organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-Phenyl­imino­meth­yl]benzo­nitrile

aGovernment College University, Department of Chemistry, Lahore, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 29 March 2008; accepted 31 March 2008; online 2 April 2008)

In the mol­ecule of the title compound, C14H10N2, the two aromatic rings are oriented at a dihedral angle of 32.22 (6)°. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric R22(10) dimers. A weak ππ inter­action between the cyanobenzene rings, with a centroid–centroid distance of 3.8447 (3) Å, further stabilizes the crystal structure. There is also a C—H⋯π inter­action between the aniline ring and a CH group of the cyanobenzene ring.

Related literature

For related structures, see: Ojala et al. (2002[Ojala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (2002). J. Chem. Crystallogr. 31, 377-386.]). For ring motif details, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2

  • Mr = 206.24

  • Monoclinic, P 21 /n

  • a = 7.2673 (4) Å

  • b = 10.0287 (7) Å

  • c = 15.4306 (12) Å

  • β = 96.177 (2)°

  • V = 1118.08 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 (2) K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa-APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.]) Tmin = 0.983, Tmax = 0.994

  • 13128 measured reflections

  • 2883 independent reflections

  • 1423 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.03

  • 2883 reflections

  • 176 parameters

  • All H-atom parameters refined

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.980 (13) 2.616 (14) 3.473 (2) 146.1 (10)
C5—H5⋯Cgii 0.975 (13) 2.650 (14) 3.5970 (17) 163.9 (11)
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg is the centroid of atoms C9–C14.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structures of p-halo-N-(p-cyanobenzylidene)- aniline and p-cyano-N-(p-halobenzylidene)aniline, (halo = bromo and chloro) (Ojala et al., 2002) have been reported, previously. The title compound, (I), differs due to no attachment of halogen atoms. It is prepared in aqueous medium and we report herein its crystal structure.

The molecule of (I), (Fig. 1), is a Schiff base ligand of aniline and p-cyanobenzaldehyde. The bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C1-C6) and B (C9-C14) are, of course, planar, and they are oriented at a dihedral angle of 32.22 (6)°.

In the crystal structure, intermolecular C-H···N hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(10) dimers (Fig. 2) (Bernstein et al., 1995; Etter, 1990), in which they may be effective in the stabilization of the structure. A weak π···π interaction between the A rings, at x, y, z and 1 - x, 1 - y, -z, further stabilizes the structure, with a centroid-centroid distance of 3.8447 (3) Å. There is also a C—H···π interaction between the ring B at x - 1/2, 1/2 -y, z - 1/2 and C5-H5, with H5-centroid distance of 2.650 (14) Å.

Related literature top

For related structures, see: Ojala et al. (2002). For ring motif details, see: Bernstein et al. (1995); Etter (1990). For bond-length data, see: Allen et al. (1987).

Experimental top

The starting materials employed were first purified by distillation or crystallization just before use. The experiment was performed in stoppered flask at room temperature. The title compound was synthesized by using equimolecular mixture of aniline (5 mmol) and p-cyanobenzaldehyde (5 mmol) of pH = 9 in aqueous medium. The product was precipitated after a few minutes, and separated by filtration, washed with a small amount of water and dried for 2 d at room temperature in a vacuum desicator. The dried filtrate was used for X-ray analysis (yield; 53.09%, m.p. 339 K).

Refinement top

H atoms were located in a difference syntheses and refined [C-H = 0.949 (15)-0.999 (12) Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003)..

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of centro- symmetric R22(10) ring motifs. Hydrogen bonds are shown as dashed lines.
4-[(E)-Phenyliminomethyl]benzonitrile top
Crystal data top
C14H10N2F(000) = 432
Mr = 206.24Dx = 1.226 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2883 reflections
a = 7.2673 (4) Åθ = 2.4–28.7°
b = 10.0287 (7) ŵ = 0.07 mm1
c = 15.4306 (12) ÅT = 296 K
β = 96.177 (2)°Prismatic, yellow
V = 1118.08 (13) Å30.20 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa-APEXII CCD
diffractometer
2883 independent reflections
Radiation source: fine-focus sealed tube1423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 7.30 pixels mm-1θmax = 28.7°, θmin = 2.4°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.983, Tmax = 0.994l = 2020
13128 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0364P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2883 reflectionsΔρmax = 0.13 e Å3
176 parametersΔρmin = 0.10 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H10N2V = 1118.08 (13) Å3
Mr = 206.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2673 (4) ŵ = 0.07 mm1
b = 10.0287 (7) ÅT = 296 K
c = 15.4306 (12) Å0.20 × 0.15 × 0.12 mm
β = 96.177 (2)°
Data collection top
Bruker Kappa-APEXII CCD
diffractometer
2883 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1423 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.994Rint = 0.047
13128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046176 parameters
wR(F2) = 0.118All H-atom parameters refined
S = 1.03Δρmax = 0.13 e Å3
2883 reflectionsΔρmin = 0.10 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70615 (14)0.08086 (11)0.10666 (8)0.0518 (3)
N20.05182 (19)0.57458 (14)0.13327 (10)0.0855 (5)
C10.57569 (17)0.23345 (13)0.00193 (9)0.0462 (4)
C20.40486 (19)0.23930 (15)0.03050 (10)0.0559 (4)
H20.3870 (17)0.1816 (14)0.0777 (9)0.067*
C30.27073 (19)0.32560 (16)0.00409 (10)0.0593 (4)
H30.1494 (18)0.3263 (13)0.0181 (9)0.071*
C40.30456 (17)0.40866 (13)0.07259 (9)0.0493 (4)
C50.4727 (2)0.40351 (15)0.10663 (10)0.0538 (4)
H50.4929 (16)0.4628 (13)0.1547 (9)0.065*
C60.60682 (19)0.31589 (15)0.07083 (10)0.0528 (4)
H60.7273 (17)0.3117 (13)0.0919 (9)0.063*
C70.72303 (19)0.14630 (14)0.03760 (10)0.0519 (4)
H70.8385 (17)0.1419 (12)0.0080 (8)0.062*
C80.1639 (2)0.50057 (16)0.10713 (10)0.0610 (4)
C90.85826 (18)0.00574 (13)0.14575 (9)0.0476 (4)
C100.8196 (2)0.11183 (15)0.18708 (10)0.0569 (4)
H100.6901 (18)0.1361 (13)0.1860 (9)0.068*
C110.9612 (2)0.18768 (16)0.22793 (10)0.0657 (5)
H110.9274 (18)0.2675 (15)0.2552 (10)0.079*
C121.1415 (2)0.14576 (17)0.22995 (11)0.0668 (5)
H121.2406 (18)0.1973 (15)0.2609 (10)0.080*
C131.1803 (2)0.02736 (18)0.19159 (11)0.0684 (5)
H131.305 (2)0.0051 (15)0.1918 (9)0.082*
C141.03990 (19)0.04859 (16)0.14922 (11)0.0605 (4)
H141.0655 (18)0.1354 (14)0.1248 (9)0.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0550 (7)0.0462 (7)0.0531 (8)0.0004 (5)0.0010 (6)0.0009 (6)
N20.0759 (9)0.0934 (11)0.0861 (11)0.0287 (9)0.0031 (8)0.0113 (9)
C10.0490 (8)0.0449 (8)0.0445 (9)0.0007 (6)0.0040 (7)0.0042 (7)
C20.0552 (8)0.0586 (10)0.0550 (11)0.0002 (8)0.0104 (8)0.0092 (8)
C30.0482 (8)0.0703 (11)0.0606 (11)0.0040 (8)0.0109 (8)0.0044 (9)
C40.0509 (8)0.0485 (9)0.0473 (9)0.0033 (7)0.0005 (7)0.0045 (7)
C50.0621 (9)0.0525 (9)0.0470 (10)0.0015 (7)0.0070 (8)0.0037 (7)
C60.0511 (8)0.0595 (10)0.0490 (10)0.0035 (8)0.0102 (7)0.0008 (8)
C70.0531 (8)0.0507 (9)0.0518 (10)0.0023 (7)0.0060 (7)0.0034 (8)
C80.0597 (9)0.0658 (11)0.0571 (11)0.0072 (9)0.0036 (8)0.0016 (9)
C90.0559 (8)0.0414 (8)0.0447 (9)0.0025 (7)0.0024 (7)0.0017 (7)
C100.0656 (9)0.0498 (9)0.0535 (10)0.0058 (8)0.0024 (8)0.0003 (8)
C110.0921 (12)0.0461 (10)0.0556 (11)0.0021 (9)0.0072 (9)0.0045 (8)
C120.0790 (12)0.0624 (11)0.0565 (11)0.0186 (9)0.0047 (9)0.0014 (9)
C130.0580 (9)0.0749 (12)0.0718 (12)0.0052 (9)0.0051 (9)0.0107 (10)
C140.0570 (9)0.0559 (9)0.0682 (12)0.0006 (8)0.0046 (8)0.0136 (9)
Geometric parameters (Å, º) top
N1—C71.2686 (17)C6—H60.967 (12)
N1—C91.4177 (16)C7—H70.999 (12)
N2—C81.1429 (17)C9—C101.3835 (18)
C1—C61.3845 (19)C9—C141.3838 (18)
C1—C21.3888 (17)C10—C111.376 (2)
C1—C71.4635 (18)C10—H100.971 (12)
C2—C31.3683 (19)C11—C121.373 (2)
C2—H20.950 (14)C11—H110.949 (15)
C3—C41.3883 (19)C12—C131.370 (2)
C3—H30.979 (13)C12—H120.970 (14)
C4—C51.3823 (19)C13—C141.3801 (19)
C4—C81.436 (2)C13—H130.965 (14)
C5—C61.3823 (19)C14—H140.975 (14)
C5—H50.975 (13)
C7—N1—C9119.40 (12)C1—C7—H7116.7 (8)
C6—C1—C2118.54 (13)N2—C8—C4178.87 (17)
C6—C1—C7120.26 (12)C10—C9—C14119.13 (13)
C2—C1—C7121.16 (13)C10—C9—N1117.48 (12)
C3—C2—C1120.87 (14)C14—C9—N1123.25 (13)
C3—C2—H2122.3 (8)C11—C10—C9120.22 (14)
C1—C2—H2116.8 (8)C11—C10—H10123.0 (8)
C2—C3—C4119.97 (14)C9—C10—H10116.8 (8)
C2—C3—H3119.9 (8)C12—C11—C10120.37 (16)
C4—C3—H3120.1 (8)C12—C11—H11122.7 (9)
C5—C4—C3120.20 (13)C10—C11—H11116.9 (9)
C5—C4—C8120.42 (13)C13—C12—C11119.72 (16)
C3—C4—C8119.37 (13)C13—C12—H12119.9 (8)
C6—C5—C4119.08 (14)C11—C12—H12120.3 (8)
C6—C5—H5122.3 (7)C12—C13—C14120.48 (16)
C4—C5—H5118.6 (7)C12—C13—H13121.9 (9)
C5—C6—C1121.34 (14)C14—C13—H13117.6 (9)
C5—C6—H6121.2 (8)C13—C14—C9120.02 (14)
C1—C6—H6117.5 (8)C13—C14—H14121.0 (8)
N1—C7—C1121.76 (13)C9—C14—H14118.9 (8)
N1—C7—H7121.6 (7)
C6—C1—C2—C30.7 (2)C2—C1—C7—N15.6 (2)
C7—C1—C2—C3176.87 (14)C7—N1—C9—C10146.46 (13)
C1—C2—C3—C40.1 (2)C7—N1—C9—C1437.8 (2)
C2—C3—C4—C50.7 (2)C14—C9—C10—C112.7 (2)
C2—C3—C4—C8178.79 (13)N1—C9—C10—C11178.56 (14)
C3—C4—C5—C60.8 (2)C9—C10—C11—C121.6 (2)
C8—C4—C5—C6178.69 (13)C10—C11—C12—C130.5 (3)
C4—C5—C6—C10.1 (2)C11—C12—C13—C141.5 (3)
C2—C1—C6—C50.6 (2)C12—C13—C14—C90.4 (3)
C7—C1—C6—C5176.99 (12)C10—C9—C14—C131.6 (2)
C9—N1—C7—C1175.33 (11)N1—C9—C14—C13177.28 (14)
C6—C1—C7—N1172.00 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.980 (13)2.616 (14)3.473 (2)146.1 (10)
C5—H5···Cgii0.975 (13)2.650 (14)3.5970 (17)163.9 (11)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10N2
Mr206.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.2673 (4), 10.0287 (7), 15.4306 (12)
β (°) 96.177 (2)
V3)1118.08 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa-APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.983, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
13128, 2883, 1423
Rint0.047
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.03
No. of reflections2883
No. of parameters176
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.13, 0.10

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003)..

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.980 (13)2.616 (14)3.473 (2)146.1 (10)
C5—H5···Cgii0.975 (13)2.650 (14)3.5970 (17)163.9 (11)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, for funding the purchase of the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOjala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (2002). J. Chem. Crystallogr. 31, 377–386.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds