49056 (14)0.4634 (6)0.8754 (3)0.0630 (13)
H100.51240.38200.85880.076*
C110.50227 (15)0.6425 (6)0.8849 (3)0.0661 (13)
C120.46791 (15)0.7606 (7)0.9108 (4)0.0725 (15)
H120.47420.88090.91790.087*
C130.42560 (15)0.6996 (6)0.9256 (3)0.0670 (14)
H130.40380.78040.94270.080*
C140.5780 (8)0.571 (4)0.8341 (15)0.095 (6)0.84 (2)
H14A0.57870.46770.87150.114*0.84 (2)
H14B0.56660.53270.77840.114*0.84 (2)
C150.6231 (3)0.6286 (18)0.8217 (10)0.114 (4)0.84 (2)
H15A0.62420.71370.77540.171*0.84 (2)
H15B0.64140.52800.80740.171*0.84 (2)
H15C0.63390.68260.87400.171*0.84 (2)
C160.5597 (2)0.8789 (15)0.8999 (8)0.076 (3)0.84 (2)
H16A0.59120.87700.91470.092*0.84 (2)
H16B0.54300.91230.95130.092*0.84 (2)
C170.5517 (3)1.012 (2)0.8301 (10)0.107 (4)0.84 (2)
H17A0.56490.97120.77720.161*0.84 (2)
H17B0.56501.12390.84630.161*0.84 (2)
H17C0.52011.02810.82200.161*0.84 (2)
C14'0.585 (4)0.574 (18)0.870 (7)0.08 (2)0.16 (2)
H14C0.57480.45340.88130.098*0.16 (2)
H14D0.60630.60790.91340.098*0.16 (2)
C15'0.606 (2)0.586 (8)0.779 (5)0.11 (2)0.16 (2)
H15D0.59390.68790.74960.170*0.16 (2)
H15E0.59850.48010.74720.170*0.16 (2)
H15F0.63750.59660.78460.170*0.16 (2)
C16'0.5486 (13)0.875 (8)0.826 (4)0.082 (18)0.16 (2)
H16C0.52070.90210.79690.099*0.16 (2)
H16D0.57240.87230.78300.099*0.16 (2)
C17'0.5588 (15)1.015 (10)0.896 (4)0.089 (19)0.16 (2)
H17D0.53201.04070.92800.133*0.16 (2)
H17E0.56941.12240.86890.133*0.16 (2)
H17F0.58130.97060.93460.133*0.16 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0406 (19)0.055 (2)0.055 (2)0.0017 (16)0.0002 (16)0.0013 (18)
N20.0378 (18)0.057 (2)0.059 (2)0.0001 (16)0.0014 (16)0.0042 (18)
N30.053 (2)0.065 (3)0.120 (4)0.008 (2)0.015 (2)0.019 (3)
O10.0506 (16)0.061 (2)0.067 (2)0.0052 (15)0.0125 (15)0.0017 (16)
O20.0634 (19)0.0535 (19)0.076 (2)0.0149 (15)0.0025 (16)0.0112 (17)
O30.0547 (19)0.053 (2)0.125 (3)0.0024 (16)0.0098 (19)0.022 (2)
S10.0427 (6)0.0449 (6)0.0566 (7)0.0016 (5)0.0036 (5)0.0027 (5)
C10.044 (2)0.038 (2)0.054 (3)0.0016 (18)0.001 (2)0.0076 (19)
C20.047 (3)0.069 (3)0.065 (3)0.007 (2)0.002 (2)0.002 (3)
C30.068 (3)0.085 (4)0.065 (4)0.003 (3)0.006 (3)0.001 (3)
C40.087 (4)0.066 (3)0.057 (3)0.001 (3)0.006 (3)0.000 (3)
C50.074 (3)0.063 (3)0.071 (3)0.017 (3)0.020 (3)0.005 (3)
C60.049 (2)0.062 (3)0.065 (3)0.009 (2)0.003 (2)0.007 (2)
C70.046 (2)0.048 (3)0.061 (3)0.005 (2)0.001 (2)0.003 (2)
C80.042 (2)0.053 (3)0.069 (3)0.002 (2)0.003 (2)0.003 (2)
C90.048 (2)0.051 (3)0.073 (3)0.001 (2)0.002 (2)0.011 (2)
C100.043 (2)0.055 (3)0.090 (4)0.003 (2)0.008 (2)0.018 (3)
C110.045 (2)0.068 (3)0.085 (4)0.003 (2)0.008 (2)0.009 (3)
C120.056 (3)0.053 (3)0.109 (4)0.003 (2)0.014 (3)0.011 (3)
C130.050 (3)0.054 (3)0.098 (4)0.005 (2)0.011 (3)0.009 (3)
C140.060 (9)0.096 (8)0.129 (17)0.014 (7)0.018 (10)0.045 (13)
C150.067 (6)0.131 (9)0.145 (11)0.011 (6)0.007 (6)0.040 (7)
C160.052 (4)0.075 (7)0.101 (8)0.006 (3)0.001 (4)0.019 (5)
C170.072 (6)0.097 (10)0.152 (11)0.004 (5)0.011 (7)0.011 (9)
C14'0.06 (4)0.08 (4)0.11 (7)0.01 (3)0.00 (4)0.02 (5)
C15'0.09 (4)0.11 (4)0.13 (6)0.01 (3)0.00 (4)0.03 (4)
C16'0.06 (2)0.08 (4)0.11 (5)0.00 (2)0.01 (2)0.02 (3)
C17'0.06 (2)0.08 (4)0.13 (5)0.00 (2)0.00 (3)0.02 (4)
Geometric parameters (Å, º) top
N1—N21.415 (4)C10—C111.398 (6)
N1—S11.642 (4)C10—H100.9300
N1—H10.9000C11—C121.415 (6)
N2—C71.275 (5)C12—C131.363 (6)
N3—C111.376 (6)C12—H120.9300
N3—C141.48 (3)C13—H130.9300
N3—C161.485 (11)C14—C151.42 (3)
N3—C16'1.50 (6)C14—H14A0.9700
N3—C14'1.50 (15)C14—H14B0.9700
O1—S11.432 (3)C15—H15A0.9600
O2—S11.419 (3)C15—H15B0.9600
O3—C91.361 (5)C15—H15C0.9600
O3—H30.8200C16—C171.49 (2)
S1—C11.750 (4)C16—H16A0.9700
C1—C21.382 (6)C16—H16B0.9700
C1—C61.391 (6)C17—H17A0.9600
C2—C31.380 (7)C17—H17B0.9600
C2—H20.9300C17—H17C0.9600
C3—C41.351 (7)C14'—C15'1.53 (16)
C3—H3A0.9300C14'—H14C0.9700
C4—C51.362 (7)C14'—H14D0.9700
C4—H40.9300C15'—H15D0.9600
C5—C61.383 (6)C15'—H15E0.9600
C5—H50.9300C15'—H15F0.9600
C6—H60.9300C16'—C17'1.54 (10)
C7—C81.433 (6)C16'—H16C0.9700
C7—H70.9300C16'—H16D0.9700
C8—C91.398 (6)C17'—H17D0.9600
C8—C131.403 (6)C17'—H17E0.9600
C9—C101.371 (6)C17'—H17F0.9600
N2—N1—S1112.9 (3)C9—C10—C11121.7 (4)
N2—N1—H1108.5C9—C10—H10119.1
S1—N1—H1108.5C11—C10—H10119.1
C7—N2—N1116.9 (4)N3—C11—C10121.1 (4)
C11—N3—C14118.4 (10)N3—C11—C12122.0 (4)
C11—N3—C16120.2 (5)C10—C11—C12116.9 (4)
C14—N3—C16121.2 (10)C13—C12—C11120.6 (5)
C11—N3—C16'113.9 (16)C13—C12—H12119.7
C14—N3—C16'111 (2)C11—C12—H12119.7
C16—N3—C16'47 (2)C12—C13—C8122.8 (4)
C11—N3—C14'123 (5)C12—C13—H13118.6
C14—N3—C14'23 (4)C8—C13—H13118.6
C16—N3—C14'111 (4)C15—C14—N3118.4 (18)
C16'—N3—C14'120 (6)C15—C14—H14A107.7
C9—O3—H3109.5N3—C14—H14A107.7
O2—S1—O1119.90 (19)C15—C14—H14B107.7
O2—S1—N1107.52 (19)N3—C14—H14B107.7
O1—S1—N1103.83 (18)H14A—C14—H14B107.1
O2—S1—C1108.52 (19)N3—C16—C17110.4 (12)
O1—S1—C1108.61 (19)N3—C16—H16A109.6
N1—S1—C1107.86 (19)C17—C16—H16A109.6
C2—C1—C6120.2 (4)N3—C16—H16B109.6
C2—C1—S1119.9 (3)C17—C16—H16B109.6
C6—C1—S1119.9 (3)H16A—C16—H16B108.1
C3—C2—C1119.2 (4)N3—C14'—C15'107 (8)
C3—C2—H2120.4N3—C14'—H14C110.3
C1—C2—H2120.4C15'—C14'—H14C110.3
C4—C3—C2120.2 (5)N3—C14'—H14D110.3
C4—C3—H3A119.9C15'—C14'—H14D110.3
C2—C3—H3A119.9H14C—C14'—H14D108.5
C3—C4—C5121.6 (5)C14'—C15'—H15D109.5
C3—C4—H4119.2C14'—C15'—H15E109.5
C5—C4—H4119.2H15D—C15'—H15E109.5
C4—C5—C6119.7 (5)C14'—C15'—H15F109.5
C4—C5—H5120.1H15D—C15'—H15F109.5
C6—C5—H5120.1H15E—C15'—H15F109.5
C5—C6—C1119.1 (5)N3—C16'—C17'107 (6)
C5—C6—H6120.5N3—C16'—H16C110.4
C1—C6—H6120.5C17'—C16'—H16C110.4
N2—C7—C8121.4 (4)N3—C16'—H16D110.4
N2—C7—H7119.3C17'—C16'—H16D110.4
C8—C7—H7119.3H16C—C16'—H16D108.6
C9—C8—C13116.2 (4)C16'—C17'—H17D109.5
C9—C8—C7123.5 (4)C16'—C17'—H17E109.5
C13—C8—C7120.3 (4)H17D—C17'—H17E109.5
O3—C9—C10116.9 (4)C16'—C17'—H17F109.5
O3—C9—C8121.3 (4)H17D—C17'—H17F109.5
C10—C9—C8121.9 (4)H17E—C17'—H17F109.5
S1—N1—N2—C7153.6 (3)C16'—N3—C11—C10141 (3)
N2—N1—S1—O252.0 (3)C14'—N3—C11—C1018 (4)
N2—N1—S1—O1179.9 (3)C14—N3—C11—C12172.9 (12)
N2—N1—S1—C164.8 (3)C16—N3—C11—C1212.5 (9)
O2—S1—C1—C231.0 (4)C16'—N3—C11—C1240 (3)
O1—S1—C1—C2162.8 (3)C14'—N3—C11—C12161 (4)
N1—S1—C1—C285.2 (4)C9—C10—C11—N3179.3 (5)
O2—S1—C1—C6149.7 (3)C9—C10—C11—C120.4 (8)
O1—S1—C1—C617.8 (4)N3—C11—C12—C13178.8 (5)
N1—S1—C1—C694.1 (4)C10—C11—C12—C130.1 (8)
C6—C1—C2—C30.0 (7)C11—C12—C13—C80.2 (9)
S1—C1—C2—C3179.4 (4)C9—C8—C13—C120.1 (8)
C1—C2—C3—C40.6 (8)C7—C8—C13—C12179.9 (5)
C2—C3—C4—C50.6 (8)C11—N3—C14—C15178.5 (15)
C3—C4—C5—C60.0 (8)C16—N3—C14—C154 (2)
C4—C5—C6—C10.5 (7)C16'—N3—C14—C1548 (3)
C2—C1—C6—C50.5 (7)C14'—N3—C14—C1571 (15)
S1—C1—C6—C5178.8 (4)C11—N3—C16—C1789.7 (8)
N1—N2—C7—C8175.4 (4)C14—N3—C16—C1795.8 (13)
N2—C7—C8—C91.0 (7)C16'—N3—C16—C176 (2)
N2—C7—C8—C13179.0 (5)C14'—N3—C16—C17118 (5)
C13—C8—C9—O3179.3 (5)C11—N3—C14'—C15'118 (7)
C7—C8—C9—O30.8 (7)C14—N3—C14'—C15'32 (11)
C13—C8—C9—C100.6 (7)C16—N3—C14'—C15'90 (6)
C7—C8—C9—C10179.4 (5)C16'—N3—C14'—C15'39 (8)
O3—C9—C10—C11179.5 (5)C11—N3—C16'—C17'101 (3)
C8—C9—C10—C110.8 (8)C14—N3—C16'—C17'123 (2)
C14—N3—C11—C108.3 (13)C16—N3—C16'—C17'9 (2)
C16—N3—C11—C10166.3 (7)C14'—N3—C16'—C17'100 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.922.637 (4)146
N1—H1···O1i0.902.062.944 (5)169
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H21N3O3S
Mr347.43
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)29.874 (3), 7.5153 (12), 15.4456 (19)
V3)3467.8 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.43 × 0.38 × 0.04
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.916, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
16321, 3052, 2061
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.175, 1.08
No. of reflections3052
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.922.637 (4)146
N1—H1···O1i0.902.062.944 (5)169
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), the National Natural Science Foundation of Shandong (Y2007B60), and the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Feng, Y.-M. & Kong, F.-Y. (2008). Acta Cryst. E64, o750.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds