supplementary materials


lh2600 scheme

Acta Cryst. (2008). E64, m640    [ doi:10.1107/S1600536808009008 ]

(Di-2-pyridylamine-[kappa]2N1,N1')bis(methacrylato-[kappa]O)nickel(II) sesquihydrate

F. Meng, L. Xia and X. Zhu

Abstract top

In the title mononuclear complex, [Ni(C4H5O2)2(C10H9N3)]·1.5H2O, the NiII ion is in a distorted square-planar coordination environment, formed by two O atoms from two methacrylate ligands and two N atoms from a bis-chelating dipyridylamine ligand. In the crystal structure, intermolecular O-H...O and N-H...O hydrogen bonds link complex molecules and water molecules into one-dimensional chains.

Comment top

Methacrylic acid and its derivatives are biologically active compounds which are widely used as herbicides and plantgrowth substances (Matsui et al., 1997; Carabias-Martínez et al., 2006). Due to their versatile bonding modes with metal ions, they have also been used in the synthesis of mononuclear or multi-nuclear compounds (Wang et al., 1997; Wu et al., 2002). In order to develop some new topological structures, the reaction system of a nickel(II)chloride with methacrylic acid and dipyridin-2-ylamine has been explored.

Herein we report the structure of the title compound (Fig. 1). It is isostructural with the Cu analog (Liu et al., 2006) but we have located and refined an addtional half of a water solvent molecule. The NiII ion is in a distorted square-planar coordination environment, formed by two O atoms from two methacrylate ligands and two N atoms from a bis-chelataing dipyridin-2-ylamine ligand. In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds link complex molecules and water molecules into a to form one-dimensional chains (Fig. 2).

Related literature top

For the Cu analog of the title compound, see: Liu, et al. (2006). For related literature, see: Carabias-Martínez et al. (2006); Matsui et al. (1997); Wang et al. (1997); Wu et al. (2002).

Experimental top

Methacrylic acid and dipyridin-2-ylamine are commercially available, and they were used without further purification. The reaction was carried out under an air atmoshpere. Methacrylic acid (2 mmol), dipyridin-2-ylamine (1 mmol) and nickel(II)chloride (1 mmol) were added to water and the mixture was stirred for 4 h at 323 K. After cooling to room temperature, the solution was filtered. The solvent was removed from the filtrate under vacuum, and the solid residue was recrystallized from ethanol to form yellow crystals which were suitable for X-Ray diffraction study. Yield, 78%. m.p. 547 K. Analysis, calculated for C18H22N3NiO5.50: C 50.62, H 5.19, N 9.84; found: C 50.38, H 5.43, N 9.52. The elemental analyses were performed with a Perkine Elemer PE2400II instrument.

Refinement top

Methyl H atoms were included in calculated positions with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C). H atoms bonded to N3 and O6 were included in calculations with N—H = 0.6 Å, O—H = 0.85Å and Uiso(H) = 1.2Ueq(O,N). All other H atoms were refined independently with isotropic displacement parameters. The C—H distances refined to 0.90 (3) - 1.01 (3) Å.

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted.
[Figure 2] Fig. 2. The one-dimensional structure formed via intermolecular O—H···O and N—H···O hydrogen bonds. Hydrogen bonds are shown as red lines.
(Di-2-pyridylamine-κ2N1,N1')bis(methacrylato-κO)nickel(II) sesquihydrate top
Crystal data top
[Ni(C4H5O2)2(C10H9N3)]·1.5H2OF000 = 892
Mr = 427.10Dx = 1.416 Mg m3
Monoclinic, P21/nMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4631 reflections
a = 8.3686 (9) Åθ = 1.9–28.3º
b = 15.7235 (16) ŵ = 1.00 mm1
c = 15.5396 (17) ÅT = 293 (2) K
β = 101.483 (2)ºBlock, blue
V = 2003.8 (4) Å30.29 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2720 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.077
T = 293(2) Kθmax = 25.0º
φ and ω scansθmin = 1.9º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 9→9
Tmin = 0.740, Tmax = 0.872k = 18→17
9960 measured reflectionsl = 15→18
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.084  w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.013
3512 reflectionsΔρmax = 0.32 e Å3
311 parametersΔρmin = 0.24 e Å3
13 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
[Ni(C4H5O2)2(C10H9N3)]·1.5H2OV = 2003.8 (4) Å3
Mr = 427.10Z = 4
Monoclinic, P21/nMo Kα
a = 8.3686 (9) ŵ = 1.00 mm1
b = 15.7235 (16) ÅT = 293 (2) K
c = 15.5396 (17) Å0.29 × 0.22 × 0.18 mm
β = 101.483 (2)º
Data collection top
Bruker SMART CCD area-detector
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2720 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.872Rint = 0.077
9960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03613 restraints
wR(F2) = 0.084H atoms treated by a mixture of
independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
3512 reflectionsΔρmin = 0.24 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.71669 (3)0.166235 (18)0.635377 (19)0.05233 (13)
O10.6953 (2)0.18663 (11)0.75859 (11)0.0676 (5)
O20.4520 (2)0.16405 (13)0.68304 (14)0.0869 (6)
O30.6959 (2)0.28811 (11)0.60684 (13)0.0744 (5)
O40.9584 (2)0.26650 (12)0.62783 (14)0.0866 (6)
O50.1555 (3)0.13886 (13)0.58041 (14)0.0871 (6)
O60.1576 (18)0.8401 (6)0.9099 (9)0.365 (9)0.50
H6A0.23790.80700.91030.437*0.50
H6B0.07240.81390.88460.437*0.50
N10.8388 (2)0.05866 (11)0.66380 (12)0.0554 (5)
N20.6341 (2)0.13116 (12)0.51218 (13)0.0555 (5)
N30.7837 (2)0.00393 (12)0.51996 (13)0.0599 (5)
H190.81130.03570.48770.072*
C10.9209 (4)0.0486 (2)0.74736 (19)0.0786 (8)
C21.0198 (4)0.0173 (2)0.7755 (2)0.0922 (10)
C31.0384 (4)0.0799 (2)0.7157 (2)0.0857 (9)
C40.9597 (3)0.07131 (17)0.63130 (19)0.0682 (7)
C50.8605 (3)0.00130 (14)0.60641 (16)0.0530 (6)
C60.6718 (3)0.05967 (14)0.47463 (15)0.0514 (5)
C70.5986 (3)0.03930 (18)0.38840 (17)0.0659 (7)
C80.4874 (4)0.0926 (2)0.34175 (19)0.0745 (8)
C90.4470 (4)0.1665 (2)0.38006 (19)0.0724 (8)
C100.5214 (3)0.18320 (18)0.4632 (2)0.0693 (7)
C110.5437 (3)0.18002 (14)0.75381 (19)0.0612 (7)
C120.4763 (4)0.18975 (16)0.8346 (2)0.0745 (8)
C130.5788 (7)0.1974 (2)0.9112 (3)0.1023 (12)
C140.3001 (5)0.1899 (3)0.8252 (3)0.1299 (14)
H130.27210.20520.88010.195*
H110.25830.13420.80810.195*
H120.25340.23040.78100.195*
C150.8403 (4)0.31425 (16)0.60955 (16)0.0606 (6)
C160.8616 (4)0.40609 (18)0.58992 (18)0.0745 (7)
C171.0179 (7)0.4399 (3)0.6099 (3)0.1124 (13)
C180.7233 (5)0.4528 (2)0.5499 (3)0.1287 (14)
H170.75630.50830.53430.193*
H180.65040.45840.59010.193*
H160.66880.42370.49800.193*
H10.913 (3)0.0917 (18)0.7842 (18)0.083 (9)*
H21.086 (3)0.0193 (18)0.8329 (14)0.099 (10)*
H31.108 (4)0.131 (2)0.733 (2)0.117 (11)*
H40.964 (3)0.1118 (14)0.5870 (14)0.066 (7)*
H50.630 (2)0.0103 (11)0.3650 (14)0.058 (7)*
H60.430 (3)0.0750 (19)0.281 (2)0.106 (10)*
H70.373 (3)0.2059 (16)0.3503 (17)0.076 (8)*
H80.495 (3)0.2368 (17)0.4916 (17)0.084 (8)*
H90.690 (2)0.187 (2)0.919 (2)0.118 (16)*
H100.523 (5)0.207 (2)0.958 (3)0.153 (15)*
H141.099 (4)0.403 (2)0.633 (2)0.133 (17)*
H151.031 (4)0.4937 (15)0.592 (2)0.134 (14)*
H200.257 (3)0.1554 (17)0.6173 (18)0.099 (11)*
H210.082 (4)0.1753 (18)0.598 (2)0.128 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0512 (2)0.0530 (2)0.0534 (2)0.00317 (13)0.01212 (15)0.00762 (14)
O10.0629 (12)0.0792 (12)0.0624 (11)0.0013 (9)0.0162 (9)0.0175 (9)
O20.0608 (12)0.1171 (17)0.0832 (14)0.0144 (11)0.0152 (11)0.0286 (12)
O30.0689 (12)0.0613 (11)0.0941 (13)0.0041 (9)0.0191 (10)0.0042 (10)
O40.0766 (13)0.0790 (13)0.1072 (16)0.0182 (10)0.0254 (12)0.0057 (11)
O50.0704 (13)0.0955 (14)0.0905 (15)0.0182 (11)0.0041 (12)0.0320 (12)
O60.410 (19)0.215 (11)0.395 (19)0.049 (10)0.096 (16)0.069 (10)
N10.0556 (12)0.0580 (12)0.0519 (11)0.0019 (9)0.0089 (10)0.0038 (9)
N20.0527 (12)0.0598 (12)0.0546 (12)0.0037 (10)0.0121 (10)0.0011 (10)
N30.0686 (13)0.0582 (12)0.0528 (12)0.0107 (10)0.0121 (10)0.0075 (10)
C10.084 (2)0.086 (2)0.0597 (18)0.0167 (17)0.0003 (15)0.0109 (16)
C20.096 (2)0.105 (2)0.0633 (19)0.030 (2)0.0122 (18)0.0020 (18)
C30.088 (2)0.078 (2)0.084 (2)0.0213 (17)0.0027 (18)0.0054 (18)
C40.0713 (17)0.0595 (16)0.0708 (18)0.0055 (13)0.0066 (15)0.0046 (14)
C50.0500 (13)0.0518 (13)0.0579 (15)0.0019 (11)0.0125 (11)0.0015 (12)
C60.0490 (13)0.0567 (14)0.0504 (13)0.0009 (11)0.0146 (11)0.0006 (11)
C70.0716 (17)0.0738 (18)0.0531 (16)0.0097 (14)0.0147 (14)0.0050 (14)
C80.0739 (19)0.098 (2)0.0507 (16)0.0005 (17)0.0103 (15)0.0084 (16)
C90.0701 (19)0.081 (2)0.0639 (18)0.0116 (16)0.0085 (15)0.0116 (16)
C100.0681 (18)0.0674 (18)0.0710 (19)0.0138 (14)0.0101 (15)0.0034 (14)
C110.0621 (17)0.0529 (15)0.0728 (18)0.0060 (12)0.0234 (15)0.0125 (12)
C120.104 (2)0.0500 (14)0.0812 (19)0.0052 (14)0.0472 (18)0.0095 (14)
C130.155 (4)0.084 (2)0.081 (2)0.020 (3)0.056 (3)0.0093 (19)
C140.119 (3)0.144 (3)0.153 (4)0.010 (2)0.089 (3)0.005 (3)
C150.0705 (18)0.0624 (16)0.0520 (14)0.0061 (14)0.0193 (14)0.0061 (12)
C160.101 (2)0.0637 (17)0.0669 (17)0.0049 (15)0.0361 (16)0.0069 (14)
C170.147 (4)0.093 (3)0.104 (3)0.034 (3)0.044 (3)0.000 (2)
C180.160 (3)0.080 (2)0.161 (4)0.039 (2)0.067 (3)0.030 (2)
Geometric parameters (Å, °) top
Ni1—O31.9669 (18)C4—H40.944 (16)
Ni1—N21.980 (2)C6—C71.395 (3)
Ni1—N11.9801 (18)C7—C81.351 (4)
Ni1—O11.9843 (17)C7—H50.921 (15)
O1—C111.260 (3)C8—C91.378 (4)
O2—C111.235 (3)C8—H61.01 (3)
O3—C151.269 (3)C9—C101.343 (4)
O4—C151.228 (3)C9—H70.93 (3)
O5—H200.961 (18)C10—H81.00 (3)
O5—H210.921 (18)C11—C121.483 (4)
O6—H6A0.8498C12—C131.327 (5)
O6—H6B0.8497C12—C141.453 (4)
N1—C51.335 (3)C13—H90.930 (18)
N1—C11.352 (3)C13—H100.95 (4)
N2—C61.333 (3)C14—H130.9600
N2—C101.361 (3)C14—H110.9600
N3—C61.371 (3)C14—H120.9600
N3—C51.371 (3)C15—C161.494 (4)
N3—H190.8600C16—C171.389 (5)
C1—C21.344 (4)C16—C181.407 (4)
C1—H10.90 (3)C17—H140.911 (18)
C2—C31.383 (4)C17—H150.906 (19)
C2—H20.954 (18)C18—H170.9600
C3—C41.353 (4)C18—H180.9600
C3—H31.00 (3)C18—H160.9600
C4—C51.387 (3)
O3—Ni1—N293.16 (8)C7—C8—C9119.6 (3)
O3—Ni1—N1154.32 (8)C7—C8—H6118.8 (17)
N2—Ni1—N192.47 (8)C9—C8—H6121.5 (17)
O3—Ni1—O192.24 (8)C10—C9—C8118.3 (3)
N2—Ni1—O1153.74 (8)C10—C9—H7118.8 (16)
N1—Ni1—O193.70 (7)C8—C9—H7122.9 (16)
C11—O1—Ni1102.29 (16)C9—C10—N2123.9 (3)
C15—O3—Ni1105.48 (16)C9—C10—H8119.4 (15)
H20—O5—H21103 (3)N2—C10—H8116.7 (15)
H6A—O6—H6B107.1O2—C11—O1120.6 (2)
C5—N1—C1116.6 (2)O2—C11—C12120.0 (3)
C5—N1—Ni1125.95 (16)O1—C11—C12119.3 (3)
C1—N1—Ni1117.08 (18)C13—C12—C14123.5 (4)
C6—N2—C10117.4 (2)C13—C12—C11118.8 (3)
C6—N2—Ni1126.19 (16)C14—C12—C11117.7 (3)
C10—N2—Ni1116.32 (18)C12—C13—H9124 (2)
C6—N3—C5132.90 (19)C12—C13—H10112 (3)
C6—N3—H19113.5H9—C13—H10124 (4)
C5—N3—H19113.5C12—C14—H13109.5
C2—C1—N1124.4 (3)C12—C14—H11109.5
C2—C1—H1119.6 (17)H13—C14—H11109.5
N1—C1—H1115.9 (18)C12—C14—H12109.5
C1—C2—C3118.4 (3)H13—C14—H12109.5
C1—C2—H2122.5 (18)H11—C14—H12109.5
C3—C2—H2118.8 (17)O4—C15—O3121.8 (2)
C4—C3—C2118.8 (3)O4—C15—C16121.0 (3)
C4—C3—H3119 (2)O3—C15—C16117.2 (2)
C2—C3—H3122 (2)C17—C16—C18123.6 (4)
C3—C4—C5119.9 (3)C17—C16—C15118.1 (3)
C3—C4—H4123.9 (15)C18—C16—C15118.3 (3)
C5—C4—H4116.1 (15)C16—C17—H14116 (3)
N1—C5—N3120.8 (2)C16—C17—H15117 (3)
N1—C5—C4121.9 (2)H14—C17—H15126 (4)
N3—C5—C4117.3 (2)C16—C18—H17109.5
N2—C6—N3120.8 (2)C16—C18—H18109.5
N2—C6—C7121.1 (2)H17—C18—H18109.5
N3—C6—C7118.1 (2)C16—C18—H16109.5
C8—C7—C6119.8 (3)H17—C18—H16109.5
C8—C7—H5122.3 (14)H18—C18—H16109.5
C6—C7—H5117.9 (14)
O3—Ni1—O1—C1190.93 (15)C6—N3—C5—C4175.2 (2)
N2—Ni1—O1—C1110.8 (3)C3—C4—C5—N10.4 (4)
N1—Ni1—O1—C11114.07 (15)C3—C4—C5—N3179.9 (3)
N2—Ni1—O3—C15105.33 (17)C10—N2—C6—N3179.7 (2)
N1—Ni1—O3—C152.9 (3)Ni1—N2—C6—N33.6 (3)
O1—Ni1—O3—C15100.38 (17)C10—N2—C6—C70.1 (3)
O3—Ni1—N1—C594.3 (2)Ni1—N2—C6—C7176.25 (17)
N2—Ni1—N1—C58.28 (19)C5—N3—C6—N29.6 (4)
O1—Ni1—N1—C5162.74 (18)C5—N3—C6—C7170.3 (2)
O3—Ni1—N1—C178.9 (3)N2—C6—C7—C80.0 (4)
N2—Ni1—N1—C1178.6 (2)N3—C6—C7—C8179.8 (2)
O1—Ni1—N1—C124.1 (2)C6—C7—C8—C90.3 (4)
O3—Ni1—N2—C6151.52 (18)C7—C8—C9—C100.5 (4)
N1—Ni1—N2—C63.41 (19)C8—C9—C10—N20.4 (4)
O1—Ni1—N2—C6106.9 (2)C6—N2—C10—C90.1 (4)
O3—Ni1—N2—C1032.28 (19)Ni1—N2—C10—C9176.4 (2)
N1—Ni1—N2—C10172.79 (18)Ni1—O1—C11—O20.2 (3)
O1—Ni1—N2—C1069.3 (3)Ni1—O1—C11—C12178.91 (18)
C5—N1—C1—C20.7 (4)O2—C11—C12—C13172.6 (3)
Ni1—N1—C1—C2174.4 (3)O1—C11—C12—C136.1 (4)
N1—C1—C2—C30.7 (5)O2—C11—C12—C147.1 (4)
C1—C2—C3—C41.6 (5)O1—C11—C12—C14174.2 (3)
C2—C3—C4—C51.1 (5)Ni1—O3—C15—O40.5 (3)
C1—N1—C5—N3179.3 (2)Ni1—O3—C15—C16179.79 (18)
Ni1—N1—C5—N36.1 (3)O4—C15—C16—C1712.7 (4)
C1—N1—C5—C41.2 (4)O3—C15—C16—C17167.0 (3)
Ni1—N1—C5—C4174.35 (18)O4—C15—C16—C18165.4 (3)
C6—N3—C5—N14.3 (4)O3—C15—C16—C1814.9 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O2i0.852.573.172129
O6—H6B···O3i0.852.313.030143
N3—H19···O5ii0.861.992.837 (3)170
O5—H20···O20.96 (3)1.75 (3)2.698 (3)169 (2)
O5—H21···O4iii0.92 (3)1.88 (3)2.789 (3)169 (3)
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x−1, y, z.
Table 1
Selected geometric parameters (Å, °)
top
Ni1—O31.9669 (18)Ni1—N11.9801 (18)
Ni1—N21.980 (2)Ni1—O11.9843 (17)
O3—Ni1—N293.16 (8)O3—Ni1—O192.24 (8)
O3—Ni1—N1154.32 (8)N2—Ni1—O1153.74 (8)
N2—Ni1—N192.47 (8)N1—Ni1—O193.70 (7)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O3i0.852.313.030143
N3—H19···O5ii0.861.992.837 (3)170
O5—H20···O20.96 (3)1.75 (3)2.698 (3)169 (2)
O5—H21···O4iii0.92 (3)1.88 (3)2.789 (3)169 (3)
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x−1, y, z.
Acknowledgements top

The authors thank the Postgraduate Foundation of Daqing Normal University for financial support.

references
References top

Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Carabias-Martínez, R., Rodríguez-Gonzalo, E. & Herrero-Hernández, E. (2006). Anal. Chim. Acta, 559, 186–194.

Liu, P., Wang, C. J., Wang, Y. Y., Qin, W. L., Sun, R., Li, D. S. & Shi, Q. Z. (2006). J. Coord. Chem. 59, 729–741.

Matsui, J., Okada, M., Tsuruoka, M. & Takeuchi, T. (1997). Anal. Commun. 34, 85–87.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, Y. Y., Shi, Q. Z. & Gao, Y. C. (1997). Chem. J. Chin. Uni. 18, 348–352.

Wu, B., Lu, W. M. & Zheng, X. M. (2002). J. Coord. Chem. 55, 497–503.