organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-amino-3-methyl­benzoate

aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bBioengineering Department, Xuzhou Higher Vocational College of Bioengineering, Mine West Road, Xuzhou 221006, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn

(Received 3 March 2008; accepted 6 March 2008; online 23 April 2008)

In the mol­ecule of the title compound, C9H11NO2, the methyl C and amino N atoms bonded to the benzene ring lie in the ring plane. Intra­molecular C—H⋯O hydrogen bonding results in the formation of a five-membered planar ring, which is oriented at a dihedral angle of 2.73 (3)° with respect to the benzene ring, so they are nearly coplanar. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains elongated along the c axis and stacked along the b axis.

Related literature

For related literature, see: Ries et al. (1993[Ries, U. J., Mihm, G., Narr, B., Hasselbach, K. M., Wittneben, H., Entzeroth, M., van Meel, J. C. A., Wienen, W. & Hauel, N. H. (1993). J. Med. Chem. 36, 4040-4051.]); Engeli et al. (2000[Engeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension, 35, 1270-1277.]); Kintscher et al. (2004[Kintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci. 9, 359-369.]); Goossens et al. (2003[Goossens, G. H., Blaak, E. E. & van Baak, M. A. (2003). Obes. Rev. 4, 43-55.]); Kurtz et al. (2004[Kurtz, T. W. & Pravenec, M. (2004). J. Hypertens. 22, 2253-2261.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO2

  • Mr = 165.19

  • Monoclinic, P 21 /c

  • a = 7.5670 (15) Å

  • b = 6.1080 (12) Å

  • c = 18.127 (4) Å

  • β = 98.14 (3)°

  • V = 829.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.963, Tmax = 0.981

  • 1747 measured reflections

  • 1620 independent reflections

  • 1079 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.188

  • S = 1.04

  • 1620 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1 0.93 2.40 2.728 (4) 100
N—H0B⋯O2i 0.86 2.37 3.142 (3) 150
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Methyl 3-methyl-4-aminobenzoate is important as an intermedicine to prepare telmisartan, an angiotensin II receptor blocker, on the development of obesity and related metabolic disorders in diet-induced obese mice (Ries et al., 1993). Telmisartan can be used as a therapeutic tool for metabolic syndrome, including visceral obesity (Engeli et al., 2000; Kintscher et al., 2004; Goossens et al., 2003; Kurtz et al., 2004). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the ligand bond lengths (Allen et al., 1987) and angles are within normal ranges. The atoms N and C9 lie in the benzene ring plane. The intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a five-membered planar ring A (O1/C2/C3/C4/H4A), in which it is oriented with respect to the six-membered planar ring B (C3—C8) at a dihedral angle of A/B = 2.73 (3)°. So, they are also nearly coplanar.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains elongated along the c axis and stacked along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Ries et al. (1993); Engeli et al. (2000); Kintscher et al. (2004); Goossens et al. (2003); Kurtz et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was prepared from 3-methyl-4-aminobenzoic acid (38 g, 250 mmol) in methanol (101 ml, 250 mmol). After the solid has melted, concentrated sulfuric acid (16 ml, 300 mmol) was dropped from the dropping funnel at 363 K, the latter was treated with a mixture of ice and water. The product was filtered by suction. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Methyl 4-amino-3-methylbenzoate top
Crystal data top
C9H11NO2F(000) = 352
Mr = 165.19Dx = 1.323 Mg m3
Monoclinic, P21/cMelting point: 391(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.5670 (15) ÅCell parameters from 25 reflections
b = 6.1080 (12) Åθ = 9–13°
c = 18.127 (4) ŵ = 0.09 mm1
β = 98.14 (3)°T = 294 K
V = 829.4 (3) Å3Block, colorless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1079 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.963, Tmax = 0.981l = 022
1747 measured reflections3 standard reflections every 200 reflections
1620 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.06P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
1620 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H11NO2V = 829.4 (3) Å3
Mr = 165.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5670 (15) ŵ = 0.09 mm1
b = 6.1080 (12) ÅT = 294 K
c = 18.127 (4) Å0.40 × 0.30 × 0.20 mm
β = 98.14 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1079 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.963, Tmax = 0.9813 standard reflections every 200 reflections
1747 measured reflections intensity decay: none
1620 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
1620 reflectionsΔρmin = 0.27 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.8206 (4)0.4908 (5)0.17914 (15)0.0570 (8)
H0A0.87160.61660.17920.068*
H0B0.78110.42790.13760.068*
O10.6922 (3)0.1169 (4)0.44629 (12)0.0549 (7)
O20.8163 (4)0.1644 (4)0.51362 (13)0.0621 (8)
C10.6852 (5)0.2393 (6)0.51341 (18)0.0561 (10)
H1A0.63030.37880.50120.084*
H1B0.61640.15990.54510.084*
H1C0.80410.26100.53880.084*
C20.7641 (4)0.0832 (5)0.45389 (18)0.0440 (8)
C30.7726 (4)0.1877 (5)0.38130 (17)0.0404 (7)
C40.7052 (4)0.0892 (5)0.31364 (17)0.0423 (8)
H4A0.64960.04640.31450.051*
C50.7176 (4)0.1847 (5)0.24532 (17)0.0405 (8)
C60.8021 (4)0.3903 (5)0.24530 (17)0.0414 (7)
C70.8662 (4)0.4927 (5)0.31251 (18)0.0450 (8)
H7A0.91960.62970.31200.054*
C80.8517 (4)0.3940 (5)0.37935 (18)0.0427 (8)
H8A0.89470.46490.42370.051*
C90.6433 (5)0.0725 (6)0.17397 (18)0.0525 (9)
H9A0.59060.06440.18510.079*
H9B0.73770.04630.14480.079*
H9C0.55410.16390.14640.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.076 (2)0.0464 (17)0.0479 (17)0.0106 (16)0.0050 (15)0.0071 (14)
O10.0748 (17)0.0429 (13)0.0455 (13)0.0097 (13)0.0031 (11)0.0032 (11)
O20.090 (2)0.0538 (16)0.0409 (13)0.0084 (14)0.0053 (13)0.0040 (12)
C10.076 (3)0.048 (2)0.0449 (19)0.0029 (19)0.0100 (17)0.0037 (16)
C20.0489 (19)0.0416 (18)0.0418 (17)0.0019 (16)0.0079 (14)0.0005 (15)
C30.0425 (17)0.0373 (17)0.0414 (17)0.0040 (14)0.0058 (13)0.0029 (14)
C40.0430 (18)0.0349 (17)0.0479 (18)0.0003 (14)0.0021 (14)0.0008 (14)
C50.0419 (18)0.0344 (16)0.0435 (17)0.0038 (14)0.0003 (13)0.0020 (14)
C60.0448 (18)0.0325 (16)0.0468 (17)0.0050 (14)0.0065 (14)0.0022 (14)
C70.0458 (19)0.0327 (16)0.056 (2)0.0036 (14)0.0061 (15)0.0014 (15)
C80.0477 (18)0.0372 (17)0.0434 (17)0.0030 (15)0.0071 (13)0.0067 (14)
C90.057 (2)0.051 (2)0.0469 (19)0.0055 (17)0.0031 (16)0.0022 (16)
Geometric parameters (Å, º) top
N—C61.372 (4)C4—C51.384 (4)
N—H0A0.8600C4—H4A0.9300
N—H0B0.8600C5—C61.410 (4)
O1—C21.336 (4)C5—C91.501 (4)
O1—C11.435 (4)C6—C71.394 (4)
C1—H1A0.9600C7—C81.372 (4)
C1—H1B0.9600C7—H7A0.9300
C1—H1C0.9600C8—H8A0.9300
O2—C21.206 (4)C9—H9A0.9600
C2—C31.472 (4)C9—H9B0.9600
C3—C41.396 (4)C9—H9C0.9600
C3—C81.398 (4)
C6—N—H0A120.0C4—C5—C6117.6 (3)
C6—N—H0B120.0C4—C5—C9120.9 (3)
H0A—N—H0B120.0C6—C5—C9121.4 (3)
C2—O1—C1116.9 (3)N—C6—C7119.9 (3)
O1—C1—H1A109.5N—C6—C5120.1 (3)
O1—C1—H1B109.5C7—C6—C5120.1 (3)
H1A—C1—H1B109.5C8—C7—C6120.9 (3)
O1—C1—H1C109.5C8—C7—H7A119.5
H1A—C1—H1C109.5C6—C7—H7A119.5
H1B—C1—H1C109.5C7—C8—C3120.4 (3)
O2—C2—O1123.1 (3)C7—C8—H8A119.8
O2—C2—C3125.0 (3)C3—C8—H8A119.8
O1—C2—C3111.9 (3)C5—C9—H9A109.5
C4—C3—C8118.1 (3)C5—C9—H9B109.5
C4—C3—C2122.8 (3)H9A—C9—H9B109.5
C8—C3—C2119.1 (3)C5—C9—H9C109.5
C5—C4—C3122.8 (3)H9A—C9—H9C109.5
C5—C4—H4A118.6H9B—C9—H9C109.5
C3—C4—H4A118.6
C1—O1—C2—O22.4 (5)C4—C5—C6—N179.0 (3)
C1—O1—C2—C3177.0 (3)C9—C5—C6—N1.1 (5)
O2—C2—C3—C4178.0 (3)C4—C5—C6—C71.4 (4)
O1—C2—C3—C42.7 (4)C9—C5—C6—C7178.5 (3)
O2—C2—C3—C82.2 (5)N—C6—C7—C8179.0 (3)
O1—C2—C3—C8177.2 (3)C5—C6—C7—C81.3 (5)
C8—C3—C4—C51.7 (5)C6—C7—C8—C30.3 (5)
C2—C3—C4—C5178.2 (3)C4—C3—C8—C71.7 (5)
C3—C4—C5—C60.1 (5)C2—C3—C8—C7178.1 (3)
C3—C4—C5—C9180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.932.402.728 (4)100
N—H0B···O2i0.862.373.142 (3)150
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11NO2
Mr165.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.5670 (15), 6.1080 (12), 18.127 (4)
β (°) 98.14 (3)
V3)829.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.963, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
1747, 1620, 1079
Rint0.022
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.188, 1.04
No. of reflections1620
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.932.402.728 (4)100.30
N—H0B···O2i0.862.373.142 (3)149.88
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEngeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension, 35, 1270–1277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGoossens, G. H., Blaak, E. E. & van Baak, M. A. (2003). Obes. Rev. 4, 43–55.  CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci. 9, 359–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKurtz, T. W. & Pravenec, M. (2004). J. Hypertens. 22, 2253–2261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRies, U. J., Mihm, G., Narr, B., Hasselbach, K. M., Wittneben, H., Entzeroth, M., van Meel, J. C. A., Wienen, W. & Hauel, N. H. (1993). J. Med. Chem. 36, 4040–4051.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds